Correspondence between

classical and quantum integrable

 theories: applications and origin"Talking Integrability: Spin, Fields and Strings", 31-8-2022, KAVLI Institute, UC Santa Barbara

Davide Fioravanti (nnv:-bogegn)

 Papers with D.Gregori, M.Rossi, H. Shu.- Sketch of a PLAN:

Leitmotiv

- 1) Motivations: in many research topics Thermodynamic Bethe Ansatz appears with different physical meanings. Little in gauge theory, not in General Relativity, BH physics: APPLICATIONS.
- 2) Traditional TBA: particle scattering in 2D QFT, I way
- 3) AdS/CFT: gauge theory Operator Product Expansion \rightarrow Form factor series for null polygonal WLs re-sums to TBA at strong coupling: II way.

Gauge th. or BH physics
 2D CFT

- 4) Ordinary Differential Eq. \rightarrow Integrable Models ODEIM correspondence: functional, integral eqs \rightarrow STRUCTURE. III way.
-5) PDE/IM with masses enlarge the view, then why ODE/IM? classical Integrable system=classical Lax pair

ORIGIN: \leftarrow

Ubíquitus TBA many talks here: I way

- We know TBA for computing energy, $\dot{\ddot{l}}$ less its discontinuity formulae, KontsevichSoibelman (Donaldson-Thomas invariants): WKB (Dalabaere-Pham), resurgence, (compactified) susy gauge theories wall-crossing of BPS states entails

Gaiotto Moore~Neítzke
-

$$
\begin{equation*}
\mathcal{X}_{\gamma}(\zeta)=\mathcal{X}_{\gamma}^{\mathrm{sf}}(\zeta) \exp \left[-\frac{1}{4 \pi i} \sum_{\gamma^{\prime}} \Omega\left(\gamma^{\prime} ; u\right)\left\langle\gamma, \gamma^{\prime}\right\rangle \int_{\ell_{\gamma^{\prime}}} \frac{d \zeta^{\prime}}{\zeta^{\prime}} \frac{\zeta^{\prime}+\zeta}{\zeta^{\prime}-\zeta} \log \left(1-\sigma\left(\gamma^{\prime}\right) \mathcal{X}_{\gamma^{\prime}}\left(\zeta^{\prime}\right)\right)\right] . \tag{5.13}
\end{equation*}
$$

- which are nothing but TBA EQS, but no scattering

$$
\begin{aligned}
& \text { It was pointed out to us some time ago by A. Zamolodchikov that one of the central } \\
& \text { results of this paper, equation (5.13), is in fact a version of the Thermodynamic Bethe } \\
& \text { Ansatz [45]. In this appendix we explain that remark. Another relation between four- } \\
& \text { dimensional super Yang-Mills theory and the TBA has recently been discussed by Nekrasov } \\
& \text { and Shatashvili [46]. } \\
& \text { The TBA equations for an integrable system of particles } a \text { with masses } m_{a} \text {, at inverse }
\end{aligned}
$$

ubiquitus TBA for different communities

- The same mathematical problem for very different physical problem: gluon scattering amplitudes/Wilson loops (null polygon) in $N=4$ STRONG gauge theory dual to minimal string area (thanks to AdS/CFT) : same TBA.
- We re-summed the OPE (Form-Factor) series of WI (collinear limit) to TBA.
- The general phenomenon on the background is the so-called linear Ordinary Differential Equation \rightarrow Integrable Model (ODE \rightarrow IM) correspondence (2D (FTs), possibly extended to linear PDE (Massive QFTs). The II way to TBA.
- Recently we proposed an advance (different ODE) which identifies NS (SW with one Omega background) periods with integrable quantities T,Q: connexion with SW geometry. Gauge motivation. And origin (?)
- ORIGIN: IM \rightarrow ODE. TBA is part of general integrability structure: QQ, TQ, TT, Y system and ONE single (complex) Non Línear Integral Equation (TBA eqs. resum to it), QSC: general benefit. In common with SPIN CHAINS.

Motivation: finite size spectrum and the space of theories: flows from conformal theories \leftrightarrow non perturbative physics

(Thermodynamic) Bethe Ansatz

- Physics Bethe eqs: propagation of a test (blu) particle and its scattering on the others (green)= 1

- This implies a sort of microscopic S matrix, valid at finite size (periodic) for spin chains. Not for field theories!
- In field theories, same form eqs. with S-matrix, valid only at infinite size. For finite size, not exact energy.

Computation of the LxR torus partition in two ways

$$
\text { large } L \rightarrow \infty \quad e^{i p_{l} L} \prod_{m=1, m \neq l}^{L} S\left(p_{l}, p_{m}\right)=1
$$

1) Direct theory: ground state energy/anomalous dimension (gauge theory) $E_{0}=\Delta_{0}$ cannot be computed exactly at finte L: \simeq

Computation of the LxR torus partition in two ways

1) Direct theory: ground state exact energy dominates partition function as $R \rightarrow \infty$:

$$
Z=\exp \left[-R \Delta_{0}\right]+\ldots \quad \Delta_{0}=E_{0}
$$

Computation of the LxR torus partition in two ways

2) Mirror theory (space \leftrightarrow time): Bethe eqs. (derived from those 1) in space $R \rightarrow \infty$ become exact!

Finite L not longer a problem: Thermodynamics/statistical
 mechanics at temperature $\mathrm{T}=1 / \mathrm{L}$ (Yang-Yang) gives the minimal free energy $f_{\text {min }}(L)$:

$$
Z=\exp \left[-R L f_{\min }(L)\right]+\ldots
$$

$$
\exp \left[-R \Delta_{0}(L)\right]=\exp \left[-R L f_{\min }(L)\right]
$$

- ground state energy/anomalous dimension in 1) given by thermodynamic free energy computed in the mirror theory 2).
- Minimising a functional \Longrightarrow non linear integral eq., whose solution furnishes energies/ dimensions (as integrals on it):

$$
\begin{gathered}
\text { known } \\
\left.\left.\ln Q(\theta)=\tilde{E}(\theta)+\int_{-\infty}^{\infty} \frac{1}{\cosh \left(\theta-\theta^{\prime}\right)} \ln \left[1+Q^{2}\left(\theta^{\prime}\right)\right\}\right] d \theta^{\prime} \Rightarrow \Delta \sim \int_{-\infty}^{\infty} \frac{d \tilde{p}}{d \theta} \ln \left[1+Q^{2}(\theta)\right\}\right] d \theta \\
Q^{2}(\theta)=e^{-\epsilon(\theta)}=Y(\theta) \text { pseudoenergy so that } \epsilon(\theta)=m \cosh \theta-\int_{-\infty}^{+\infty} \frac{d \theta^{\prime}}{2} \frac{1}{\cosh \left(\theta-\theta^{\prime}\right)} \ln \left[1+e^{-\epsilon\left(\theta^{\prime}\right)}\right]
\end{gathered}
$$

- Other states/operators \Longleftarrow excited states: analytic continuation of the solution or poles in NLIE which only modifies the driving term $\tilde{E}\left(\theta \mid \theta_{i}\right)$

Vacuum/Excited states Thermodynamic Bethe Ansatz

- Vacuum equations of the form

$$
\epsilon_{a}(u)=\mu_{a}+\tilde{e}_{a}(u)-\sum_{b} \int d v K_{a, b}(u, v) \ln \left(1+e^{-\epsilon_{b}(v)}\right)
$$

with mirror energy $\tilde{e}_{a}(u)$ as driving term and scattering factors

$$
K_{a, b}(u, v) \propto \partial_{v} \ln S_{a, b}(u, v)
$$

- Excited states $E(L)$ are connected to the vacuum by analytic continuation in some parameter (e.g. μ_{a} and L) \Rightarrow additional inhomogeneous terms in the equations $\sum_{i} \ln S_{a, b}\left(u, u_{i}\right)$ depending on TBA complex singularities u_{i} :

$$
e^{-\epsilon_{a}\left(u_{i}\right)}=-1
$$

these are the exact Bethe roots (with wrapping).

- \Rightarrow Delicate and massive numerical work for analytic continuation.
- From the vacuum TBA to Y-system e.g.

$$
Y_{n}(\omega E) Y_{n}\left(\omega^{-1} E\right)=\left(1+Y_{n+1}(E)\right)\left(1+Y_{n-1}(E)\right)
$$

- $Y_{n}(E)=e^{-\epsilon_{n}(u)}, E=e^{2 u}$, upon inverting universal kernel $1 / c o s h$ into the shift operator on the l.h.s..subtlety: from physical to universal kernels.
- Excited Ys must satisfy the same Y-system.

A second way to TBA: the OPE for null polygonal WLs

- Theory: $N=4$ SYM in planar limit $\lambda=N_{c} g_{Y M}^{2}, N_{c} \rightarrow \infty$
- Exponential of circulation of the gauge field dual $=$ quantum area of $\| B$ string theory on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}{ }_{\text {(Adday, Maldacena; Korchemk, Sokacheve,...Bern, Dixon,...) }}$
- Light-like polygons can be decomposed into light-like Pentagons (and Squares): an Operator Product Expansion (OPE)

Alday,Gaiotto,Maldacena;Basso,Sever, Vieira; Belitski; DF,Piscaglia,Rossi;

- Simplest example: Hexagon into two Pentagons $P \rightarrow$ String Flux tube
- The same as two-point correlation function <PP> into FormFactors in quantum integrable 2D field theories
- In a picture:

hexagon

- Which mathematically means:
- $W=\boldsymbol{\Sigma} \exp (-\mathrm{rE})<0|\mathrm{P}| \mathrm{n}><\mathrm{n}|\mathrm{P}| 0>$ Multi-P correlation function:general m,n transition
- = $\langle P P\rangle$: the same as 2D Form Factor (FF) decomposition
- Form-Factors obey axioms with the S-matrix: 1)Watson eqs., 2) Monodromy (q-KZ), 3) Kinematic Poles, 4) Bound-state eqs. etc.
- We have to modify the 2) (and 3)) (for conical twist fields)
- Eigen-states $\ln >$? 2D excitations over the GKP folded string (of length $=2 \ln s$) Basso which stretches from boundary to boundary (for large s) of AdS:S-matrix

FFs series summing to TBA orricesegh, Reaso

- Quite unique example of Form-Factor series resummation. Result: thermodynamic bubble Ansatz of string minímal area at strong coupling (Alday-Gaiotto-Maldaeena)
- The keyidea: Hubbard-Stratonovich transformation replaces the infinite sums with a path integral
$\left.s^{(9)}\left|X^{g}\right| \sim \sqrt{\lambda} \rightarrow \infty\right) ;$ saddle point eqs. are TBA eqs.

$$
X^{g}(\theta)-\int \frac{d \theta^{\prime}}{2 \pi} G^{g}\left(\theta, \theta^{\prime}\right) \mu^{g}\left(\theta^{\prime}\right) \log \left[\left(1+e^{X^{g}\left(\theta^{\prime}\right)} e^{-E\left(\theta^{\prime}\right)+i \phi}\right)\left(1+e^{X^{g}\left(\theta^{\prime}\right)} e^{-E\left(\theta^{\prime}\right)-i \phi}\right)\right]=0
$$

$$
\int d \theta^{\prime} G^{g}\left(\theta, \theta^{\prime}\right) T^{g}\left(\theta^{\prime}, \theta^{\prime \prime}\right)=\delta\left(\theta-\theta^{\prime \prime}\right)
$$

$$
\begin{aligned}
& W_{\text {hex }}^{(g)}=Z^{(g)}\left[X^{g}\right]=\int \mathcal{D} X^{g} e^{-S^{(g)}\left[X^{g}\right]}
\end{aligned}
$$

IMPORTANT LESSON

- Classical string equations (strong coupling), i.e. classical (Lax) integrable system is solved by quantum TBA
- Surprise: yes, because classical string dynamics; no, because we knew classical static potentials leading to TBA (ODE/IM,next).
- Mystery: string (second) quantise TBA?

ODE/IM Correspondence (III way)

(Dorey, Tateo,BLZ,DF, Dunníng, Suzuki,Frenkel,Bender,Masoero,.

- Simplest example: Schrödinger eq. on the half line $(0, \infty)$ (Stokes line)

$$
\left(-\frac{d^{2}}{d x^{2}}+x^{2 M}+\frac{l(l+1)}{x^{2}}\right) \psi(x)=E \psi(x) \quad \text { important } M>0
$$

- we fix the subdominant solution such that at complex infinity

$$
\begin{aligned}
y & \sim x^{-M / 2} \exp \left(-\frac{1}{M+1} x^{M+1}\right), \\
y^{\prime} & \sim-x^{M / 2} \exp \left(-\frac{1}{M+1} x^{M+1}\right) \\
& \\
& \text { Changes sign }
\end{aligned}
$$

- Changing anti-Stokes sector $\left.\mathscr{S}_{k}=\operatorname{lngx}-\frac{2 k \pi}{2 M+2} \right\rvert\,<\frac{\pi}{2 M+2}$ this solution becomes dominant

Discrete Symmetry Breaking

- Omega symmetry of the eq. not of the solution which rotates by $\omega=\exp (\pi i /(M+1))=q$ (quantum group)
- $\left.\hat{\Omega} x \rightarrow q x, E \rightarrow q^{-2} E\right) l \rightarrow l \quad y_{k} \equiv y_{k}(x, E, l)=\omega^{k / 2} y\left(\omega^{-k} x, \omega^{2 k} E, l\right)$
- $\quad y_{k}$ subdominant in \mathscr{S}_{k} and dominant in $\mathscr{S}_{k \pm 1}$
- About $x=$ ínfinity, irregular singularity.
- Lambda symmetry, about $x=0$, regular singularity:
- $\hat{\Lambda}: x \rightarrow x, \quad E \rightarrow E, \quad(l \rightarrow-l) \quad \hat{\Lambda} \psi^{ \pm}=\psi^{\mp} \quad$ around $x=0 \quad \psi^{+} \simeq x^{l+1} \psi^{-} \simeq x^{-l}$ $l(l+1)$ invariant

Transfer matrix T, Q and various

functional equations

- Stokes multipliers
- $\quad y_{k-1}(x, E, l)=C_{k}(E, l) y_{k}(x, E, l)+\tilde{C}_{k}(E, l) y_{k+1}(x, E, l)$
- All the C_{k} and \tilde{C}_{k} in terms of Wronskians, e.g. $k=0\left(y_{-1}=C y_{0}+\tilde{C} y_{1}\right)$

$$
C=\frac{W_{-1,1}}{W_{0,1}}, \quad \tilde{C}=-\frac{W_{-1,0}}{W_{0,1}}
$$

- By using the leading asymptotics

$$
C(E, l) y(x, E, l)=\omega^{-1 / 2} y\left(\omega x, \omega^{-2} E, l\right)+\omega^{1 / 2} y\left(\omega^{-1} x, \omega^{2} E, l\right)
$$

- If $\mathrm{f}=0$, no singularity in $\mathrm{x}=0$, then Baxter TQ-relation

$$
\mathbf{T}(\lambda) \mathbf{Q}_{ \pm}(\lambda)=\mathbf{Q}_{ \pm}\left(q^{-1} \lambda\right)+\mathbf{Q}_{ \pm}(q \lambda)
$$

- but keeping $l \neq 0$, it still works
- $\quad C(E, l) D^{\mp}(E, l)=\omega^{\mp(1 / 2+l)} D^{\mp}\left(\omega^{-2} E, l\right)+\omega^{ \pm(1 / 2+l)} D^{\mp}\left(\omega^{2} E, l\right)$
- In fact 'Scattering Coefficients' $=$ spectral determinants
- $\quad D^{\mp}(E, l) \equiv W\left[y(x, E, l), \psi^{ \pm}(x, E, l)\right]$
- are projections on the $\psi^{ \pm}$: zeroes $\mathbf{E}_{\mathbf{n}}=$ Bethe roots (bound state)
- 2D physics: The original transfer matrix \mathbf{T} and \mathbf{Q} are operators, in Statistical Field Theory or Spin Chain, here eigenvalues, i.e. functions.
- From the TQ relation or the QQ-system (more fundamental), $n=0$ ($n=1$ definition of T) of

$$
\begin{aligned}
(4 l+2) i C^{(n)}(E)= & \omega^{(n+1)(l+1 / 2)} D^{-}\left(\omega^{n+1} E, l\right) D^{+}\left(\omega^{-n-1} E, l\right) \\
& -\omega^{-(n+1)(l+1 / 2)} D^{-}\left(\omega^{-n-1} E, l\right) D^{+}\left(\omega^{n+1} E, l\right)
\end{aligned}
$$

- ODE develops functional equations with $T_{n / 2}\left(\nu E^{1 / 2}\right)=C^{(n)}(E)=\frac{1}{2 i} W_{-1, n}\left(\omega^{-n+1} E\right)$.
- Fused T relations

$$
\mathbf{T}(\lambda) \mathbf{T}_{j}\left(q^{j+1 / 2} \lambda\right)=\mathbf{T}_{j-1 / 2}\left(q^{j+1} \lambda\right)+\mathbf{T}_{j+1 / 2}\left(q^{j} \lambda\right)
$$

or

$$
\mathbf{T}(\lambda) \mathbf{T}_{j}\left(q^{-j-1 / 2} \lambda\right)=\mathbf{T}_{j-1 / 2}\left(q^{-j-1} \lambda\right)+\mathbf{T}_{j+1 / 2}\left(q^{-j} \lambda\right)
$$

- which brings the TT-system or discrete Hírota eq.

$$
\mathbf{T}_{j}\left(q^{-1 / 2} \lambda\right) \mathbf{T}_{j}\left(q^{1 / 2} \lambda\right)=\mathbf{1}+\mathbf{T}_{j+1 / 2}(\lambda) \mathbf{T}_{j-1 / 2}(\lambda)
$$

- Finally the Y-system for the invariant quantity

$$
Y_{n}(E)=C^{n+1}(E) C^{n-1}(E)
$$

- which easily brings the T-system into the Y-system form

$$
Y_{n}(\omega E) Y_{n}\left(\omega^{-1} E\right)=\left(1+Y_{n+1}(E)\right)\left(1+Y_{n-1}(E)\right)
$$

- Upon taking the log, inverting the shift operator on the l.h.s., and using a suitable asymptotic as zero-mode, we can obtain universal kernel $1 /$ cosh TBA, equivalent to physical TBA eqs. $Y_{n}(E)=e^{-\epsilon_{n}(\theta)}, E=e^{2 \theta}$: solution up to quadratures.

2DCFT dictionary

- Eigenvalues of statistical mechanics operators Q and T on the conformal primary (dimension)

$$
\Delta=\left(\frac{p}{\beta}\right)^{2}+\frac{c-1}{24} . \quad p=\frac{2 l+1}{4 M+4}
$$

- with Minimal Model central charge

$$
\begin{array}{r}
c=13-6\left(\beta^{2}+\beta^{-2}\right) \quad \beta^{2}=\frac{1}{(M+1} \quad \text { Sine }- \text { Gordon coupling } \\
q=e^{i \pi \beta^{2}}
\end{array}
$$

Descendent/excited states

- The potentíal acquires an extra piece $\sum_{j} \frac{2}{\left(x-x_{j}\right)^{2}}$ with double poles
- They satisfy algebraic equations, similar to Bethe's: trivial monodromy or Vir symmetry.

D3 brane BH and $O D E / I M$

...Gubser,Hashímoto;Bíanchí,Consoli,Grillo,Morales;Di Russo.

correspondence

- The ODE describing the scalar perturbation of Black Hole

$$
\begin{aligned}
& \frac{d^{2} \phi}{d r^{2}}+\left[\omega^{2}\left(1+\frac{L^{4}}{r^{4}}\right)-\frac{(l+2)^{2}-\frac{1}{4}}{r^{2}}\right] \phi=0 \\
& \text { - Change of varíables } \quad r=L e^{\frac{y}{2}} \quad \omega L=-2 i e^{\theta} \quad P=\frac{1}{2}(l+2)
\end{aligned}
$$ to bring it into the integrability form $\phi=e^{\frac{y}{4}} \mu$

$$
-\frac{d^{2}}{d y^{2}} \psi+\left[e^{2 \theta}\left(e^{y}+e^{-y}\right)+P^{2}\right] \psi=0
$$

- Basis of solutions going to zero (subdomínant) \rightarrow BH b.cs.

$$
U_{0}(y) \simeq \frac{1}{\sqrt{2}} \exp \{-\theta / 2-y / 4\} \exp \left\{-2 e^{\theta+y / 2}\right\}, \Re y \rightarrow+\infty ; V_{0}(y) \simeq \frac{1}{\sqrt{2}} \exp \{-\theta / 2+y / 4\} \exp \left\{-2 e^{\theta-y / 2}\right\}, \mathfrak{R} y \rightarrow-\infty
$$

Discrete Symmetry Breaking

- Lambda and Omega symmetries of the ODE not of the solutions which rotate as
$\Lambda: \theta \rightarrow \theta+i \frac{\pi}{2} \quad y \rightarrow y+\pi i, \quad \Omega: \theta \rightarrow \theta+i \frac{\pi}{2} \quad y \rightarrow y-\pi i$ and generate the dominant (big) solutions: $U_{k}=\Lambda^{k} U_{0} \quad V_{k}=\Omega^{k} V_{0}$ by repeated action.
- ODE/IM fundamental Wronskian is the same as the gravitational one $Q\left(\theta, P^{2}\right)=W\left[U_{0}, V_{0}\right]$

Quasinormal modes \approx Bethe roots

- Proper eigen-frequencies of the back hole

$$
Q\left(\theta_{n}\right)=0
$$

- We can compute them playing with Wronskian:

$$
\begin{aligned}
& i V_{0}(y)=Q(\theta+i \pi / 2) U_{0}(y)-Q(\theta) U_{1}(y) \\
& i V_{1}(y)=Q(\theta+i \pi) U_{0}(y)-Q(\theta+i \pi / 2) U_{1}(y)
\end{aligned}
$$

- Eventually taking the Wronskian $W\left[V_{0}, V_{1}\right]=i$, as in scattering theory, the $\mathbf{Q Q}$-system

Unitarity

$$
Q(\theta+i \pi / 2) Q(\theta-i \pi / 2)=1+Q(\theta)^{2}
$$

- Upon taking the \log and inverting the shift operator $s^{*} l=l(\theta+i \pi / 2)+l(\theta-i \pi / 2) \Rightarrow s^{-1} \sim \frac{1}{\cosh }$ we obtain the Thermodynamic Bethe Ansatz equation

$$
\ln Q(\theta)=-\frac{8 \sqrt{\pi^{3}}}{\Gamma^{2}\left(\frac{1}{4}\right)} e^{\theta}+\int_{-\infty}^{\infty} \frac{\ln \left[1+Q^{2}\left(\theta^{\prime}\right)\right]}{\cosh \left(\theta-\theta^{\prime}\right)} \frac{d \theta^{\prime}}{2 \pi}
$$

- Sort of solution up to quadratures. Important: \mathbf{Q} is the spectral determinant.

T, Q and the SW-NS periods

 (DF, D. Gregori; Grassí, Marino, Gu; He,...)- We quantise/deform the quadratic SW differential: the Mathieu eq. (AGT correspondence: level 2 null vector eq.)

$$
-\frac{\hbar^{2}}{2} \frac{d^{2}}{d z^{2}} \psi(z)+\left[\Lambda^{2} \cos z-u\right] \psi(z)=0
$$

- Namely, quantum SW differential $\mathscr{P}(z)=-i \frac{d}{d x} \ln \psi(z)$ and periods

$$
a(\hbar, u, \Lambda)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathscr{P}(z ; \hbar, u, \Lambda) d z, \quad a_{D}(\hbar, u, \Lambda)=\frac{1}{2 \pi} \int_{-\arccos \left(u / \Lambda^{2}\right)-i 0}^{\arccos \left(u / \Lambda^{2}\right)-i 0} \mathscr{P}(z ; \hbar, u, \Lambda) d z
$$

- ODE/IM uses its non-compact (modified) version: two irregular singularities ($M=-2$)

$$
\left\{-\frac{d^{2}}{d y^{2}}+2 e^{2 \theta} \cosh y+P^{2}\right\} \psi(y)=0 \quad z=-i y-\pi
$$

- upon gauge/integrability change of variable

$$
\frac{\hbar}{\Lambda}=e^{-\theta}, \quad \frac{u}{\Lambda^{2}}=\frac{P^{2}}{2 e^{2 \theta}}
$$

- Integrability/gauge identification

$$
\begin{aligned}
& T(\hbar, u, \Lambda) \equiv T\left(\theta, P^{2}\right)=i W\left[\text { integrability }_{1}, V_{-1}\right]=2 \cos \{2 \pi a(\hbar, u, \Lambda)\} \\
& Q(\hbar, u, \Lambda) \equiv Q\left(\theta, P^{2}\right)=\exp \left\{2 \pi i a_{D}(\hbar, u, \Lambda)\right\}
\end{aligned}
$$

- The fundamental relation of the theory: QQ-SYSTEM

$$
\begin{gathered}
\text { integrability } \\
1+Q^{2}\left(\theta, P^{2}\right)=Q\left(\theta-i \pi / 2, P^{2}\right) Q\left(\theta+i \pi / 2, P^{2}\right), \\
\quad 1+Q^{2}(\theta, u) \stackrel{\text { gauge }}{=} Q(\theta-i \pi / 2,-u) Q(\theta+i \pi / 2,-u)
\end{gathered}
$$

- which gives with $Y=Q^{2}=e^{-\varepsilon}$ the \mathbf{Y}-system (very simple case!) from which the gauge TBA eqs.

$$
\begin{aligned}
& \text { monopole } \\
& \varepsilon(\theta, u, \Lambda)=-4 \pi i a_{D}^{(0)}(u, \Lambda) \frac{e^{\theta}}{\Lambda}-2 \int_{-\infty}^{\infty} \frac{\ln \left[1+\exp \left\{-\varepsilon\left(\theta^{\prime},-u, \Lambda\right)\right\}\right]}{\cosh \left(\theta-\theta^{\prime}\right)} \frac{d \theta^{\prime}}{2 \pi} \\
& \varepsilon(\theta,-u, \Lambda)=-4 \pi i_{D}^{(0)}(-u, \Lambda) \frac{e^{\theta}}{\Lambda}-2 \int_{-\infty}^{\infty} \frac{\ln \left[1+\exp \left\{-\varepsilon\left(\theta^{\prime}, u, \Lambda\right)\right\}\right]}{\cosh \left(\theta-\theta^{\prime}\right)} \frac{d \theta^{\prime}}{2 \pi}
\end{aligned}
$$

dyon, i.e. strong coupling spectrum

- Quantum integrability tells more: e.g. $\mathrm{T} \rightarrow$ weak coupling spectrum (a electric), inside TQ-system

$$
T(\theta) Q(\theta)=Q(\theta-i \pi / 2)+Q(\theta+i \pi / 2)
$$ $2 \cos \{2 \pi a\} \exp \left\{2 \pi i a_{D}\right\}$

- +periodicity, gauge interpretation: quantum BilalFerrari relations. T and Q are generating functions for conserved charges: small $\hbar / \Lambda=e^{-\theta} \ll 1$ asymptotic expansion. Also for quantum periods (zero order=Seiberg-Witten).
- Connexion with SW geometry: an origin of ODE/IM

Explanation of gauge quantisation for BH

- Connexion formula of spectral determinant with instanton prepotential $A_{D}=\partial \mathscr{F} / \partial a$

$$
\begin{aligned}
& \text { 2D solitons vs instantons 4D } \\
& Q(a, \Lambda, \hbar)=i \frac{\sinh A_{D}}{\sinh 2 \pi i a}
\end{aligned}
$$

- quantisation easily follows from

$$
Q=0 \Rightarrow A_{D}\left(a, \Lambda_{n}, \hbar\right)=i \pi n, n \in \mathbb{Z}
$$

- Surprise: previous eq. is the $b=1$ case of

Generalised Mathieu eq. $\left\{-\frac{d^{2}}{d y^{2}}+e^{2 \theta}\left(e^{y / b}+e^{-y b}\right)+P^{2}\right\} \psi(y)=0$

- which describes Liouville field theory vacua

$$
\Delta=(c-1) / 24-P^{2} \quad c=1+6\left(b+b^{-1}\right)^{2}
$$

Zamolodchikov; DF,Gregori

- Self-dual point of the symmetry $b \rightarrow 1 / b$! Meaning?

And somehow previous $\beta=i b$ or $M<-1$.

- NO AGT Liou.: correspondence of correspondences

Generalisations

- Intersection of four stacks of D 3 branes (extremal Kerr BH; equal charges: Reissner-Nöstrom BH)

$$
\frac{d^{2} \phi}{d r^{2}}+\left[-\frac{\left(l+\frac{1}{2}\right)^{2}-\frac{1}{4}}{r^{2}}+\omega^{2} \sum_{k=0}^{4} \frac{\Sigma_{k}}{r^{k}}\right] \phi=0
$$

- which becomes in integrability form

$$
-\frac{d^{2}}{d y^{2}} \psi+\left[e^{2 \theta}\left(e^{2 y}+e^{-2 y}\right)+2 e^{\theta}\left(M_{1} e^{y}+M_{2} e^{-y}\right)+P^{2}\right] \psi=0
$$

- $N_{f}=2$, but results on Schwarzshild, $\operatorname{Kerr}\left(N_{f}=3\right) \ldots \ldots$

The ODE \rightarrow IM correspondence

Schrödinger equation $\rightarrow \frac{\text { ODE }}{\text { Integrable Model }}$ Scattering data
On this side we can use:
WKB and other ODE powerful techniques
ODE may be simpler!!
On this side we find:
$Q\left(\theta_{n}\right)=0$, Energies=QNMs
θ_{n} Bethe roots
From spectral determinant \rightarrow wave function
Love number, echoes,....
Gravitation waves

The ODE $\leftarrow I M$

correspondence?

- Inverting the arrow means reconstructing from a (given) Quantum Integrable System the Ordinary Differential Equation (or something similar) which gives it.
- In other words, understanding the the origin of the correspondence (and maybe better integrability). And ODE is simpler, clearer and more treatable.
- But possible only with masses.

PDE \rightarrow Massive integrable theories

-The 2D conformal potential is a static limit, instead in presence of mass it is given by a flow: solution of classical sinh-Gordon equation

$$
\frac{\partial^{2}}{\partial w \partial \bar{w}} \hat{\eta}=2 \sinh 2 \hat{\eta}
$$

$$
\begin{gathered}
u_{ \pm}\left(w^{\prime}, \bar{w}^{\prime}\right)= \pm \frac{\partial^{2}}{\partial w^{2}} \hat{\eta}(w, \bar{w})-\left(\frac{\partial}{\partial w} \hat{\eta}(w, \bar{w})\right)^{2}, \quad w^{\prime}=-i w, \bar{w}^{\prime}=i \bar{w} \\
\frac{\partial^{2}}{\partial{w^{\prime 2}}^{2}} \psi_{ \pm}\left(w^{\prime}, \bar{w}^{\prime} \mid \lambda\right)+\lambda^{2} \psi_{ \pm}\left(w^{\prime}, \bar{w}^{\prime} \mid \lambda\right)=u_{ \pm}\left(w^{\prime} ; \bar{w}^{\prime}\right) \psi_{ \pm}\left(w^{\prime}, \bar{w}^{\prime} \mid \lambda\right)
\end{gathered}
$$

- Introduce moduli c_{n} : change of variable $d w=\sqrt{p(z)} d z$, polynomial

$$
p(z, \vec{c})=z^{2 N}+\sum_{n=0}^{2 N-1} c_{n} z^{n}
$$

- Conformal limit $\bar{z}=0, z \rightarrow 0$: polynomial potential (scaling $z e^{\theta /(1+N)}=x$ and $c_{n} e^{\theta(2 N-n) /(1+N)}=c_{n}^{c f t}$ fixed when $\left.\theta \rightarrow+\infty\right) \eta \simeq l \ln (z \bar{z}) \Rightarrow$ moduli
- $-\frac{d^{2}}{d x^{2}} \psi_{c f t}+\left(p\left(x, \vec{c}^{c f t}\right)+\frac{l(l+1)}{x^{2}}\right) \psi_{c f t}=0, \quad p\left(x, \vec{c}^{c f t}\right)=x^{2 N}+\sum_{n=0}^{2 N-1} c_{n}^{c f t} x^{n}$
- All the integrable structures (NOT only TBA) can be derived in this full generalisation because of the discrete broken symmetries (DF-Rossi):

$$
\hat{\Omega}: \quad z \rightarrow z e^{\frac{i \pi}{N}}, \quad \theta \rightarrow \theta-\frac{i \pi}{N}, \quad \vec{c} \rightarrow \vec{c}^{R}, \quad \vec{c}^{R}=\left(c_{0}, c_{1} e^{-\frac{i \pi}{N}}, \ldots, c_{n} e^{-\frac{i \pi n}{N}}, \ldots, c_{2 N-2} e^{\frac{2 i \pi}{N}}\right) \quad \begin{aligned}
& \text { Dorey-Tateo, } \\
& \text { BLZ,DF.... }
\end{aligned}
$$

- and in addition

$$
\hat{\Pi}: \theta \rightarrow \theta-i \pi, \text { change of the sign of momentum } \mathrm{k} \text { (GMN) }
$$

$$
A d S_{3} \text { Wilson loops+twist } l
$$

- so that the QQ-SYSTEM originates: quantum (homogeneous) sine-Gordon

$$
Q_{+}\left(\theta+\frac{i \pi}{2 N}, \vec{c}\right) Q_{-}\left(\theta-\frac{i \pi}{2 N}, \vec{c}^{R}\right)-Q_{+}\left(\theta-\frac{i \pi}{2 N}, \vec{c}^{R}\right) Q_{-}\left(\theta+\frac{i \pi}{2 N}, \vec{c}\right)=-2 i \cos \pi l
$$

- which generates all the other integrability functional and integral equations: e.g.the Non Linear Integral Equation (which sum up many TBA eqs.),"

$$
T(\theta, \vec{c}) Q_{ \pm}(\theta, \vec{c})=e^{\mp i \pi\left(l+\frac{1}{2}\right)} Q_{ \pm}(\theta+i \pi, \vec{c})+e^{ \pm i \pi\left(l+\frac{1}{2}\right)} Q_{ \pm}(\theta-i \pi, \vec{c})
$$

Summary so far

- From a (classical) differential operator (Schrödinger) or better a Lax pair \longrightarrow Quantum integrable system (field theory)
- No quantisation but equivalence
- Spin chain? Lattice models?
- Serendipity: how to invert the arrow?

From quantum integrable theory \rightarrow classical Lax

- How to define a quantum integrable system? For us it is fine encoding the conserved charges into Q which satisfy QQ-system:

$$
Q_{+}\left(\theta+\frac{i \pi}{2 N}, \vec{c}\right) Q_{-}\left(\theta-\frac{i \pi}{2 N}, \vec{c}^{R}\right)-Q_{+}\left(\theta-\frac{i \pi}{2 N}, \vec{c}^{R}\right) Q_{-}\left(\theta+\frac{i \pi}{2 N}, \vec{c}\right)=-2 i \cos \pi l
$$

- and being a Bloch-Floquet solution

$$
Q_{ \pm}\left(\theta-i \tau, \vec{c}^{R}\right)=e^{\mp i \pi\left(l+\frac{1}{2}\right)} Q_{ \pm}(\theta, \vec{c})
$$

- From which we derive the universal TQ(key eq.!)

$$
e^{\mp i \pi\left(l+\frac{1}{2}\right)} Q_{ \pm}(\theta+i \pi, \vec{c})+e^{ \pm i \pi\left(l+\frac{1}{2}\right)} Q_{ \pm}(\theta-i \pi, \vec{c})=T(\theta, \vec{c}) Q_{ \pm}(\theta, \vec{c})
$$

- II order finite difference eq. for Q with 'potential' T. We

$$
\begin{aligned}
& Q_{ \pm}\left(\theta+i \frac{\tau}{2}, \vec{c}\right)=q(\theta, \vec{c}) \pm \\
& \pm \int_{-\infty}^{+\infty} \frac{d \theta^{\prime}}{4 \pi} \tanh \frac{\theta-\theta^{\prime}}{2} T\left(\theta^{\prime}+i \frac{\tau}{2}, \vec{c}\right) e^{-w_{0}(\vec{c})\left(e^{\theta}+e^{\theta^{\prime}}\right)-\bar{w}_{0}(\vec{c})\left(e^{-\theta}+e^{-\theta^{\prime}}\right)} e^{ \pm\left(\theta-\theta^{\prime}\right) l} Q_{ \pm}\left(\theta^{\prime}+i \frac{\tau}{2}, \vec{c}\right)
\end{aligned}
$$

- Fix: field theory, ground state asymptotics

$$
\begin{aligned}
& \lim _{\operatorname{Re} \theta \rightarrow \pm \infty} \ln \left[Q_{ \pm}\left(\theta+i \frac{\tau}{2}, \vec{c}\right)\right] \sim-w_{0}(\vec{c}) e^{\theta}-\bar{w}_{0}(\vec{c}) e^{-\theta} \\
& w_{0}(\vec{c})=M_{\text {soliton }} L=r: \text { RG time }
\end{aligned}
$$

- A better proportional variable

$$
C_{ \pm} X_{ \pm}(\theta, \vec{c})=e^{\mp \frac{i \pi}{4}} e^{\mp\left(\theta+\frac{i \pi}{2}\right) l} e^{w_{0}(\vec{c}) e^{\theta}+\bar{w}_{0}(\vec{c}) e^{-\theta}} Q_{ \pm}\left(\theta+i \frac{\tau}{2}, \vec{c}\right)
$$

- satisfies a universal integral equation

$$
X_{ \pm}(\theta, \vec{c})=1 \pm \int_{-\infty}^{+\infty} \frac{d \theta^{\prime}}{4 \pi} \tanh \frac{\theta-\theta^{\prime}}{2} T\left(\theta^{\prime}+i \frac{\tau}{2}, \vec{c}\right) E\left(\theta^{\prime}, \vec{c}\right) X_{ \pm}\left(\theta^{\prime}, \vec{c}\right)
$$

- with peculiar kernel (solitons around the corner)

$$
E(\theta, \vec{c})=e^{-2 w_{0}(\vec{c}) e^{\theta}-2 \bar{w}_{0}(\vec{c}) e^{-\theta}}
$$

- direct consequence of the asymptotics of \mathbf{Q}.
- Upon Fourier transforming $\lambda=e^{\theta}$:

$$
K_{ \pm}\left(w_{0}^{\prime}, \xi ; \bar{w}_{0}^{\prime}\right)=\int_{-\infty-i \epsilon}^{+\infty-i \epsilon} d \lambda e^{i\left(\xi-w_{0}^{\prime}\right) \lambda}\left[X_{ \pm}\left(w_{0}^{\prime}, \bar{w}_{0}^{\prime} \mid \lambda\right)-1\right]
$$

- Volterra equation for $K_{ \pm}\left(w_{0}^{\prime}, \xi ; \bar{w}_{0}^{\prime}\right)$

$$
K_{ \pm}\left(w_{0}^{\prime}, \xi ; \bar{w}_{0}^{\prime}\right) \pm F\left(w_{0}^{\prime}+\xi ; \bar{w}_{0}^{\prime}\right) \pm \int_{w_{0}^{\prime}}^{+\infty} \frac{d \xi^{\prime}}{2 \pi} K_{ \pm}\left(w_{0}^{\prime}, \xi^{\prime} ; \bar{w}_{0}^{\prime}\right) F\left(\xi^{\prime}+\xi ; \bar{w}_{0}^{\prime}\right)=0
$$

- almost Marchenko eq. but the scattering data

$$
F\left(x ; \bar{w}_{0}^{\prime}\right)=i \int_{0}^{+\infty} d \lambda^{\prime} e^{-i x \lambda^{\prime}+2 i \bar{w}_{0}^{\prime} / \lambda^{\prime}} T\left(\lambda^{\prime} e^{i \frac{\pi}{2}}\right)
$$

- which depends (in a intricate way) on $w_{0}^{\prime}=-i w_{0}=-i r$ because of T
- NEW IDEA: promote $w_{0}(\vec{c})=i w_{0}^{\prime}(\vec{c})$ to new dynamical variables $w=i w^{\prime}$ everywhere except in T :

$$
K_{ \pm}\left(w^{\prime}, \xi ; \bar{w}^{\prime}\right) \pm F\left(w^{\prime}+\xi ; \bar{w}^{\prime}\right) \pm \int_{w^{\prime}}^{+\infty} \frac{d \xi^{\prime}}{2 \pi} K_{ \pm}\left(w^{\prime}, \xi^{\prime} ; \bar{w}^{\prime}\right) F\left(\xi^{\prime}+\xi ; \bar{w}^{\prime}\right)=0, \quad \xi>w^{\prime}
$$

- Marchenko-like eq. (!) with 'good’ scattering data

$$
F\left(x ; \bar{w}^{\prime}\right)=i \int_{0}^{+\infty} d \lambda^{\prime} e^{-i x \lambda^{\prime}+2 i \bar{w}^{\prime} / \lambda^{\prime}} T\left(\lambda^{\prime} e^{i \frac{\tau}{2}}, \vec{c}\right)
$$

- Finally we can derive the Schroedinger eq. for

$$
\begin{array}{r}
K_{ \pm}\left(w^{\prime}, \xi ; \bar{w}^{\prime}\right)=\int_{-\infty-i \epsilon}^{+\infty-i \epsilon} d \lambda e^{i\left(\xi-w^{\prime}\right) \lambda}\left[X_{ \pm}\left(w^{\prime}, \bar{w}^{\prime} \mid \lambda\right)-1\right] \quad X_{ \pm}\left(w^{\prime}, \bar{w}^{\prime} \mid \lambda\right)-1=\int_{-\infty}^{+\infty} \frac{d \xi}{2 \pi} e^{-i\left(\xi-w^{\prime}\right) \lambda} K_{ \pm}\left(w^{\prime}, \xi ; \bar{w}^{\prime}\right)=\int_{w^{\prime}}^{+\infty} \frac{d \xi}{2 \pi} e^{-i\left(\xi-w^{\prime}\right) \lambda} K_{ \pm}\left(w^{\prime}, \xi ; \bar{w}^{\prime}\right) \\
\text { Summary:TQeq. } \Rightarrow \text { Marchenkoeq. (Fourier) }
\end{array}
$$

- the wave-function (plane wave multiplication)

$$
\psi_{ \pm}\left(w^{\prime}, \bar{w}^{\prime} \mid \lambda\right)=X_{ \pm}\left(w^{\prime}, \bar{w}^{\prime} \mid \lambda\right) e^{-i w^{\prime} \lambda+i \bar{w}^{\prime} \lambda^{-1}}
$$

- extension of the Q-function to this new ODE/IM space
- Promotion $w^{\prime}(0)=-i r \rightarrow w^{\prime}(z)$ means that it is a 'holographic' RG space?

More Perspectives

- The machine is ready: extension to more complicated higher rank systems: let us find the ODEs!
- Non-linear integral or functional equations are powerful and describe monodromies of a ODE or PDE. There is any deep reason why these (TBA) are reproduced by an integrable Form Factor series of a 'weird' scattering theory?
- NS limit $\epsilon_{1}=\hbar, \epsilon_{2}=0 \rightarrow$ ODE/IM description: $\epsilon_{2} \neq 0$ quantum $O D E / \mathbb{M}$? q-TBA? Similarly about classical string.
- On the contrary: meaning of $b \neq 1$ for our Liouville field theory $(\operatorname{not} A G T)$?

Thanks

