The relevance of Being Irrelevant

Based on works with G. Camilo, T. Fleury, M. Léncsés and A. Zamolodchikov [2106.11999]
L. Cordova and F. Schaposnik [2110.14666]

1] Introduction: Irrelevant Deformation and the TTbar
1.a] (Irrelevant) Deformations: the space of Theories
1.b] The TT operator
1.c] The main properties of the TT deformations
1.d] Some motivations

2] CDD deformations of factorised S-matrices

4] Conclusions and Outlook
3] Numerical results and evidence
3.a] The 2CDD models
3.b] The Elliptic sinh-Gordon model
3.c] The "bosonic" minimal models

Consions and Outlook
2.a] Scattering picture of Integrable QFTs
2.b] CDD deformations and the Thermodynamic Bethe Ansatz
2.c] Analytic properties of the ground-state energy
2.d] Numerical approach

Consider a theory near an RG fixed point (in $D=2$ dimensions)

$$
\mathscr{A}=\left[\mathscr{A}_{\mathrm{CFT}}+\mu \int d^{2} x \Phi_{\Delta}(x)\right]+\sum_{i} \alpha_{i} \int d^{2} x O_{\delta_{i}}(x)
$$

Here Φ_{Δ} is a relevant operator $(d=2 \Delta<2)$ while
$O_{\delta_{i}}$ are irrelevant operators ($d_{i}=2 \delta_{i}>2$).
No marginal operators for simplicity

- In square brackets is a UV complete theory (consistent at all scales)
- Irrelevant operators shatter UV completeness: theory is effective
- Perturbation expansion in α_{i} leads to accumulation of UV divergencies
- Theory is non-renormalizable \Longrightarrow no predictive power

Consider a theory near an RG fixed point (in $D=2$ dimensions)

$$
\mathscr{A}=\left[\mathscr{A}_{\mathrm{CFT}}+\mu \int d^{2} x \Phi_{\Delta}(x)\right]+\sum_{i} \alpha_{i} \int d^{2} x O_{\delta_{i}}(x)
$$

Here Φ_{Δ} is a relevant operator $(d=2 \Delta<2)$ while
$O_{\delta_{i}}$ are irrelevant operators ($d_{i}=2 \delta_{i}>2$).
No marginal operators for simplicity

- In square brackets is a UV complete theory (consistent at all scales)
- Irrelevant operators shatter UV completeness: theory is effective
- Perturbation expansion in α_{i} leads to accumulation of UV divergencies
- Theory is non-renormalizable \Longrightarrow no predictive power

Can we say something more?

Consider the space Σ of quasi-local field theories Wilson \& Kogut, ' 74

$$
\Sigma=\left\{\mathscr{A}_{\Lambda}[\Phi] \mid \mathscr{A}_{\Lambda}[\Phi]=\int_{\Lambda} d^{2} x \mathscr{L}\left[\Phi(x), \partial_{\mu} \Phi(x), \partial_{\mu} \partial_{\nu} \Phi(x), \ldots\right]\right\}
$$

Points are labelled by actions equipped with a UV cut-off Λ

$$
\text { Quasi-local }=\text { non-locality range }<\epsilon \equiv \Lambda^{-1}
$$

Each describe a QFT up to a characteristic length scale ϵ
The RG group acts on Σ as a flow
$\frac{d}{d \ell} \mathscr{A}=B\{\mathscr{A}\},\left.\quad B\{\mathscr{A}\} \in T \Sigma\right|_{\mathscr{A}}, \quad \ell \propto \log (\epsilon)$
A QFT is an integral curve of the above flow
$d \ell>0 \Longrightarrow$ large-scale properties (IR); no problem expected
$d \ell<0 \Longrightarrow$ short-scale properties (UV); pathology expected!
$\exists \ell_{*}$ such that $\mathscr{A}_{\ell} \notin \Sigma, \forall \ell<-\ell_{*}$
$\Longrightarrow \exists$ intrinsic UV scale $\Lambda_{*}=M e^{\ell^{*} \text {, e.g. Landau Scale of QED }}$
$\Sigma_{\ell_{*}=\infty}$ sub-space of UV-complete QFT; cut-off can be removed consistently

$$
\begin{aligned}
& \text { The TTT operator is defined as } \quad \text { Smirnov \& Zamolodchikov, } 16 \\
& \mathrm{~T} \overline{\mathrm{~T}}(x)=-\lim _{x^{\prime} \rightarrow x} T\left(x, x^{\prime}\right), \quad T\left(x, x^{\prime}\right)=\frac{1}{2} e_{\mu \rho} e_{\nu \sigma} T^{\mu \nu}(x) T^{\rho \sigma}\left(x^{\prime}\right)
\end{aligned}
$$

Its expectation value is a constant
$\frac{\partial}{\partial x^{\mu}}\left\langle T\left(x, x^{\prime}\right)\right\rangle=-\frac{\partial}{\partial x^{\prime \mu}}\left\langle T\left(x, x^{\prime}\right)\right\rangle=0$
and factorizes (Ward Identities + spectral decomposition)

$$
\langle\mathrm{T} \overline{\mathrm{~T}}(x)\rangle=-\operatorname{det}_{\mu \nu}\left\langle T^{\mu \nu}(x)\right\rangle
$$

The singularities in the collision limit are under full control

$$
\begin{aligned}
& T\left(x, x^{\prime}\right) \simeq-\mathrm{T} \overline{\mathrm{~T}}(x)+\delta\left(x-x^{\prime}\right) T_{\mu}^{\mu}(x)+\sum_{a} C_{\lambda}^{a}\left(x-x^{\prime}\right) \frac{\partial}{\partial x^{\lambda}} O_{a}(x) \\
& \Longrightarrow\left\langle T\left(x, x^{\prime}\right)\right\rangle=-\langle\mathrm{T} \overline{\mathrm{~T}}(x)\rangle+\text { contact term }
\end{aligned}
$$

The TT operator is defined as Smirnov \& Zamolodchikov, '16
$\mathrm{T} \overline{\mathrm{T}}(x)=-\lim _{x^{\prime} \rightarrow x} T\left(x, x^{\prime}\right), \quad T\left(x, x^{\prime}\right)=\frac{1}{2} e_{\mu \rho} e_{\nu \sigma} T^{\mu \nu}(x) T^{\rho \sigma}\left(x^{\prime}\right)$
Its expectation value is a constant
$\frac{\partial}{\partial x^{\mu}}\left\langle T\left(x, x^{\prime}\right)\right\rangle=-\frac{\partial}{\partial x^{\prime \mu}}\left\langle T\left(x, x^{\prime}\right)\right\rangle=0$
and factorizes (Ward Identities + spectral decomposition)

$$
\langle\mathrm{T} \overline{\mathrm{~T}}(x)\rangle=-\operatorname{det}_{\mu \nu}\left\langle T^{\mu \nu}(x)\right\rangle
$$

The singularities in the collision limit are under full control
$T\left(x, x^{\prime}\right) \simeq-\mathrm{T} \overline{\mathrm{T}}(x)+\delta\left(x-x^{\prime}\right) T_{\mu}^{\mu}(x)+\sum_{a} C_{\lambda}^{a}\left(x-x^{\prime}\right) \frac{\partial}{\partial x^{\lambda}} O_{a}(x)$
Use factorization and the standard identifications
$\langle n| T^{x x}|n\rangle=-\frac{1}{R} E_{n}(R), \quad\langle n| T^{y y}|n\rangle=-\frac{d}{d R} E_{n}(R)$
$\langle n| T^{x y}|n\rangle=\frac{i}{R} P_{n}(R)$

Functional form (in zero momentum sector) Cavaglia, SN, Szecsényi, Tateo, '16
$E(R, \alpha)=E(R-\alpha E(R, \alpha), 0)$
From the CFT behaviour $E(R, 0) \sim-\frac{\pi}{6} \frac{c}{R}$ one extracts
$E(R, \alpha) \sim \frac{R}{2 \alpha}\left(1-\sqrt{1+\frac{2 \pi c}{3 R^{2}} \alpha}\right)$
For $\alpha>0$ there is a finite $R \rightarrow 0$ limit: $E(R, \alpha) \rightarrow-\sqrt{\frac{\pi c}{6 \alpha}}$
Entropy density is finite in vanishing volume $s(R=0, \alpha) \propto \sqrt{c / \alpha}$
For $\alpha<0$ there is a Hagedorn temperature $1 / T_{H}=R_{H}=\sqrt{2 / 3 \pi c|\alpha|}$
Entropy density diverges at R_{H} as $s(R,-|\alpha|) \sim c / 6\left(R^{2}-R_{H}^{2}\right)^{-1 / 2}$
Hagedorn-type high energy spectrum
$\mathcal{N}(E) \sim e^{R_{H} E}$
e.g. Barbon \& Rabinovici, '20

Finite-size (cylinder) spectrum obeys the Burgers equation

$$
\begin{aligned}
& \frac{\partial}{\partial \alpha} E_{n}(R, \alpha)+E_{n}(R, \alpha) \frac{\partial}{\partial R} E_{n}(R, \alpha)+\frac{1}{R} P_{n}(R)^{2}=0 \\
& \alpha=0 \\
& \alpha>0 \\
& \alpha<0
\end{aligned}
$$

Use factorization and the standard identifications
$\langle n| T^{x x}|n\rangle=-\frac{1}{R} E_{n}(R), \quad\langle n| T^{y y}|n\rangle=-\frac{d}{d R} E_{n}(R)$
$\langle n| T^{x y}|n\rangle=\frac{i}{R} P_{n}(R)$

Why study TT deformations and its generalisations (stay tuned)?

Main practical reasons:

- They allow a high degree of control: they are solvable
- They preserve existing symmetries (e.g. integrable structures)
- $\mathrm{T} \overline{\mathrm{T}}$ is universal: (almost) any \mathscr{A}_{0} will do
- The family of generalisations span the subspace $\Sigma_{\text {Int }}$ of integrable QFTs

Some important motivations

- Non-Wilsonian UV behaviour (Hagedorn spectrum, non-locality, etc...)
- Robust features \Longrightarrow sensible extension of Wilsonian QFT paradigm
- Intriguing relations to String Theory and Quantum Gravity
- Irrelevant operators control the sub-leading corrections to critical behaviour

Why study $\mathrm{T} \overline{\mathrm{T}}$ deformations and its generalisations (stay tuned)?

Main practical reasons:

- They allow a high degree of control: they are solvable
- They preserve existing symmetries (e.g. integrable structures)
- $\mathrm{T} \overline{\mathrm{T}}$ is universal: (almost) any \mathscr{A}_{0} will do
- The family of generalisations span the subspace $\Sigma_{\text {Int }}$ of integrable QFTs

Some important motivations

- Non-Wilsonian UV behaviour (Hagedorn spectrum, non-locality, etc...)
- Robust features \Longrightarrow sensible extension of Wilsonian QFT paradigm
- Intriguing relations to String Theory and Quantum Gravity
- Irrelevant operators control the sub-leading corrections to critical behaviour

Consider the scaling limit of, say, a lattice system

Tuning the parameters appropriately, the continuum description is a CFT
First-order corrections are given by relevant operators Φ_{Δ}
Subleading corrections are controlled by irrelevant operators
$F \underset{T \rightarrow T_{c}}{\sim} F_{0}+a\left(T-T_{c}\right)^{2 \nu}+a^{\prime}\left(T-T_{c}\right)^{\omega}+\cdots$
$R_{c}^{-1}=M \underset{T \rightarrow T_{c}}{\sim} b\left(T-T_{c}\right)^{\nu}+b^{\prime}\left(T-T_{c}\right)^{\tau}+\cdots$
Suppose $\bar{T} \bar{T}$ is the irrelevant operator of lowest dimension $\left(d_{\mathrm{T}} \overline{\mathrm{T}}=4\right)$
Properties of TT constrain the exponents and coefficients
$\omega=d_{\mathrm{T}} \nu=4 \nu, \quad \tau=\left(d_{\mathrm{T} \bar{\top}}-1\right) \nu=3 \nu, \quad \frac{b^{\prime}}{a^{\prime}}=\frac{b}{a}$

Important applications:

- AdS/CFT correspondence McGough, Mezei, Verlinde '16
- (little) String Theory

Giveon, Itzhaki, Kutasov '17

- Quantum Gravity (JT dilaton) Dubovski, Gorbenko, Hernandez-Chifflet '18
- dS/dS correspondence Gorbenko, Silverstein, Torroba '18
- Confining/Effective string Chen, Dubovski, Hernandez-Chifflet '18। Beratto, Billò, Caselle '19
- Generalised hydrodynamics
- Out-of-equilibrium systems Medenjak, Policastro, Yoshimura '20
- Out-of-equilibrium systems
- Quantum phases Griguolo, Panerai, Papalini, Seminara '21
- Long-range deformations of spin chains

Pozsgay, Jiang, Takáks '19 | Marchetto, Sfondrini, Yang '19 Bargheer, Beisert, Loebbert '09

Consider the scaling limit of, say, a lattice system

Tuning the parameters appropriately, the continuum description is a CFT
First-order corrections are given by relevant operators Φ_{Δ}
Subleading corrections are controlled by irrelevant operators

$$
\begin{aligned}
& F \underset{T \rightarrow T_{c}}{\sim} F_{0}+a\left(T-T_{c}\right)^{2 \nu}+a^{\prime}\left(T-T_{c}\right)^{\omega}+\cdots \\
& R_{c}^{-1}=M \underset{T \rightarrow T_{c}}{\sim} b\left(T-T_{c}\right)^{\nu}+b^{\prime}\left(T-T_{c}\right)^{\tau}+\cdots
\end{aligned}
$$

Suppose $\overline{T T}$ is the irrelevant operator of lowest dimension $\left(d_{\bar{T} \bar{T}}=4\right)$ Properties of TT constrain the exponents and coefficients $\omega=d_{\mathrm{T} \overline{\mathrm{T}}} \nu=4 \nu, \quad \tau=\left(d_{\mathrm{T} \overline{\mathrm{T}}}-1\right) \nu=3 \nu, \quad \frac{b^{\prime}}{a^{\prime}}=\frac{b}{a}$

[^0]
S. Dubovsky, V. Gorbenko and M. Mirbabayi '17

The TT implies the following deformation for the S-matrix
$\frac{\delta S_{N \rightarrow M}\left(\left\{p_{i}\right\},\left\{q_{k}\right\}, \alpha\right)}{S_{N \rightarrow M}\left(\left\{p_{i}\right\},\left\{q_{k}\right\}, \alpha\right)}=\frac{i}{2} \delta \alpha\left[\sum_{p_{i}<p_{j}} \vec{p}_{i} \wedge \vec{p}_{j}+\sum_{q_{k}<q_{l}} \vec{q}_{k} \wedge \vec{q}_{l}\right]$
For Integrable theories, the scattering factorizes in sequence of 2-body processes
The deformed 2-body S-matrix reads (here $\vec{p}=(m \cosh \theta, m \sinh \theta)$)
$S_{2 \rightarrow 2}(\theta, \alpha)=e^{i \alpha m^{2} \sinh \theta} S_{2 \rightarrow 2}(\theta, 0) \quad(*)$
$\exp \left[i \alpha m^{2} \sinh \theta\right]$ is an exponential CDD factor
I.e. it automatically satisfies unitarity, crossing, analyticity and macro-causality
(*) can be taken as a definition of the TT deformation

- Action flow can be recovered via the TBA/NLIE Cavaglia, SN, Szecsényi, Tateo, '16
- Gravitational phase shift $\Delta t=-\alpha E$ means
$\alpha<0$: healthy theory (probably no local observables)
$\alpha>0$: superluminal propagation, still S-matrix well defined
S. Dubovsky, V. Gorbenko and M. Mirbabayi '17

The $\mathrm{T} \overline{\mathrm{T}}$ implies the following deformation for the S-matrix
$\frac{\delta S_{N \rightarrow M}\left(\left\{p_{i}\right\},\left\{q_{k}\right\}, \alpha\right)}{S_{N \rightarrow M}\left(\left\{p_{i}\right\},\left\{q_{k}\right\}, \alpha\right)}=\frac{i}{2} \delta \alpha\left[\sum_{p_{i}<p_{j}} \vec{p}_{i} \wedge \vec{p}_{j}+\sum_{q_{k}<q_{l}} \vec{q}_{k} \wedge \vec{q}_{l}\right]$
For Integrable theories, the scattering factorizes in sequence of 2-body processes The deformed 2-body S-matrix reads (here $\vec{p}=(m \cosh \theta, m \sinh \theta)$)
$S_{2 \rightarrow 2}(\theta, \alpha)=e^{i \alpha m^{2} \sinh \theta} S_{2 \rightarrow 2}(\theta, 0) \quad(*)$
$\exp \left[i \alpha m^{2} \sinh \theta\right]$ is an exponential CDD factor
I.e. it automatically satisfies unitarity, crossing, analyticity and macro-causality
(*) can be taken as a definition of the TT deformation

- Action flow can be recovered via the TBA/NLIE Cavaglia, SN, Szecsényi, Tateo, '16
- Gravitational phase shift $\Delta t=-\alpha E$ means
$\alpha<0$: healthy theory (probably no local observables)
$\alpha>0$: superluminal propagation, still S-matrix well defined

Define a family of S-matrix deformations: the CDD deformations
$S_{\Phi}(\theta)=\Phi(\theta) S_{0}(\theta)$
$\Phi(\theta)$ is a CDD factor: a scalar function of the form

$$
\Phi(\theta)=\Phi_{\mathrm{rat}}^{N}(\theta) \Phi_{\mathrm{exp}}(\theta)
$$

$$
\Phi_{\exp }(\theta)=\exp \left[-i \sum_{s \in \mathbb{S}} a_{s} \sinh (s \theta)\right]
$$

$$
\Phi_{\mathrm{rat}}^{N}(\theta)=\prod_{j=1}^{N} \frac{\sinh \theta_{j}+\sinh \theta}{\sinh \theta_{j}-\sinh \theta}
$$

$\Phi_{\exp }(\theta)$ is an entire function (series in exponent converges $\forall \theta$) θ_{j} restricted: $\operatorname{lm}\left(\theta_{j}\right) \in[-\pi, 0] \bmod 2 \pi$

- $\operatorname{Re}\left(\theta_{j}\right) \neq 0$: resonances of complex mass $m_{j}=2 m \cos \left(\theta_{j} / 2\right)$
- $\operatorname{Re}\left(\theta_{j}\right)=0:$ virtual states; no clear interpretation

The S-matrix gives access to the finite-size spectrum via the TBA
$E_{0}(R)=-m \int_{-\infty}^{\infty} \frac{d \theta}{2 \pi} \cosh (\theta) \log \left[1+e^{-\varepsilon(\theta)}\right]$
$\varepsilon(\theta)=m R \cosh \theta-\int_{-\infty}^{\infty} \frac{d \theta^{\prime}}{2 \pi} \varphi\left(\theta-\theta^{\prime}\right) \log \left[1+e^{-\varepsilon\left(\theta^{\prime}\right)}\right] \quad\left(^{*}\right)$
$\varphi(\theta)=-i \frac{d}{d \theta} \log [S(\theta)]$
Another important observable: the effective central charge
$\tilde{c}(R)=-6 R / \pi E_{0}(R)$
Its $R \rightarrow \infty$ and $R \rightarrow 0$ limits determine the IR and UV central charges
$\tilde{c}(R) \underset{R \rightarrow \infty}{\sim} 3 / \pi \sqrt{2 m R} e^{-m R} \rightarrow 0$
$\lim _{R \rightarrow 0} \tilde{c}(R)=c_{\mathrm{UV}}-12\left(\Delta_{\min }+\bar{\Delta}_{\mathrm{min}}\right)$

The S-matrix gives access to the finite-size spectrum via the TBA
$E_{0}(R)=-m \int_{-\infty}^{\infty} \frac{d \theta}{2 \pi} \cosh (\theta) \log \left[1+e^{-\varepsilon(\theta)}\right]$
$\varepsilon(\theta)=m R \cosh \theta-\int_{-\infty}^{\infty} \frac{d \theta^{\prime}}{2 \pi} \varphi\left(\theta-\theta^{\prime}\right) \log \left[1+e^{-\varepsilon\left(\theta^{\prime}\right)}\right] \quad(*)$
$\varphi(\theta)=-i \frac{d}{d \theta} \log [S(\theta)]$
Another important observable: the effective central charge
$\tilde{c}(R)=-6 R / \pi E_{0}(R)$
Its $R \rightarrow \infty$ and $R \rightarrow 0$ limits determine the IR and UV central charges
$\tilde{c}(R) \underset{R \rightarrow \infty}{\sim} 3 / \pi \sqrt{2 m R} e^{-m R} \rightarrow 0$
$\lim _{R \rightarrow 0} \tilde{c}(R)=c_{\mathrm{UV}}-12\left(\Delta_{\min }+\bar{\Delta}_{\mathrm{min}}\right)$

The relevance of being irrelevant CDD DEFORMATIONS: NUMERICAL METHODS

Idea: employ methods of numerical analysis used in bifurcation theory
In particular: the (pseudo)-arc-length continuation method
Simple, though extremely powerful. Handles bifurcation and turning points
Parametrize solutions $\varepsilon(\theta, r)$ in terms of auxiliary parameter ς, as pairs
$\{\varepsilon(\theta, r(\varsigma)), r(\varsigma)\}$
Starting point is a known solution (e.g. obtained by standard iterations at large R)
Follow the solution curve by varying ς by a small step $\Delta \varsigma$
In this way, the solution curve is single-valued (as a function of ς)
Instabilities are resolved and we can move past the branch (turning) point R_{*}
We slightly altered the method to accomodate complex solutions
This allowed us to follow TBA solutions in the region $R<R_{*}$, all the way to $R \sim 0$
and extract the limit $\lim _{R \rightarrow 0} \tilde{c}(R)$

The relevance of being irrelevant

Idea: employ methods of numerical analysis used in bifurcation theory
In particular: the (pseudo)-arc-length continuation method
Simple, though extremely powerful. Handles bifurcation and turning points
Parametrize solutions $\varepsilon(\theta, r)$ in terms of auxiliary parameter ς, as pairs
$\{\varepsilon(\theta, r(\varsigma)), r(\varsigma)\}$
Starting point is a known solution (e.g. obtained by standard iterations at large R) Follow the solution curve by varying ς by a small step $\Delta \varsigma$

In this way, the solution curve is single-valued (as a function of ς)
Instabilities are resolved and we can move past the branch (turning) point R_{*}
We slightly altered the method to accomodate complex solutions
This allowed us to follow TBA solutions in the region $R<R_{*}$, all the way to $R \sim 0$ and extract the limit $\lim _{R \rightarrow 0} \tilde{c}(R)$

In all the examples that we dealt with, we verified the presence of a branch
point, whenever $|\varphi|_{1}>1$

We considered a theory with 2-resonances S -matrix

$$
S(\theta)=\frac{i \sin u_{1}+\sinh \theta}{i \sin u_{1}-\sinh \theta} \frac{i \sin u_{2}+\sinh \theta}{i \sin u_{2}-\sinh \theta}
$$

for various ranges of the poles u_{1}, u_{2}. Most interesting is
$u_{2} \rightarrow-\pi / 2+i \infty$: this is a peculiar case, in which the S-matrix becomes the
"bosonic" version of a 1-resonance S-matrix:
$S(\theta)=\frac{i \sin u_{1}+\sinh \theta}{i \sin u_{1}-\sinh \theta}$
If $u_{1} \in[-\pi, 0]$ this is the "bosonic counterpart" of sinh-Gordon
If $u_{1}=-\pi / 2+i \theta_{0}$ this is the "bosonic counterpart" of the "staircase"
Both these theories display a branch point at some value $R=R_{*}$
They are effectively 2-resonance models

We considered a theory with 2 -resonances S-matrix
$S(\theta)=\frac{i \sin u_{1}+\sinh \theta}{i \sin u_{1}-\sinh \theta} \frac{i \sin u_{2}+\sinh \theta}{i \sin u_{2}-\sinh \theta}$
for various ranges of the poles u_{1}, u_{2}. Most interesting is
$u_{2} \rightarrow-\pi / 2+i \infty$: this is a peculiar case, in which the S-matrix becomes the
"bosonic" version of a 1-resonance S-matrix:
$S(\theta)=\frac{i \sin u_{1}+\sinh \theta}{i \sin u_{1}-\sinh \theta}$
If $u_{1} \in[-\pi, 0]$ this is the "bosonic counterpart" of sinh-Gordon
If $u_{1}=-\pi / 2+i \theta_{0}$ this is the "bosonic counterpart" of the "staircase"
Both these theories display a branch point at some value $R=R_{*}$
They are effectively 2-resonance models

In all the various choices of parameters u_{1}, u_{2} we witnessed the same
qualitative behaviour:

- A "standard" branch with usual $R \rightarrow \infty$ asymptotic
- A "second" branch with $\varepsilon(\theta) \sim-r f(\theta)$ as $R \rightarrow \infty$, and
$f(\theta)=-\cosh \theta+\int_{-B}^{B} \frac{d \theta^{\prime}}{2 \pi} \varphi\left(\theta-\theta^{\prime}\right) f\left(\theta^{\prime}\right), \quad B>0$
- Sub-leading contributions to the energy of order $\sim R^{-3}$:
$E(R) \sim-R \int_{-B}^{B} \frac{d \theta}{2 \pi} \cosh \theta f(\theta)-\frac{1}{2 \pi R^{3}} E^{(-3)}(B)+\cdots$
- A branch point in R only, for $R=R_{*}>0$ (i.e. $R_{*} \propto \theta$)
$\varepsilon(\theta)=\varepsilon_{0}(\theta)+\sqrt{R-R_{*}} \varepsilon_{1 / 2}(\theta)+\cdots$

Pseudo-energy for $u_{2}=u_{1}^{*}, u_{1}=-\pi / 10+2 i$

Pseudo-energy for $u_{2}=u_{1}^{*}, u_{1}=-\pi / 10+2 i$

In the case $u_{2}=u_{1}^{*}, u_{1}=\gamma-\pi / 2+i \theta_{0}$, in the limit $\gamma \rightarrow \pi / 2$ the TBA equation reduces to the Narrow Resonance Equation

$$
\begin{aligned}
& Y(\theta)=e^{-R \cosh \theta}\left[1+Y\left(\theta+\theta_{0}\right)\right]\left[1+Y\left(\theta-\theta_{0}\right)\right] \\
& Y(\theta)=e^{-\varepsilon(\theta)}
\end{aligned}
$$

Theory determined by the ∞-resonance S-matrix
$S(\theta)=\frac{\mathrm{sn}_{l}\left(2 i K_{l} \theta / \pi\right)+\mathrm{sn}_{l}\left(2 K_{l} a\right)}{\mathrm{sn}_{l}\left(2 i K_{l} \theta / \pi\right)-\mathrm{sn}_{l}\left(2 K_{l} a\right)}$
Here $\mathrm{sn}_{l}(x)$ is Jacobi elliptic sine function of modulus l
K_{l} is the complete elliptic integral and $a \in[0,1 / 2]$ is the coupling constant

$$
T_{l}=\pi K_{\sqrt{1-l^{2}}} / K_{l i} ; \text { crosses (dots) are simple zeroes (poles) }
$$

Theory determined by the ∞-resonance S-matrix
$S(\theta)=\frac{\mathrm{sn}_{l}\left(2 i K_{l} \theta / \pi\right)+\mathrm{sn}_{l}\left(2 K_{l} a\right)}{\mathrm{sn}_{l}\left(2 i K_{l} \theta / \pi\right)-\mathrm{sn}_{l}\left(2 K_{l} a\right)}$
Here $\mathrm{sn}_{l}(x)$ is Jacobi elliptic sine function of modulus l
K_{l} is the complete elliptic integral and $a \in[0,1 / 2]$ is the coupling constant

$T_{l}=\pi K_{\sqrt{1-l^{2}}} / K_{l} ;$ crosses (dots) are simple zeroes (poles)

This theory does not have a known action
It represent a toy example of S-matrices with infinite resonances ubiquitous in the S-matrix bootstrap (e.g. $O(N)$ Yang-Baxter model)

The $R \rightarrow 0$ limit of the effective central charge $\lim _{R \rightarrow 0} \tilde{c}(R)=0$
can actually be derived analytically via the "dilogarithm trick"
$\lim _{R \rightarrow 0} \tilde{c}(R)=\frac{6}{\pi^{2}}\left[\operatorname{Li}_{2}\left(\frac{y_{0}}{1+y_{0}}\right)+\frac{1}{2} \log \left(\frac{y_{0}}{1+y_{0}}\right) \log \left(\frac{1}{1+y_{0}}\right)\right]$
where $y_{0}=\exp \left(-\varepsilon_{0}\right)$ is a constant solution of the TBA at $R=0$
$\varepsilon_{0}=-|\varphi|_{1} \log \left[1+e^{-\varepsilon_{0}}\right] \Longrightarrow y_{0}=\left(1+y_{0}\right)^{|\varphi|_{1}}$

The relevance of being irrelevant

The $R \rightarrow 0$ limit of the effective central charge $\lim _{R \rightarrow 0} \tilde{c}(R)=0$ can actually be derived analytically via the "dilogarithm trick"
$\lim _{R \rightarrow 0} \tilde{c}(R)=\frac{6}{\pi^{2}}\left[\operatorname{Li}_{2}\left(\frac{y_{0}}{1+y_{0}}\right)+\frac{1}{2} \log \left(\frac{y_{0}}{1+y_{0}}\right) \log \left(\frac{1}{1+y_{0}}\right)\right]$
where $y_{0}=\exp \left(-\varepsilon_{0}\right)$ is a constant solution of the TBA at $R=0$
$\varepsilon_{0}=-|\varphi|_{1} \log \left[1+e^{-\varepsilon_{0}}\right] \Longrightarrow y_{0}=\left(1+y_{0}\right)^{|\varphi|_{1}}$
As $|\varphi|_{1}$ grows, the solutions condense on a unit circle centred around -1
The correct solutions are the ones that minimise $|\tilde{c}(0)|$.
These tend to zero as $|\varphi|_{1} \rightarrow \infty$

Consider the $\Phi_{1,3}$ deformation of the non-unitary minimal models $\mathscr{M}_{2,2 n+3}, n>1$
deformed by the simplest possible CDD factor:
$\Phi(\theta)=\lim _{u \rightarrow 0} \frac{i \sin u+\sinh \theta}{i \sin u-\sinh \theta}=-1$
The models obtained are the "bosonic counterparts", with S-matrices
$S_{11}(\theta)=\operatorname{th}_{\frac{2}{2 n+1}}(\theta), \quad S_{a b}(\theta)=\operatorname{th}_{\frac{|a-b|}{2 n+1}}(\theta) \operatorname{th}_{\frac{a+b}{2 n+1}}(\theta) \prod_{k=1}^{\min (a, b)-1}\left[\operatorname{th}_{\frac{\lfloor a-b \mid+2 k}{2 n+1}}(\theta)\right]^{2}$
$\operatorname{th}_{x}(\theta)=\frac{\sinh \theta+i \sin (\pi x)}{\sinh \theta-i \sin (\pi x)}$
These have a spectrum of $n>1$ particles with masses $m_{a}=\sin (a \pi /(2 n+1))$
and just one added resonance

Consider the $\Phi_{1,3}$ deformation of the non-unitary minimal models $\mathscr{M}_{2,2 n+3}, n>1$ deformed by the simplest possible CDD factor:
$\Phi(\theta)=\lim _{u \rightarrow 0} \frac{i \sin u+\sinh \theta}{i \sin u-\sinh \theta}=-1$
The models obtained are the "bosonic counterparts", with S-matrices
$S_{11}(\theta)=\operatorname{th}_{\frac{2}{2 n+1}}(\theta), \quad S_{a b}(\theta)=\operatorname{th}_{\frac{|a-b|}{2 n+1}}(\theta) \operatorname{th}_{\frac{a+b}{2 n+1}}(\theta) \prod_{k=1}^{\min (a, b)-1}\left[\operatorname{th}_{\frac{|a-b|+2 k}{2 n+1}}(\theta)\right]^{2}$

Example: $n=3 . \tilde{c}_{a}$ stand for single particle contribution to the total \tilde{c} Numerics confirm this expectation
The UV central charges appear not to be rational

$$
\tilde{c}(0)=0.641304,0.724253,0.778979,0.817083 \text { for } n=2,3,4,5
$$

We begun exploring the vast space of generalised TT deformations

The scattering perspective makes contact with the S-matrix bootstrap
\Longrightarrow exploration of the space of consistent, factorisable S-matrices

It appears that the majority of S-matrices in not derivable from local QFTs

We found a condition on the spectrum for the presence of a standard UV

This appears to be generalisable to non-integrable theories

Introduced an improved numerical technique to deal with singularities in the TBA

We discovered a new family of integrable S-matrices with well defined UV behaviour

We begun exploring the vast space of generalised TT deformations

The scattering perspective makes contact with the S-matrix bootstrap
\Longrightarrow exploration of the space of consistent, factorisable S-matrices

It appears that the majority of S-matrices in not derivable from local QFTs

We found a condition on the spectrum for the presence of a standard UV

This appears to be generalisable to non-integrable theories

Introduced an improved numerical technique to deal with singularities in the TBA

We discovered a new family of integrable S-matrices with well defined UV behaviour

Intriguing to think of complex effective central charges in non-UV-complete as belonging to complex CFTs

Explore this point by looking at subleading behaviour and excited state TBA

Consider general CDD deformations of models with bound states

Expect to find many UV complete systems

Particularly interesting: CDD deformed, $\Phi_{1,3}$ unitary minimal models

Keep investigating the TBA for $R<R_{*}$: complex solutions likely signal an instability of the ground state

Against what kind of decay? In case, what are its products?

Thank you

[^0]: E.g. Ueda, Oshikawa '21| Ghaemi, Vishwanath, Sentil, '05

