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AdS/CFT
QFT in lower D* <+—  String theory in 10D

e Conformal symmetry
e Supersymmetry

e Planar integrability
AdS/dCFT

Domain wall <+—  Probe D-brane

e Conformal symmetry partially broken

e Supersymmetry partially or completely broken

* N =4 SYM in 4D, ABJM-theory in 3D +_ . f this talk
ocus of this ta



Motivation

Gain insight on the interplay between conformal symmetry,
supersymmetry and integrability

Test the AdS/CFT dictionary for set-ups with supersymmetry
partially or completely broken (all tests positive)

Exact results for novel types of observables such as one-point functions
Produce input data for the boundary conformal bootstrap program.

Interesting connections to statistical physics and QI: matrix product
states and quantum quenches

Novel characterization of integrable boundary states at the discrete level,
Novel examples of integrable boundary states

Novel “microscopic duality relations” for correlation functions
Strong predictive/constraining power.
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Plan of the talk

Correlators in AdAS/dCFT = spin chain overlaps
Domain walls in ABJM theory

Novel exact overlap formulas for ABJM theory
Predicting overlaps from duality relations

Future directions



AdS/CFT and Overlaps

Conformal operators +— String states

| |

Eigenstates of integrable super spin chain: |u)

Co-dimension one defect <+— Karch-Randall probe brane

W) (integrable) boundary state describing defect / probe brane
(Uy|u) is a one-point function
Pair of determinant operators <+— Giant graviton

Similar idea: |Wg) ~ determinant operators/giant graviton

(Uy|u) is a three-point function



. . . Ghoshal,
Integrable boundaries in integrable QFTs  zoiodchikov 03

e No particle production or annihilation
e Pure reflection, possibly change of internal quantum numbers

e Yang-Baxter relations fulfilled (order of reflection does not matter)
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Spin chain language: Q2,,+1|Vo) =0



Integrable boundary states
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Eigenstates: Hg|u) = Fp|u)
Integrable boundary state (Vo|: Q2p11|Wg) =0

Expect (Ug|u) computable in closed form

Types of boundary states of relevance for AdS/dCFT:

Matrix product states: |B) =|MPS) = Tr(t,, ...ts,)|s1...5L)



Overlap Formulas

Selection rule

(Tolu) #0 <= {u;} = {—uj, u;} Zio parity invariance

. de Leeuw, C.K. de Leeuw, C.K. de Leeuw, C.K. &
Ingl‘edlents. & Zarembo ‘15 & Mori ‘16 Linardopoulos ‘18

For |MPSy):

det(G+)
det(G_)

e Superdeterminant of Gaudin matrix: D = Sdet G =

(ujlu) =det G =det G det G_

k
. . . a==
e Fused transfer matrices: Sums of ratios of Baxter polynomials: ) L
de Leeuw, Gombor, C.K., Linardopoulos, Pozsgay ‘19

For |[VBS):

e No sums involved Poszgay ‘18  Gombor 21

For cross cap states:

e No Baxter polynomials involved Caetano, Komatsu 21 Gombor’22  Ekman 22
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ABJM theory
ABJM theory in 3D <— Type IIA strings on AdS,; x CP?
N =6 susy
Field content: A,, A,, U4, Y4 A=1,234
Gauge symmetry: U(N), x U(N)_j
Planar 't Hooft limit: N,k — oo, A = % fixed

Integrable in the planar limit
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The defect set-up of [MPS)
ABJM theory

N (ZC(),iBl)
UN —qg+1)x UN —q) U(N)x U(N) for x5 — o0
(YA =0, A=1,2,34 (Y1%) #0




Classical fields

e (Y3 = (YY) =0
Cl ] 1 o . o: dY _CC 7’ A
as%ca €.0.m e YYYYY A, =A,=0, ¥4 =0
dye 1

BPS eqns:

Basu-Harvey eqns.
Basu & Harvey ‘04

1
= _vyeyly? — Zyfylye =1,2
de 2 I5] 2 B y O‘)B y

Analogy with N' =4 SYM:

Nahm eqns (1st order) = classical eqns of motion (2nd order)
Nahm ‘80



Classical fields

Terashima ‘08

<ya>:L( (a—1)xq 0 ) 0—1.2
VL2 0 O —g+1)x(N—q)

(%) = () =0




One-point functions and MPS

C Cardy "84
— McAvity & Osborn 95
2|2

(Oa(z))

Due to vevs scalar operators can have non-zero 1-pt fcts at tree-level
<OA(ZE)> — (TI’(Yalygl c e YaLYIBTL) 4+ .. ) ‘Yai_><yoz,i>

Oa(x) ~ eigenstate of integrable alternating SU(4) spin chain

Tr(YY)] YY) ) ~ s 8g, ... 5 5, )

Spin chain Hamiltonian

2L
1 1 :
H =\ Z (1 — P42+ 5 Priyo Ky 41 + 5 l,l+1Pl,l+2) , ;22?;2%8

[=1



One-point functions and |[MPS)

a.
‘Yozi_> ST
VT2

(Oa(2)) = (Tr(Yalygl LLYeav] 4 )

C.K., Vu
Two Matrix Product States associated with the defect: & Zarembo 21,

MPSq_1) = > Tr[§* 8] ...5%0 8] 1|s* 55, ... 5755, ),
Bethe eigenstate
<hﬁf¥3q 1 h1>‘//

()

Object to calculate: O, (u) =

Alternatively

MPS,) = Y Tr[S}, S% ... 8] S5, 5% .. 5,
a3

Object to calculate: ¢, (u) =

85L>7
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(MPS ]u)
(ufu)?




Connection to SU(2) reps. CK, Vu,

Zarembo 20
FOI' o = ]_, 2: Nastase ‘09
T =YY] = ®'(0)8 + 03,  (¢—1) x (¢ — 1) matrix
dd* T . Nahm’s
dr 9 e" [(I)j7 (I)k} equation
dd o
T — PP — (1)2
dx
Solution: ¢ = t;ia ({t'} = (¢ — 1)-dim. irrep. of SU(2))
q
O =—],
21 ¢ !

For ¢ =2: ®§ =203, ie. |MPS;)=|VBS)

Similarly for P2 = Yg Y<, with g-dimensional rep. of SU(2)



Overlaps with |[VBS), i.e. ¢ = 2

Vacuum state: Tr(Y1Y,)E

Excited states described via Bethe roots {uy)}fill, {ugj)}fjl, {uék)}éi?’l

Baxter polynomials 1 1
O—0O—~0
Q1(u) Q2(u)  Qs(u)

Selection Rules: K; = Ko = K3 =1L
Zy symmetry: Q: {ul"} o (=) (W) o {—ul

Result for |[VBS): (¢ = QLQQ(i)\/Q *(SY(?)@CBG(Z) Gombor ‘21,
2 2( 3

C.K., Vu
& Zarembo ‘21,

O =0 O
22
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Higher bond dimension |[MPS,)

(MPS,_1lu) = Qi(—H)Qi(—i(g—3))

= X C.K. 22

(ufu) = Qu(—i(k — 3))Qi(—i(k + 3))
(k)L Q- (ik) | det G
2) VQ2(0)Q2(i/2) | det G-

Recursive strategy based on nested coordinate Bethe ansatz
Bajnok, Gombor ‘21

e Cut open MPS to \MPSé’fﬁ

e Assume <MPS§f1|u> factorizes into reflection factors
e Calculate reflection matrix K, (p, —p)
e Relate reflection matrix recursively via nesting to SU(2) reflection factor

e Check numerically



Other sectors via fermionic duality

Full [VBS) overlap for ' =4 SYM singled out by
transforming covariantly under fermionic spin chain duality

Many equivalent ways of writing the Bethe equations — QQ-system

For N' =4 SYM, # different choices of Q-functions = 2°

Connected via dualities

(Change of
Dynkin diagram)
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e Fermionic
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e Bosonic

Dualities = Change of variables
in the Bethe equations: Q,(u) = Q. (u)




Fermionic dualities in general

Allow one to move between the Bethe equations corresponding to any two
Dynkin diagrams of a super Lie algebra (of type SU(N|M))

a—+ 1

a—1 a
Involve a fermionic node and its neighbours only O ® O

Qa — @a : Qa@a = Q;—leL_-Fl - Q:{—1Q;+1

Changes the nature of neighbouring nodes &) <+— O
and the signs of off-diagonal elements in the Cartan matrix

Dualized node non-momentum carrying = Dynkin labels unchanged

Dualized node momentum carrying — Dynkin labels change on neigh-
bouring nodes



Transformation of super Gaudin determinant D

Fermionic duality after node a: @), — @a

" Found numerically
]D) .
Qu(0)D = Qu_1(i/2) Qus1(i/2) = Analytical proof wanted

C.K., Miller,
QQ(O) Zarembuo ’e2r0

OBS: Covariance of overlap formula which involves Q,(0)D or D/Q,(0)

O % O 0, & O
- ]
s o

O & O O & O

S _ ES _ o —
2 1 1

Covariance of overlap formulas very constraining



The full Osp(6|4) spin chain of ABJM theory

Possible Dynkin diagrams

5

O ?
E i Relevant for higher

i loop Bethe eqns

<§>

2 /®\/\o

All connected via fermionic dualities

Idea: Determine the complete overlap formula by requiring
covariance under fermionic duality



Fixing overlap by covariance requirement

Assume factorized formula (possibly a sum of such terms)

: 2
O — H 11 @n (ZOOCaj/Q) 0 aai.\fam
\ n 11k Qn(lﬁak/Q) ﬁaz"‘ ﬁam

Compatible

Fermionic duality transformation after node a .
with all data

~ Shown numerically,

Qo(0)D=|] @l /2) _ holds semi-on-shell

C.K., Muller C.K., Vu
nei ur ( ) : '
b:ne gbO & Zarembo ‘21, & Zarembo ‘21,




Overlap formula in different gradings ¢%Vw
& Zarembo 21,

0F = Q5

L0 =
B : 05

O

Relevant for higher
loop Bethe eqns
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Future Directions

Proof of the duality transformation formula for D

Bootstrap the formula to higher loop orders
as has been done for N =4 SYM.

Buhl-Mortensen, de Leeuw, Ipsen, C.K. & Wilhelm'17, Bajnok & Gombor 20,
Komatsu & Wang 20

Derive the TBA for overlaps (Finite size effects)

Other integrable defect set-ups
(Coulomb branch of N' =4 SYM,

co-dimension 2 defects, defects in AdSs/CFTs.)



Thank you !



