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1. Introduction: Classical non-eq. statistical mechanics

• In principle one can try to solve the microscopic dynamical

equations for the Hamiltonian. It is practically impossible for

most systems due to chaos.

• Fermi-Pasta-Ulam chain: N -particles connected by springs

Potential V (x) = x2

2
+ α

3
x3 + β

4
x4

Thermalization? Recurrence? Anomalous transport.

• Description by Markov processes: d
dt
P = LP
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ASEP: a stochastic process
ASEP = asymmetric simple exclusion process

· · · ⇒

p

⇐

q

⇐

q

⇒

p

⇐

q

· · ·

-3 -2 -1 0 1 2 3

• A standard model in non-equilibrium statistical mechanics.

Nonlinearity, far from equilibrium. Current?

• TASEP(Totally ASEP, p = 1, q = 0), SEP(p = q)

• ASEP ∼ XXZ spin chain: Integrable stochastic process

• Surface growth: height

KPZ universality

Integrable probability
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Experiments
2010 Takeuchi Sano

Stable phase grows into quasi-stable phase.

Fluctuations: 1/3 exponent and scaled distributions
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Today’s talk and main result
• Large deviation properties of SEP have been believed to be

described by macroscopic fluctuation theory (MFT) developed

by Jona-Lasinio et al since around 2000. The large deviation

principle had been established by Kipnis, Olla, Varadhan 1989.

The MFT equations for SEP are coupled nonlinear PDEs.

• Microscopic calculations using Bethe ansatz

2009 Derrida-Gershenfeld: Current at the origin

2017 Imamura-Mallick-TS: Any position and tagged particle

• For the first time we solve t-dependent MFT equations for

SEP by mapping them to a classical integrable system (AKNS

system). We use a non-local generalization of the canonical

Cole-Hopf transformation.
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Typical fluctuations and large deviation: a random walk
Let ξi, i = 1, 2, . . . be i.i.d. Bernoulli random variables:

P[ξi = 1] = P[ξi = −1] = 1
2
and set

Xn = ξ1 + · · · + ξn

Average and variance

⟨Xn⟩ = 0, ⟨X2
n⟩C =

1

4
n

Typical fluctuation is on the scale Xn = O(
√
n) and is Gaussian.

The large deviation is described as

P[Xn = ny] ∼ e−Φ(y)n Φ(y): rate function

Φ(y) = y log y + (1 − y) log(1 − y) + log 2

6



2. The model

1D SEP(symmetric simple exclusion process) on Z

· · · ⇒

1

⇐

1

⇐

1

⇒

1

⇐

1

· · ·

-3 -2 -1 0 1 2 3

Let ηx(t) = 0 (or 1) when site x is empty (or occupied) at t.
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Current

· · · ⇒

1

⇐

1

⇐

1

⇒

1

⇐

1

· · ·

-3 -2 -1 0 1 2 3

Qt: Integrated current at the bond (0,1) for time [0, t]

Xt: Tagged particle position starting from the origin

We are interested in fluctuations of these quantities.

8



Brownian motions with reflection (RBM)

Also called the Harris system

Can be obtained as Brownian motion limit of SEP

x

t

We can consider the corresponding Qt and Xt.

Can be reduced to those of independent BMs.
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Initial condition

In principle our scheme should work for general initial condition.

Here mainly step i.c. with two densities: All sites are independent

and each site is occupied with prob. ρ− on left and ρ+ on right.

· · · ρ− ρ− ρ− ρ− ρ+ ρ+ ρ+ · · ·

-3 -2 -1 0 1 2 3

Stationary when ρ+ = ρ− = ρ.
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Typical fluctuations of XT , QT for uniform density ρ

SEP Gaussian on the scale O(T 1/4)

Tagged particle (Arratia 1983)

⟨Xt⟩ = 0

⟨X2
T ⟩ ≃

2(1 − ρ)

ρ

√
T

π
Current at the origin

⟨Qt⟩ = 0

⟨Q2
T ⟩ ≃ 2ρ(1 − ρ)

√
T

π

The exponent 1
4
has been confirmed in experiments (colloids).
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Large deviation

Large deviation for the current at the origin QT

Prob

(
QT√
T

= q

)
≃ exp[−

√
TΦ(q)]

Can we compute the rate function Φ for SEP?

The problem is equivalent to the calculation of µ in

⟨eλQT ⟩ ≃ e
√

Tµ(λ)

Φ and µ are related by Legendre transform

Φ(q) = min
λ

[λq − µ(λ)]

We are also interested in density profiles realizing the rare event.
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3. Macroscopic fluctuation theory (MFT)
Large deviation is expected to be the same for Langevin equation

∂tρ = ∂x[∂xρ +
√

σ(ρ)ξ(x, t)]

where σ(ρ) is the mobility (σ(ρ) = 2ρ(1 − ρ) for SEP).

Functional integral form of average is written as

⟨eλQT ⟩ =

∫
D[ρ,H]eS[ρ,H]

S[ρ,H] = λQT − F0[ρ(x, 0)] −
∫ T

0
dt

∫ ∞

−∞
dx(H∂tρ + H)

F0[ρ(x, 0)] =

∫ ∞

−∞
dx

∫ ρ(x,0)

ρ̄(x)
dr

ρ(x, 0) − r

σ(r)

H[ρ,H] = (∂xρ)(∂xH) −
1

2
σ(ρ)(∂xH)2

for local equilibrium state with density ρ̄(x).
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MFT equations
Large T behavior is dominated by the maximum of the action S.

The equations for the optimal path in ρ,H are given by

∂tρ = ∂x[∂xρ − σ(ρ)∂xH]

∂tH = −∂2
xH − (1 − 2ρ)(∂xH)2

accompanied by the conditions at the initial and the final times:

H(x, T ) = λθ(x)

H(x, 0) = λθ(x) + f ′(ρ(x, 0)) − f ′(ρ̄(x))

where f ′(ρ) = log ρ
1−ρ

.

Below we focus on the case ρ̄(x) = ρ−θ(−x) + ρ+θ(x).

For RBM with σ(ρ) = 2ρ, the equations are linearlized by the

canonical Cole-Hopf transformation Q = ρe−H , P = eH .
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MFT equations
Large T behavior is dominated by the maximum of the action S.

The equations for the optimal path in ρ,H are given by

∂tρ = ∂x[∂xρ − σ(ρ)∂xH]

∂tH = −∂2
xH − (1 − 2ρ)(∂xH)2

accompanied by the conditions at the initial and the final times:

H(x, T ) = λθ(x)

H(x, 0) = λθ(x) + f ′(ρ(x, 0)) − f ′(ρ̄(x))

where f ′(ρ) = log ρ
1−ρ

.

Below we focus on the case ρ̄(x) = ρ−θ(−x) + ρ+θ(x).

For SEP with σ(ρ) = 2ρ(1 − ρ).

Today we solve the equations for SEP!
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4. Mapping MFT equations for SEP to AKNS system

Generalized canonical Cole-Hopf transformation

u(x, t) =
1

1 − 2ρ

∂

∂x

σ(ρ)

2
exp

[
−

∫ x

−∞
dy(1 − 2ρ)∂yH

]
v(x, t) = −

1

1 − 2ρ

∂

∂x
exp

[∫ x

−∞
dy(1 − 2ρ)∂yH

]
MFT equations become

∂tu(x, t) = ∂xxu(x, t) − 2u(x, t)2v(x, t)

∂tv(x, t) = −∂xxv(x, t) + 2u(x, t)v(x, t)2

This is the AKNS (Ablowitz-Kaup-Newell-Segur) system!

When ρ → 0 (RBM limit), the map becomes canonical CH.

16



Three constants ω,Λ,K

In terms of u, v, the conditions at t = 0, T for ρ,H become

u(x, 0) = ωδ(x)

v(x, T ) = δ(x)

Using the freedom, u → Ku and v → K−1v, we write

u(x, T ) =

 K∂xρ(x, T ) x < 0

Ke−Λ∂xρ(x, T ) x > 0

v(x, 0) =

−2K−1σ(ρ−)−1∂xρ(x, 0) x < 0

−2K−1σ(ρ+)−1eΛ∂xρ(x, 0) x > 0

Λ =
∫+∞
−∞ dy(1 − 2ρ)∂yH(y, t) is a conserved quantity.
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Related works

2007 Tailleur Kurchan Lecomte Mapping to a classical spin system

2009 Derrida Gershenfeld Large deviation for current at origin

2016 Janas Kamenev Meerson Integrability for weak noise KPZ

2017 Imamura Mallick TS Large deviation for tracer

2021 Krajenbrink Le Dousssal Solution for weak noise KPZ

2021 Grabsch Poncet Rizkallah Illien Benichou

Study final density profile of SEP (not MFT)

2021 Bettelheim Smith Meerson Solution to MFT for KMP model

2022 Mallick Moriya TS Solution to MFT for SEP

2022 Tsai, BSM, KLD,...
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From abstract of a talk by Jona-Lasinio in May

Title: ”Integrability in the macroscopic fluctuation theory (MFT)”

A natural question is to what extent this theory [MFT] can be

supported by mathematically controllable models. So far it has

been confirmed for the stationary states of various models but the

time evolution is more difficult. Recent works have used

successfully the inverse scattering method (ISM) to solve exactly

the time dependent variational equations of the weak noise KPZ

equation (Krajenbrink, Le Doussal), of the

Kipnis-Marchioro-Presutti model (Bettelheim, Smith, Meerson)

and very recently Mallick, Mor[i]ya and Sasamoto have solved

exactly the difficult case of the symmetric simple exclusion process

(SSEP). These results open new perspectives.
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5. Inverse scattering method

u(x, t), v(x, t) a(k, t), ā(k, t), b(k, t), b̄(k, t)

a(k, 0), ā(k, 0), b(k, 0), b̄(k, 0)u(x, 0), v(x, 0)

3. Inverse scattering

2. Time evolution

1. Direct scattering
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Solving AKNS system
Auxiliary linear problem

∂

∂x
Ψ(x, t) = U(x, t; k)Ψ(x, t)

∂

∂t
Ψ(x, t) = V (x, t; k)Ψ(x, t)

where

U =

 −ik v(x, t)

u(x, t) ik


V =

 2k2 + u(x, t)v(x, t) 2ikv(x, t) − ∂xv(x, t)

2iku(x, t) + ∂xu(x, t) −2k2 − u(x, t)v(x, t)


Compatibility ∂U

∂t
− ∂V

∂x
+ [U, V ] = 0 gives the AKNS system.
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Scattering data

Scattering data: a(k), ā(k), b(k), b̄(k)

The incoming/outgoing plane waves from x → −∞

ϕ(x; k) ∼

e−ikx

0

 and ϕ̄(x; k) ∼ −

 0

eikx


will scatter at x → +∞ as follows

ϕ(x; k) ∼

a(k)e−ikx

b(k)eikx

 and ϕ̄(x; k) ∼

 b̄(k)e−ikx

−ā(k)eikx
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Scattering

Solve the scattering problem for ∂Ψ/∂x = UΨ in terms of

û±(k)=
∫
R∓

u(x, T )e−2ikxdx, v̂±(k)=
∫
R±

v(x, 0)e2ikxdx,

û(k) := û+(k) + û−(k), v̂(k) := v̂+(k) + v̂−(k).

At t = 0, we have

a(k, 0) = 1 + ωv̂+(k), b(k, 0) = ω,

ā(k, 0) = 1 + ωv̂−(k), b̄(k, 0) = − [v̂(k) + ωv̂+(k)v̂−(k)] .

At t = T , we have

a(k, T ) = 1 + û+(k), b(k, T ) = û(k) + û+(k)û−(k),

ā(k, T ) = 1 + û−(k), b̄(k, T ) = −1.
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Time evolution

Solving time evolution ∂Ψ/∂t = V Ψ in terms of a, ā, b, b̄,

a(k, t) = a(k, 0), b(k, t) = b(k, 0)e−4k2t

ā(k, t) = ā(k, 0), b̄(k, t) = b̄(k, 0)e4k
2t

Time evolutions of the MFT equations for SEP become so simple!
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Our use of inverse scattering diagram

u(x, t), v(x, t) a(k, t), ā(k, t), b(k, t), b̄(k, t)

a(k, 0), ā(k, 0), b(k, 0), b̄(k, 0)u(x, 0), v(x, 0)

2. Direct scattering

3. Time evolution

1. Direct scattering
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Riemann-Hilbert problem

Combining the above, the problem reduces to

[û+(k) + 1] [û−(k) + 1] = 1 + ωe−4k2T

By taking log, we find

û±(k) + 1 = exp

[
±

1

2πi

∫ ∞

−∞

log(1 + ωe−4q2T )

q − k ∓ iϵ
dq

]
[
Use ±

1

πi

∫ ∞

−∞

e−q2

q − k ∓ iϵ
dq = e−k2

erfc(∓ik)

]

= exp

[
−

1

2

∞∑
n=1

(−ωe−4k2T )n

n
erfc(∓i

√
4nTk)

]
We can also determine v̂±(k) and calculate u(x, T ) and v(x, 0).
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Formulas of ω,Λ,K

The results are

ω = (eλ − 1)ρ−(1 − ρ+) + (e−λ − 1)ρ+(1 − ρ−)

eΛ = eλ
1 + (e−λ − 1)ρ+

1 + (eλ − 1)ρ−

K = −2 sinh(λ/2)eΛ/2

Rem: The parameter ω has been known to appear in various

related problems for SEP.
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Determination of ω,Λ

The solution to

∂

∂x
Ω(x, t) = U(x, t; 0)Ω(x, t)

is written in the form

Ω(x, t) =

 e
∫ x
−∞ dy(1−ρ)∂yH e−

∫ x
−∞ dyρ∂yH

−(1 − ρ)e
∫ x
−∞ dyρ∂yH ρe−

∫ x
−∞ dy(1−ρ)∂yH


Ω(x, t)Ω−1(y, t) connects the solutions at x and y and so

lim
x→+∞
y→−∞

Ω(x, t)Ω−1(y, t) =

a(0, t) −b̄(0, t)

b(0, t) ā(0, t)
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Using

ρ(x, t) ∼ ρ−, H(x, t) ∼ 0, as x → −∞,

ρ(x, t) ∼ ρ+, H(x, t) ∼ λ, as x → +∞,

One can write limx→+∞
y→−∞

Ω(x, t)Ω−1(y, t) as C[1 + (eλ − 1)ρ−] −C(eλ − 1)

−C−1[r− − e−λr+] C−1[1 + (e−λ − 1)ρ+]


with r± = ρ±(1 − ρ∓) and C given by C = eΛ/2−λ/2.

Λ can be evaluated by taking the ratio of the diagonal elements.

Multiplying the off-diagonal elements we can determine

ω = −b(0, t)b̄(0, 0) = −b(0, 0)b̄(0, T ).
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Determination of K

We use the mass conservation law∫
R
dx[ρ(x, T ) − ρ(x, 0)] = 0.

Insert ρ(x, 0), ρ(x, T ) as integrals of u(x, T ), v(x, 0) and use∫
R∓

xu(x, T )dx =
û′
±(0)

−2i
= ±

√
T

√
π
Li1/2(−ω)

√
1 + ω

∫
R±

xv(x, 0)dx =
v̂′
±(0)

2i
= ∓

√
T

√
π
Li1/2(−ω)

√
1 + ω

ω

with the polylogarithm of order s, Lis(z) =
∑∞

n=1
zn

ns .
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6. Results: Profiles of ρ,H at t = T

At t = T , for ρ,

ρ(x, T ) = ρ− + A−

∫ x

−∞
u(y, T )dy, x < 0

ρ(x, T ) = ρ+ + A+

∫ ∞

x
u(y, T )dy, x > 0

A± = −
1

e∓λ − 1

√
1 + (e∓λ − 1)ρ±

1 + (e±λ − 1)ρ∓

For H,

H(x, T ) = λθ(x)
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Profiles of ρ,H at t = 0

At t = 0, for ρ,

ρ(x, 0) = ρ− + B−

∫ x

−∞
v(y, 0)dy, x < 0

ρ(x, 0) = ρ+ + B+

∫ ∞

x
v(y, 0)dy, x > 0

B± = −2 sinh2(λ/2)e∓Λσ(ρ±)A±

H(x, 0) is determined by

H(x, 0) = λθ(x) + f ′(ρ(x, 0)) − f ′(ρ̄(x))
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Figures for the profiles

ρ(x,0)

ρ(x,T)

ρ-

ρ+

-4 -2 0 2 4

0.2

0.4

0.6

0.8

x

ρ

　

H(x,0)
H(x,T)

-4 -2 0 2 4
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

x

H

　
Optimal profiles of ρ (left) and H (right) at t = 0 and at t = T ,

with ρ+ = 1/3, ρ− = 2/3, λ = 1 and T = 1.
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Cumulant generating function

Noting dµ
dλ

= QT/
√
T and calculating the total current QT from

the profiles at t = 0 and t = T , we obtain

µ(λ) =
1

√
π

∞∑
n=1

(−1)n−1ωn

n3/2

This agrees with the result of Derrida Gershenfeld 2009, giving the

first analytic confirmation of the prediction of MFT for an

interacting model in the time dependent regime!
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Summary
• We have presented the first exact solution to the MFT

equation for SEP by mapping them to the classically

integrable AKNS system.

This was achieved by our new non-local generalization of the

canonical Cole-Hopf transformation.

• The solution to the case of step i.c. with two densities agrees

with the previous result by microscopic calculation. This is

the first analytic confirmation of the prediction of MFT for an

interacting model in the time dependent regime. We could

also calculate the densities at t = 0, T .

• Various generalizations should be possible.

• Relation to integrable probability?
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RBM and SEP 4th moment by MFT

Krapivsky Mallick Sadhu 2014

For the uniform density (ρ) case. By solving the MFT equation,

log Prob[Xt = ξ
√
t]/

√
t ∼ −ρ(

√
A(ξ) −

√
A(−ξ))2

with

A(ξ) =
1

2

∫ ∞

ξ
dzerfc(z)

For SEP, MFT was applied perturbatively. They found

⟨X4
t ⟩ ≃

2(1 − ρ)

ρ3
a(ρ)

√
t

π

a(ρ) = 1 − [4 − (8 − 3
√
2)ρ](1 − ρ) +

12

π
(1 − ρ)2

The question was to find a formula for general ⟨Xn
t ⟩.
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