
Linear T resistivity of strange metals

Can this appear as T ! 0 in a theory of a critical metal on a
lattice without disorder?

• Breakdown of quasiparticles requires strong coupling to a low energy collective
mode

• In all known cases, we can write down the singular processes in terms of a contin-
uum field theory of the fermions near the Fermi surface coupled to the collective
mode e.g. the critical theories describe by Andrey Chubukov and Sung-Sik Lee.

• In all known cases, the continuum critical theory has a conserved total (pseudo-)

momentum, ~P , which commutes with the Hamiltonian. This momentum may not
be equal to the crystal momentum of the underlying lattice model.

• As long as � ~J,~P 6= 0 (where ~J is the electrical current) the d.c. resistivity of the
critical theory is exactly zero. This is the case even though the electron self energy
can be highly singular and there are no fermionic quasiparticles (many well-known
papers on non-Fermi liquid transport have incorrect statements on this point.)

• We need to include additional (dangerously) irrelevant umklapp corrections to
obtain a non-zero resistivity. Because these additional corrections are irrelevant,
it is di�cult to see how they can induce a linear-in-T resistivity.
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The central assumption underlying these approaches is that the momentum-conserving

interactions responsible for the non-Fermi liquid physics are also the fastest processes leading

to local thermal equilibration. We will assume here that excitations near both the hot and

lukewarm portions of the Fermi surface are susceptible to these fast processes, and are able

to exchange momentum rapidly with each other. Then we have to look towards extraneous

perturbations to relax the total momentum, and allow for a non-zero DC resistivity. These

perturbations can arise from impurities, from additional umklapp processes beyond those

implicitly contained in the field theory, or from coupling to a phonon bath. Here we will

focus on the impurity case exclusively, and leave the phonon contribution for future study.

The umklapp contribution can also be treated by the present methods,26,33 and, in the

approximation where cold fermions are present, yield a conventional T 2 resistivity.

FIG. 1: (a) The two pockets of fermions separated by the SDW ordering wavevector K = (π,π).
(b) The resulting pair of Fermi surfaces after shifting the pocket centered at (π,π) to (0, 0) intersect
at 4 hot spots as shown.

For our subsequent discussion, it is useful to introduce a specific model for the SDW

quantum critical point. We find it convenient to work with a two-band model, similar to

that used recently for a sign-problem-free quantum Monte Carlo study17. Closely related

models have been used for a microscopic description of the pnictide superconductors42–45.
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As was argued in Ref. 17, we expect our conclusions to also apply to SDW transitions in

single band models because the single and two band models have essentially the same Fermi

surface structure in the vicinities of all hot spots. Our model begins with two species of

fermions, ψ̃a, ψ̃b which reside in pockets centered at (0, 0) and (π, π) in the square lattice

Brillouin zone, as shown in Fig. 1(a). We take the SDW ordering wavevector K = (π, π).

Then, we move the pocket centered at (π, π) and move it to (0, 0) by introducing fermions

ψa(r) = ψ̃a(r) and ψb(r) = ψ̃b(r)eiK·r: the Fermi surfaces for the ψa, ψb fermions are shown

in Fig. 1(b). The advantage of the latter representation is that the coupling of the fermions

to the SDW order parameter φ⃗ is now local and r independent. So we can now write down

a continuum Lagrangian for the SDW quantum critical point in imaginary-time (t → −iτ)

L = ψ†

(
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We have two species of spin 1/2 fermions (a, b) with chemical potential µ0 in two spatial

dimensions coupled to a SO(3) vector boson order parameter φµ. We have ψ =
(
ψa

ψb

)
where

ψa,b are two-component spinors. The matrices Γµ =
(

0 σµ
σµ 0

)
with σµ as the Pauli matrices

acting on the spin indices only. The dispersions of the fermions are
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∂2x
2m1

−
∂2y
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+ . . . , ξb = −
∂2x
2m2

−
∂2y
2m1

+ . . . (1.2)

This produces two Fermi surfaces intersecting at four hot-spots (Fig. 1(b)). Higher-order

derivatives in Eq. (1.2) are allowed provided additional Fermi surfaces do not appear at

larger momenta. At the critical point, we choose the value of g so that the coefficient of

φµφµ vanishes. We can now take the lower energy theory in the vicinities of the 4 hot spots in

Fig. 1(b), and obtain a model identical to that studied in numerous earlier works10–12,14,16,19.

In particular, all of the computations on the optical conductivity in Ref. 16 apply essentially

unchanged to the present continuum model L.
Now a key observation is that the resistivity of the model L is identically zero, ρ(T ) = 0,

at all T . This follows immediately from the translational invariance of L and the existence

of an exactly conserved momentum which we will specify explicitly in Section II. So we must

include additional perturbations to L will break the continuous translational symmetry to

obtain a non-zero resistivity. One such perturbation is a random potential, which can scatter

fermions at all momenta (including a → b processes that actually change momenta by K).

It is given by

LV = V1(r⃗)ψ
†(r⃗)ψ(r⃗) + V2(r⃗)ψ

†(r⃗)Γ0ψ(r⃗), (1.3)

where Γ0 = ( 0 1
1 0 ). The other is a random-mass term for the bosonic field:

Lm = m(r⃗)φµ(r⃗)φµ(r⃗), (1.4)
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Linear T resistivity of strange metals

Theories of metallic states without quasiparticles in the presence of disorder

• Well-known perturbative theory of disordered metals has 2 classes of known fixed
points, the insulator at strong disorder, and the metal at weak disorder. The
latter state has long-lived, extended quasiparticle excitations (which are not plane
waves).

• Needed: a metallic fixed point at intermediate disorder and strong

interactions without quasiparticle excitations. Although disorder is present,
it largely self-averages at long scales.

• Examples exist in models of strongly-interacting CFTs of Dirac fermions coupled
to weak disorder (see posters by Alex Thomson, Sri Raghu...)

• Holographic CFTs with disorder flow to an intermediate disorder fixed point
(Hartnoll, Ramirez, Santos)

• “Massive gravity” holographic theories are spatially homogenous but do not have
a conserved momentum.

• SYK models
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Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond
the quasiparticle description. The Sachdev-Ye-Kitaev(SYK) model describes a 0 + 1D quantum cluster with
random all-to-all four-fermion interactions among N Fermion modes which becomes exactly solvable as N !
1, exhibiting a zero-dimensional non-Fermi liquid with emergent conformal symmetry and complete absence
of quasi-particles. Here we study a lattice of complex-fermion SYK dots with random inter-site quadratic
hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a
heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature
Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in
temperature resistivity in the incoherent regime, and a Lorentz ratio L ⌘ ⇢T varies between two universal values
as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated
metal.

Introduction - Strongly correlated metals comprise an en-
during puzzle at the heart of condensed matter physics. Com-
monly a highly renormalized heavy Fermi liquid occurs be-
low a small coherence scale, while at higher temperatures a
broad incoherent regime pertains in which quasi-particle de-
scription fails[1–9]. Despite the ubiquity of this phenomenol-
ogy, strong correlations and quantum fluctuations make it
challenging to study. The exactly soluble SYK models pro-
vide a powerful framework to study such physics. The most-
studied SYK4 model, a 0 + 1D quantum cluster of N Ma-
jorana fermion modes with random all-to-all four-fermion
interactions[10–18] has been generalized to SYKq models
with q-fermion interactions. Subsequent works[19, 20] ex-
tended the SYK model to higher spatial dimensions by cou-
pling a lattice of SYK4 quantum clusters by additional four-
fermion “pair hopping” interactions. They obtained electrical
and thermal conductivities completely governed by di↵usive
modes and nearly temperature-independent behavior owing to
the identical scaling of the inter-dot and intra-dot couplings.

Here, we take one step closer to realism by considering a
lattice of complex-fermion SYK clusters with SYK4 intra-
cluster interaction of strength U0 and random inter-cluster
“SYK2” two-fermion hopping of strength t0[21–26]. Un-
like the previous higher dimensional SYK models where lo-
cal quantum criticality governs the entire low temperature
physics, here as we vary the temperature, two distinctive
metallic behaviors appear, resembling the previously men-
tioned heavy fermion systems. We assume t0 ⌧ U0, which
implies strong interactions, and focus on the correlated regime
T ⌧ U0. We show the system has a coherence temperature

scale Ec ⌘ t2
0/U0[21, 27, 28] between a heavy Fermi liquid

and an incoherent metal. For T < Ec, the SYK2 induces a
Fermi liquid, which is however highly renormalized by the
strong interactions. For T > Ec, the system enters the incoher-
ent metal regime and the resistivity ⇢ depends linearly on tem-
perature. These results are strikingly similar to those of Par-
collet and Georges[29], who studied a variant SYK model ob-
tained in a double limit of infinite dimension and large N. Our
model is simpler, and does not require infinite dimensions. We
also obtain further results on the thermal conductivity , en-
tropy density and Lorentz ratio[30, 31] in this crossover. This
work bridges traditional Fermi liquid theory and the hydrody-
namical description of an incoherent metallic system.

SYK model and Imaginary-time formulation - We consider
a d-dimensional array of quantum dots, each with N species
of fermions labeled by i, j, k · · · ,

H =
X

x

X

i< j,k<l

Ui jkl,xc†ixc†jxckxclx +
X

hxx0i

X

i, j

ti j,xx0c
†
i,xc j,x0 (1)

where Ui jkl,x = U⇤kli j,x and ti j,xx0 = t⇤ji,x0x are random zero mean
complex variables drawn from Gaussian distribution whose
variances |Ui jkl,x|2 = 2U2

0/N
3 and |ti j,x,x0 |2 = t2

0/N.
In the imaginary time formalism, one studies the partition

function Z = Tr e��(H�µN), with N = Pi,x c†i,xci,x, written as
a path integral over Grassman fields cix⌧, c̄ix⌧. Owing to the
self-averaging established for the SYK model at large N, it is
su�cient to study Z̄ =

R
[dc̄][dc]e�S c , with (repeated species

indices are summed over)

S c =
X

x

Z �

0
d⌧ c̄ix⌧(@⌧ � µ)cix⌧ �

Z �

0
d⌧1d⌧2

hX

x

U2
0

4N3 c̄ix⌧1 c̄ jx⌧1 ckx⌧1 clx⌧1 c̄lx⌧2 c̄kx⌧2 c jx⌧2 cix⌧2 +
X

hxx0i

t2
0

N
c̄ix⌧1 c jx0⌧1 c̄ jx0⌧2 cix⌧2

i
. (2)

The basic features can be determined by a simple power- counting. Considering for simplicity µ = 0, starting from

Ut
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Transport
Generalized 

resistivity
⇢c = 1/� ⇢e = T/

4

which defines the positive real parameters K and D'. At small
momentum, for an isotropic Bravais lattice, �(p) = p2 (with
unit lattice spacing), and the phase action becomes

iS ' = �2K
X

p

Z +1

�1
d!'c,!(i!2 � D'p2!)'q,�!. (9)

The density-density correlator is expressed as

DRn(x,t; x0,t0) ⌘ i✓(t � t0)h[N(x,t),N(x0,t0)]i
=

i
2
hNc(x,t)Nq(x0,t0)i, (10)

where Ns ⌘ N�S '
�'̇s

, Nc/q = N+ ± N�(keeping momentum-
independent components- See [32]). Adding a contact term
to ensure that limp!0 DRn(p,! , 0) = 0[33], the action (9)
yields the di↵usive form [34]

DRn(p,!) =
�iNK!

i! � D'p2 + NK =
�NKD'p2

i! � D'p2 . (11)

From this we identify NK and D' as the compressibility and
charge di↵usion constant, respectively. The electric conduc-
tivity is given by Einstein relation � ⌘ 1/⇢ = NKD', or,
restoring all units,� = NKD' e2

~ a2�d(a is lattice spacing).
Note the proportionality to N: in the standard non-linear
sigma model formulation, the dimensionless conductance is
large, suppressing localization e↵ects. This occurs because
both U and t interactions scatter between all orbitals, destroy-
ing interference from closed loops.

The analysis of energy transport proceeds similarly. Since
energy is the generator of time translations, one considers the
time-reparametrization (TRP) modes induced by ts ! ts+✏s(t)
and defines ✏c/q = 1

2 (✏+ ± ✏�). The e↵ective action for TRP
modes to the lowest-order in p,! reads [32]
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where the ellipses has the same meaning as in (9). At low
frequency, the correlation function integral, given in [32], be-
haves as ⇤3(!) ⇡ 2�D✏T 2!, which defines the energy di↵u-
sion constant D✏ . This identification is seen from the correla-
tor for energy density modes "c/q ⌘ iN�S ✏
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,
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i! � D✏ p2 , (13)

where we add a contact term to ensure conservation of energy
at p = 0. The thermal conductivity reads  = NT�D✏ (kB = 1)
–like �, is O(N).

Scaling collapse, Kadowaki-Woods and Lorentz ra-
tios – Electric/thermal conductivities are obtained from
lim!!0 ⇤2/3(!)/!, expressed as integrals of real-time corre-
lation functions, and can be evaluated numerically for any
T, t0,U0. Introducing generalized resistivities, ⇢' = ⇢, ⇢" =
T/, we find remarkably that for t0,T ⌧ U0, they collapse to
universal functions of one variable,

⇢⇣(t0,T ⌧ U0) =
1
N

R⇣( T
Ec

) ⇣ 2 {', "}, (14)
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FIG. 3. (a): For t0,T ⌧ U0, ⇢'/" “collapse” to R'/"( T
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)/N. (b): The
Lorentz ratio ⇢

T reaches two constants ⇡2

3 ,
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8 , in the two regimes.
The solid curves are guides to the eyes.

where R'(T ), R"(T ) are dimensionless universal functions.
This scaling collapse is verified by direct numerical calcula-
tions shown in Fig. 3a. From the scaling form (14), we see the
low temperature resistivity obeys the usual Fermi liquid form

⇢⇣(T ⌧ Ec) ⇡ ⇢⇣(0) + A⇣T 2, (15)

where the temperature coe�cient of resistivity A⇣ =
R00⇣ (0)
2NE2

c
is

large due to small coherence scale in denominator, charac-
teristic of a strongly correlated Fermi liquid. Famously, the
Kadowaki-Woods ratio, A'/(N�)2, is approximately system-
independent for a wide range of correlated materials[35, 36].
We find here A'

(N�)2 =
R00' (0)

2[S0(0)]2N3 is independent of t0 and U0!
Turning now to the incoherent metal regime, in limit of

large arguments, T � 1, the generalized resistivities vary
linearly with temperature: R⇣(T ) ⇠ c⇣ T . We analytically
obtain c' = 2p

⇡
and c" = 16

⇡5/2 [32], implying that the Lorenz
number, characterizing the Wiedemann-Franz law, takes the
unusual value L = 

�T ! ⇡2

8 for Ec ⌧ T ⌧ U0. More gener-
ally, the scaling form (14) implies that L is a universal func-
tion of T/Ec, verified numerically as shown in Fig. 3b. Thescaling
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Linear in T for 
Ec≪T≪U

Fermi liquid 
R=R0+AT2 
for T≪Ec

Crossover from heavy FL to strange metal
•Small coherence scale Ec=t2/U
•Heavy mass !~m*/m ~ U/t
•Small QP weight Z ~ t/U
•Kadowaki-Woods A/!2 = constant
•Linear in T resistivity and T/κ
•Lorenz ratio crosses over from FL to NFL value


