Symmetries and Dualities of Dirac Fermions in 2+1 Dimensions

David F. Mross

(with Jason Alicea and Olexei I. Motrunich)

DFM, Essin, Alicea, PRX 5, 011011 (2015) DFM, Alicea, Motrunich, PRL 117, 016802 (2016) DFM, Alicea, Motrunich, cond-mat/1706.01106 (2017)

Duality Transformation

$$\sigma_i^z \sigma_{i+1}^z = \tau_{i+\frac{1}{2}}^x$$

$$\sigma_{i}^{x} = \tau_{i-\frac{1}{2}}^{z} \tau_{i+\frac{1}{2}}^{z}$$

Duality Transformation

$$\sigma_i^z \sigma_{i+1}^z = \tau_{i+\frac{1}{2}}^x$$

$$\sigma_{i}^{x} = \tau_{i - \frac{1}{2}}^{z} \tau_{i + \frac{1}{2}}^{z}$$

non-local:

$$\sigma_i^z = \prod_{j < i} \tau_{j + \frac{1}{2}}^x$$

Spins

Spins

Gapped fermions

$$m = \Delta_{\sigma} + \Delta_{\tau}$$

oins Dua

Gapped fermions

$$m = \Delta_{\sigma} + \Delta_{\tau}$$

Spins

Fermions

Warm up in 1+1 dimensions:

\odel

Self-duality ensures criticality at J=h

Translation symmetry yields gapless spectrum for $J=\hbar$

Fermions

i = 3

i = 2

i = 1

i = 0

Warm up in 1 1 1 dimanciance

• Duality Transformation on spin variables

Translation by ½ of Majorana fermions

$$\gamma_{i-1/4} = \tau_{i-1/2}^z \sigma_i^z$$
 $\gamma_{i+1/4} = i\sigma_i^z \tau_{i+1/2}^z$

- Can interpret duality as a symmetry of new degrees of freedom
- Symmetry is **anomalous** (impossible in microscopic 1D system).

i = 3

i = 2

i = 1

i = 0

David F. Mross

 $4\gamma_{11/4}$

 $4\gamma_{9/4}$

 $|_4\gamma_{7/4}$

 $|_4\gamma_{3/4}$

Spins on sites labeled by i

Bosons on wires labeled by i

 σ

$$b_i(x)$$

Spins on sites labeled by i

Bosons on wires labeled by i

$$\sigma_i^z \longrightarrow b_i(x)$$

$$b_i(x)$$

$$\langle \sigma_i^z \rangle \neq 0$$
: Ferromagnet

$$\langle b_i \rangle \neq 0$$
: Superfluid

Spins on sites labeled by i

Bosons on wires labeled by i

Creates defects (spin flips) in ferromagnet

$$\langle \sigma_i^z \rangle \neq 0$$
: Ferromagnet

$$\langle b_i \rangle \neq 0$$
: Superfluid

Spins on sites labeled by i

Bosons on wires labeled by i

Creates defects (spin flips) in ferromagnet

$$\langle \sigma_i^z \rangle \neq 0$$
: Ferromagnet

$$\langle b_i \rangle \neq 0$$
: Superfluid

$$\langle \sigma_i^z \rangle = 0$$
: Paramagnet

Spins on sites labeled by i

Creates defects (spin flips) in ferromagnet

$$\langle \sigma_i^z \rangle \neq 0$$
: Ferromagnet $\langle b_i \rangle \neq 0$: Superfluid

Bosons on wires labeled by i

$$\sigma_i^z$$
 \longrightarrow $b_i(x)$ i σ_i^x \longrightarrow $p_i(x) = e^{2\pi i \int^x dx' \rho_i(x')}$ $p_i(x)$ Creates defects (phase-slips) in superfluid

$$\langle b_i \rangle \neq 0$$
: Superfluid

$$\langle \sigma_i^z \rangle = 0$$
: Paramagnet

Spins on sites labeled by i

Creates defects (spin flips) in ferromagnet

$$\langle \sigma_i^z \rangle \neq 0$$
: Ferromagnet $\langle b_i \rangle \neq 0$: Superfluid

Bosons on wires labeled by i

$$\sigma_i^z \longleftrightarrow b_i(x) \qquad i \qquad \qquad \\ \sigma_i^x \longleftrightarrow p_i(x) = e^{2\pi i \int^x dx' \rho_i(x')}$$

Creates defects (phase-slips) in superfluid

$$\langle b_i \rangle \neq 0$$
: Superfluid

$$\langle \sigma_i^z \rangle = 0$$
: Paramagnet

Spins on sites labeled by i

Creates defects (spin flips) in ferromagnet

$$\langle \sigma_i^z \rangle \neq 0$$
: Ferromagnet $\langle b_i \rangle \neq 0$: Superfluid

Bosons on wires labeled by i

$$\sigma_i^z \longleftrightarrow b_i(x) \qquad i \qquad \qquad \\ \sigma_i^x \longleftrightarrow p_i(x) = e^{2\pi i \int^x dx' \rho_i(x')}$$

Creates defects (phase-slips) in superfluid

$$\langle b_i \rangle \neq 0$$
: Superfluid

$$\langle \sigma_i^z \rangle = 0$$
: Paramagnet

Spins on sites labeled by i

Creates defects (spin flips) in ferromagnet

$$\langle \sigma_i^z \rangle \neq 0$$
: Ferromagnet $\langle b_i \rangle \neq 0$: Superfluid

Bosons on wires labeled by i

$$\sigma_i^z \longleftrightarrow b_i(x) \qquad i \qquad \qquad \\ \sigma_i^x \longleftrightarrow p_i(x) = e^{2\pi i \int^x dx' \rho_i(x')}$$

Creates defects (phase-slips) in superfluid

$$\langle b_i \rangle \neq 0$$
: Superfluid

$$\langle \sigma_i^z \rangle = 0$$
: Paramagnet

$$\langle b_i \rangle = 0$$
: Mott Insulator

Spins on sites labeled by i

Bosons on wires labeled by i

$$\sigma_i^z \longrightarrow$$

$$b_i(x)$$

$$\sigma^x_i$$
 .

$$p_i$$

$$\sigma_i^z \longrightarrow b_i(x) \qquad i$$

$$\sigma_i^x \longrightarrow p_i(x) = e^{2\pi i \int^x dx' \rho_i(x')}$$

$$i = 3$$

$$i = 2$$

$$i = 1$$

$$i = 1$$

Spins on sites labeled by i

Bosons on wires labeled by i

$$\sigma_i^z$$

$$\sigma_i^z \longrightarrow b_i(x) \qquad i$$

$$\sigma_i^x \longrightarrow p_i(x) = e^{2\pi i \int^x dx' \rho_i(x')}$$

Ising duality

$$\sigma_i^z \sigma_{i+1}^z = \tau_{i+\frac{1}{2}}^x$$

$$\sigma_i^z\sigma_{i+1}^z=\tau_{i+\frac{1}{2}}^x \quad \text{Spin-flip is dual-spin} \\ \sigma_i^x=\tau_{i-\frac{1}{2}}^z\tau_{i+\frac{1}{2}}^z \quad \text{exchange}$$

$$i=3$$

$$i=2$$

$$i = 1$$

Spins on sites labeled by i

Bosons on wires labeled by i

$$\sigma_i^z \longrightarrow b_i(x) \qquad i \qquad \qquad \\ \sigma_i^x \longrightarrow p_i(x) = e^{2\pi i \int^x dx' \rho_i(x')}$$

$$b_i(x)$$

$$i \longrightarrow i \quad f^x \quad dx' \circ (x')$$

Ising duality

$$\sigma_i^z \sigma_{i+1}^z = \tau_{i+\frac{1}{2}}^x$$

$$\sigma_{i}^{z} \sigma_{i+1}^{z} = \tau_{i+\frac{1}{2}}^{x}$$

$$\sigma_{i}^{x} = \tau_{i-\frac{1}{2}}^{z} \tau_{i+\frac{1}{2}}^{z}$$

Spin-flip is dual-spin exchange

Boson-vortex duality

$$b_i^{\dagger} b_{i+1} = \tilde{p}_{i+1/2}$$

$$p_i = \tilde{b}_{i+\frac{1}{2}}^{\dagger} \tilde{b}_{i-\frac{1}{2}}$$

$$i = 1$$

Spins on sites labeled by i

Bosons on wires labeled by i

$$\sigma_i^z \leftarrow \sigma_i^x$$

$$b_i(x)$$

Ising duality

$$\sigma_i^z \sigma_{i+1}^z = \tau_{i+\frac{1}{2}}^x$$

$$\sigma_{i}^{x} = \tau_{i-\frac{1}{2}}^{z} \tau_{i+\frac{1}{2}}^{z}$$

i = 1

Boson-vortex duality

Phase-slip is vortex hopping

$$b_i^{\dagger} b_{i+1} = \tilde{p}_{i+1/2}$$

$$p_i = \tilde{b}_{i+\frac{1}{2}}^{\dagger} \tilde{b}_{i-\frac{1}{2}}$$

Spins on dual sites labeled by
$$i + \frac{1}{2}$$

Spins on dual sites labeled by
$$i + \frac{1}{2}$$
 Bosons on dual wires labeled by $i + \frac{1}{2}$

$$\tau_{i+\frac{1}{2}}^z \longrightarrow \tilde{b}_{i+\frac{1}{2}}(x)$$

$$\tilde{b}_{i+\frac{1}{2}}(x)$$

$$i = 3$$

$$i = 2$$

$$i = 1$$

$$i = 1$$

i = 2

Spins on dual sites labeled by $i + \frac{1}{2}$

Bosons on dual wires labeled by $i + \frac{1}{2}$

$$\tau_{i+\frac{1}{2}}^z \longrightarrow \tilde{b}_{i+\frac{1}{2}}(x)$$

$$\tilde{b}_{i+\frac{1}{2}}(x)$$

Creates defects ferromagnet

$$\tau_{i+\frac{1}{2}}^x$$

Creates defects (spin flips) in dual
$$\rightarrow$$
 $\tau_{i+\frac{1}{2}}^{x}$ \rightarrow $\tilde{p}_{i+\frac{1}{2}}(x)=e^{2\pi i\int^{x}\tilde{\rho}_{i+1/2}}$ ferromagnet

Creates defects (phase-slips) in dual superfluid

$$i = 3$$

$$i = 2$$

$$i = 1$$

Spins on dual sites labeled by $i + \frac{1}{2}$ Bosons on dual wires labeled by $i + \frac{1}{2}$

$$\tau_{i+\frac{1}{2}}^z \longrightarrow \tilde{b}_{i+\frac{1}{2}}(x)$$

$$\tilde{b}_{i+\frac{1}{2}}(x)$$

Creates defects ferromagnet

$$\tau^x_{i+\frac{1}{2}}$$

Creates defects (spin flips) in dual
$$\longrightarrow$$
 $\tau^x_{i+\frac{1}{2}}$ \longrightarrow $\tilde{p}_{i+\frac{1}{2}}(x)=e^{2\pi i\int^x\tilde{\rho}_{i+1/2}}$ ferromagnet

Creates defects (phase-slips) in dual superfluid

$$\langle \tau^z \rangle = 0$$
: Ferromagnet

$$i = 3$$

$$\langle \tilde{b} \rangle = 0$$
: Superfluid

$$i = 2$$

$$i = 2$$

$$\dot{a} = 1$$

$$i = 1$$

Spins on dual sites labeled by $i + \frac{1}{2}$

Bosons on dual wires labeled by $i + \frac{1}{2}$

$$\tau_{i+\frac{1}{2}}^z \longrightarrow \tilde{b}_{i+\frac{1}{2}}(x)$$

$$\tilde{b}_{i+\frac{1}{2}}(x)$$

Creates defects ferromagnet

$$\tau_{i+\frac{1}{2}}^x$$

Creates defects (spin flips) in dual
$$\rightarrow$$
 $\tau_{i+\frac{1}{2}}^{x}$ \rightarrow $\tilde{p}_{i+\frac{1}{2}}(x)=e^{2\pi i\int^{x}\tilde{\rho}_{i+1/2}}$ ferromagnet

Creates defects (phase-slips) in dual superfluid

$$\langle \tau^z \rangle = 0$$
: Ferromagnet

$$i = 3$$

i = 2

$$\langle \tilde{b} \rangle = 0$$
: Superfluid

$$i = 2$$

i = 1

$$\langle \tau^z \rangle \neq 0$$
: Paramagnet

$$\langle b \rangle$$

$$\langle \tilde{b} \rangle \neq 0$$
: Mott Insulator

$$i = 1$$

Ising duality: Only spin-exchange and transverse field

$$H_{\text{Ising}} = -J\sigma_i^z \sigma_{i+1}^z - h\sigma_i^x$$

$$\uparrow \text{ duality } \uparrow$$

$$H_{\text{Dual}} = -J\tau_{i+\frac{1}{2}}^x - h\tau_{i-\frac{1}{2}}^z \tau_{i+\frac{1}{2}}^z$$

Ising duality: Only spin-exchange and transverse field

$$H_{\text{Ising}} = -J\sigma_i^z \sigma_{i+1}^z - h\sigma_i^x$$

$$\downarrow \text{ duality } \downarrow$$

$$H_{\text{Dual}} = -J\tau_{i+\frac{1}{2}}^x - h\tau_{i-\frac{1}{2}}^z \tau_{i+\frac{1}{2}}^z$$

• Boson-vortex duality: Kinetic energy within each wire

$$H_{\text{Boson}} = H_{\text{Boson}}^{\text{kin.}} - \int_{x}^{x} \left[-ub_{i}^{\dagger}b_{i+1} - vp_{i} + \text{H.c.} \right]$$

$$H_{\text{Vortex}} = H_{\text{Vortex}}^{\text{kin.}} - \int_{r} \left[-u\tilde{p}_{i+\frac{1}{2}} - v\tilde{b}_{i-\frac{1}{2}}^{\dagger} \tilde{b}_{i+\frac{1}{2}} + \text{H.c.} \right]$$

Ising duality: Only spin-exchange and transverse field

$$H_{\text{Ising}} = -J\sigma_i^z \sigma_{i+1}^z - h\sigma_i^x$$

$$\downarrow \text{ duality } \downarrow$$

$$H_{\text{Dual}} = -J\tau_{i+\frac{1}{2}}^x - h\tau_{i-\frac{1}{2}}^z \tau_{i+\frac{1}{2}}^z$$

Boson-vortex duality: Kinetic energy within each wire

$$H_{\text{Boson}} = H_{\text{Boson}}^{\text{kin.}} - \int_{x} \left[-ub_{i}^{\dagger}b_{i+1} - vp_{i} + \text{H.c.} \right]$$

$$\downarrow \text{ duality } \downarrow$$

$$H_{\text{Vortex}} = H_{\text{Vortex}}^{\text{kin.}} - \int_{x} \left[-u\tilde{p}_{i+\frac{1}{2}} - v\tilde{b}_{i-\frac{1}{2}}^{\dagger}\tilde{b}_{i+\frac{1}{2}} + \text{H.c.} \right]$$

Ising duality: Only spin-exchange and transverse field

$$H_{\text{Ising}} = -J\sigma_i^z \sigma_{i+1}^z - h\sigma_i^x$$

$$\downarrow \text{ duality } \downarrow$$

$$H_{\text{Dual}} = -J\tau_{i+\frac{1}{2}}^x - h\tau_{i-\frac{1}{2}}^z \tau_{i+\frac{1}{2}}^z$$

• Boson-vortex duality: Kinetic energy within each wire

$$H_{\text{Boson}} = H_{\text{Boson}}^{\text{kin.}} - \int_{x} \left[-ub_{i}^{\dagger}b_{i+1} - vp_{i} + \text{H.c.} \right]$$

$$\text{duality} \qquad \qquad \uparrow \text{ duality} \qquad \uparrow$$

$$H_{\text{Vortex}} = H_{\text{Vortex}}^{\text{kin.}} - \int_{x} \left[-u\tilde{p}_{i+\frac{1}{2}} - v\tilde{b}_{i-\frac{1}{2}}^{\dagger} \tilde{b}_{i+\frac{1}{2}} + \text{H.c.} \right]$$

Bosons with **short-range** interactions

Bosons with **short-range** interactions

Vortices with **long-range** interactions

$$H_{\text{Boson}} = H_{\text{Boson}}^{\text{kin.}} - \int_{x} \left[-ub_{i}^{\dagger}b_{i+1} - vp_{i} + \text{H.c.} \right]$$

$$\text{duality} \qquad \qquad \downarrow \text{duality} \qquad \downarrow$$

$$H_{\text{Vortex}} = H_{\text{Vortex}}^{\text{kin.}} - \int_{x} \left[-u\tilde{p}_{i+\frac{1}{2}} - v\tilde{b}_{i-\frac{1}{2}}^{\dagger} \tilde{b}_{i+\frac{1}{2}} + \text{H.c.} \right]$$

$$\mathcal{L}_{\mathrm{Boson}}^{\mathrm{kin}}[b]$$

$$H_{\text{Boson}} = H_{\text{Boson}}^{\text{kin.}} - \int_{x} \left[-ub_{i}^{\dagger}b_{i+1} - vp_{i} + \text{H.c.} \right]$$

$$\text{duality} \qquad \qquad \downarrow \text{duality} \qquad \downarrow$$

$$H_{\text{Vortex}} = H_{\text{Vortex}}^{\text{kin.}} - \int_{x} \left[-u\tilde{p}_{i+\frac{1}{2}} - v\tilde{b}_{i-\frac{1}{2}}^{\dagger} \tilde{b}_{i+\frac{1}{2}} + \text{H.c.} \right]$$

$$\mathcal{L}_{\text{Boson}}^{\text{kin}}[b] = \mathcal{L}_{\text{non-local}}[\tilde{b}]$$
 (use operator mapping)

$$H_{\text{Boson}} = H_{\text{Boson}}^{\text{kin.}} - \int_{x} \left[-ub_{i}^{\dagger}b_{i+1} - vp_{i} + \text{H.c.} \right]$$

$$\text{duality} \qquad \qquad \downarrow \text{duality} \qquad \downarrow$$

$$H_{\text{Vortex}} = H_{\text{Vortex}}^{\text{kin.}} - \int_{x} \left[-u\tilde{p}_{i+\frac{1}{2}} - v\tilde{b}_{i-\frac{1}{2}}^{\dagger} \tilde{b}_{i+\frac{1}{2}} + \text{H.c.} \right]$$

$$\mathcal{L}_{\text{Boson}}^{\text{kin}}[b] = \mathcal{L}_{\text{non-local}}[\tilde{b}]$$
 (use operator mapping)

$$\mathcal{L}_{\text{gauge}}[\tilde{b}, a]$$

$$H_{\text{Boson}} = H_{\text{Boson}}^{\text{kin.}} - \int_{x} \left[-ub_{i}^{\dagger}b_{i+1} - vp_{i} + \text{H.c.} \right]$$

$$\text{duality} \qquad \qquad \downarrow \text{duality} \qquad \downarrow$$

$$H_{\text{Vortex}} = H_{\text{Vortex}}^{\text{kin.}} - \int_{x} \left[-u\tilde{p}_{i+\frac{1}{2}} - v\tilde{b}_{i-\frac{1}{2}}^{\dagger} \tilde{b}_{i+\frac{1}{2}} + \text{H.c.} \right]$$

$$\mathcal{L}_{\text{Boson}}^{\text{kin}}[b] = \mathcal{L}_{\text{non-local}}[\tilde{b}]$$
 (use operator mapping)

$$\mathcal{L}_{\text{gauge}}[\tilde{b}, a] \to \mathcal{L}'_{\text{non-local}}[\tilde{b}]$$
 (integrate out a)

$$H_{\text{Boson}} = H_{\text{Boson}}^{\text{kin.}} - \int_{x} \left[-ub_{i}^{\dagger}b_{i+1} - vp_{i} + \text{H.c.} \right]$$

$$\text{duality} \qquad \qquad \downarrow \text{duality} \qquad \downarrow$$

$$H_{\text{Vortex}} = H_{\text{Vortex}}^{\text{kin.}} - \int_{x} \left[-u\tilde{p}_{i+\frac{1}{2}} - v\tilde{b}_{i-\frac{1}{2}}^{\dagger} \tilde{b}_{i+\frac{1}{2}} + \text{H.c.} \right]$$

$$\mathcal{L}_{\text{Boson}}^{\text{kin}}[b] = \mathcal{L}_{\text{non-local}}[\tilde{b}]$$
 (use operator mapping)

$$\mathcal{L}_{\text{gauge}}[\tilde{b}, a] \to \mathcal{L}'_{\text{non-local}}[\tilde{b}]$$
 (integrate out a)

$$\rightarrow$$
 find $\mathcal{L}_{\text{non-local}} = \mathcal{L}'_{\text{non-local}}$

$$H_{\text{Boson}} = H_{\text{Boson}}^{\text{kin.}} - \int_{x} \left[-ub_{i}^{\dagger}b_{i+1} - vp_{i} + \text{H.c.} \right]$$

$$\text{duality} \qquad \qquad \uparrow \text{ duality} \qquad \uparrow$$

$$H_{\text{Vortex}} = H_{\text{Vortex}}^{\text{kin.}} - \int_{x} \left[-u\tilde{p}_{i+\frac{1}{2}} - v\tilde{b}_{i-\frac{1}{2}}^{\dagger} \tilde{b}_{i+\frac{1}{2}} + \text{H.c.} \right]$$

Bosons with **short-range** interactions

Vortices with **long-range** interactions

$$\mathcal{L}_{\text{Boson}} = |(\partial_{\mu} - iA_{\mu})\Psi_{\text{Boson}}|^{2} + \frac{1}{2K} (\epsilon_{\lambda\mu\nu}\partial_{\mu}A_{\nu})^{2}$$

Bosons with **long-range** interactions

$\mathcal{L}_{\mathrm{Vortex}} = |\partial_{\mu} \Psi_{\mathrm{Vortex}}|^2$

Vortices with **short-range** interactions

Bosons with **intermediaterange** interactions

 $+\frac{i}{4\pi}A_{\lambda}\epsilon_{\lambda\mu\nu}\partial_{\mu}A_{\nu}$

Vortices with **intermediaterange** interactions

Bosons with **intermediaterange** interactions

Vortices with **intermediaterange** interactions

$$m_{\gamma} = \Delta_{\sigma} + \Delta_{\tau}$$

$$\psi = \Psi_{\rm Boson} \Psi_{\rm Vortex}$$

composite fermion

$$m_{\gamma} = \Delta_{\sigma} + \Delta_{\tau}$$

$$\psi = \Psi_{\rm Boson} \Psi_{\rm Vortex}$$

composite fermion

$$m = \Delta_v + \Delta_b$$

$$m_{\gamma} = \Delta_{\sigma} + \Delta_{\tau}$$

composite fermion

$$m = \Delta_v + \Delta_b$$

$$m_{\gamma} = \Delta_{\sigma} + \Delta_{\tau}$$

$$i=3$$

$$i=2$$

$$i = 1$$

$$i = 0$$

$$i=3$$

$$i=2$$

$$i = 1$$

$$i = 0$$

when
$$t_{\text{Vortex}} = t_{\text{Boson}}$$

$$H_{\text{hop}} = -t \sum_{y} \psi_{y}^{\dagger} \psi_{y+1} + \text{H.c.}$$

when
$$t_{\text{Vortex}} = t_{\text{Boson}}$$

$$H_{\text{hop}} = -t \sum_{y} \psi_{y}^{\dagger} \psi_{y+1} + \text{H.c.}$$

2-component spinor
$$\Psi = \begin{pmatrix} \psi_R \\ \psi_L \end{pmatrix}$$

$$H_{\rm wire} = \Psi^{\dagger} k_x \tau_z \Psi$$

when
$$t_{\text{Vortex}} = t_{\text{Boson}}$$

$$H_{\text{hop}} = -t \sum_{y} \psi_{y}^{\dagger} \psi_{y+1} + \text{H.c.}$$

2-component spinor
$$\Psi = \begin{pmatrix} \psi_R \\ \psi_L \end{pmatrix}$$

$$H_{\mathrm{wire}} = \Psi^{\dagger} k_x \tau_z \Psi$$

$$H_{\text{hop}} = \Psi^{\dagger} \begin{pmatrix} 0 & \sin k_y \\ \sin k_y & 0 \end{pmatrix} \Psi$$

when
$$t_{\text{Vortex}} = t_{\text{Boson}}$$

$$H_{\text{hop}} = -t \sum_{y} \psi_{y}^{\dagger} \psi_{y+1} + \text{H.c.}$$

2-component spinor
$$\Psi = \begin{pmatrix} \psi_R \\ \psi_L \end{pmatrix}$$

$$H_{\mathrm{wire}} = \Psi^{\dagger} k_x \tau_z \Psi$$

$$H_{\rm hop} = \Psi^{\dagger} \begin{pmatrix} 0 & k_y \\ k_y & 0 \end{pmatrix} \Psi$$

Make analogy precise: Wire models

when
$$t_{\text{Vortex}} = t_{\text{Boson}}$$

$$H_{\text{hop}} = -t \sum_{y} \psi_{y}^{\dagger} \psi_{y+1} + \text{H.c.}$$

2-component spinor
$$\Psi = \begin{pmatrix} \psi_1 \\ \psi_1 \end{pmatrix}$$

$$H_{\rm wire} = \Psi^{\dagger} k_x \tau_z \Psi$$

$$H_{\rm hop} = \Psi^{\dagger} \begin{pmatrix} 0 & k_y \\ k_y & 0 \end{pmatrix} \Psi$$

$$H_{\text{hop}} + H_{\text{wire}} = H_{\text{Dirac}}$$

 $\psi_{A,\downarrow}$

massless Dirac fermions at critical point

massless Dirac fermions at critical point

 $\psi_{A,\downarrow}$

 $\psi_{B,\uparrow}$

 $\psi_{B,\downarrow}$

Duality

$$\psi_{A,\sigma} \leftrightarrow \psi_{A,-\sigma}$$
$$\psi_{B,\sigma} \leftrightarrow \psi_{B,-\sigma}^{\dagger}$$

 $\psi_{B,\uparrow}$

 $\psi_{B,\downarrow}$

Duality

$$\psi_{A,\sigma} \leftrightarrow \psi_{A,-\sigma}$$
$$\psi_{B,\sigma} \leftrightarrow \psi_{B,-\sigma}^{\dagger}$$

$$\psi_{A,\sigma} \leftrightarrow \psi_{B,\sigma}$$

 $\psi_{B,\uparrow}$

 $\psi_{B,\downarrow}$

Duality

 $\psi_{A,\sigma} \leftrightarrow \psi_{A,-\sigma}$ $\psi_{B,\sigma} \leftrightarrow \psi_{B,-\sigma}^{\dagger}$

Time reversal

 $\psi_{A,\sigma} \leftrightarrow \psi_{B,\sigma}$

Charge conjugation

 $\psi_{A,\sigma} \leftrightarrow \psi_{B,\sigma}^{\dagger}$

Symmetries and dualities I: bosonic duality

$$\mathcal{L}_{\mathrm{Dirac}} = i \bar{\Psi}_{\mathrm{F}} \partial_{\mu} \gamma^{\mu} \Psi_{\mathrm{F}}$$

Symmetries and dualities I: bosonic duality

$$\mathcal{L}_{\text{Boson}} = |(\partial_{\mu} - iA_{\mu})\Psi_{\text{Boson}}|^{2} + \frac{i}{4\pi}A_{\lambda}\epsilon_{\lambda\mu\nu}\partial_{\mu}A_{\nu}$$

$$\mathcal{L}_{\text{Vortex}} = |(\partial_{\mu} - ia_{\mu})\Psi_{\text{Vortex}}|^{2} - \frac{i}{4\pi}a_{\lambda}\epsilon_{\lambda\mu\nu}\partial_{\mu}a_{\nu}$$

$$\mathcal{L}_{\mathrm{Dirac}} = i \bar{\Psi}_{\mathrm{F}} \partial_{\mu} \gamma^{\mu} \Psi_{\mathrm{F}}$$

$$\mathcal{L}_{\text{QED}_3} = i\bar{\Psi}_{\text{DF}}(\partial_{\mu} - ia_{\mu})\gamma^{\mu}\Psi_{\text{DF}} + \frac{1}{2\kappa}(\epsilon_{\lambda\mu\nu}\partial_{\mu}a_{\nu})^2$$

Fermions with **shortrange** interactions

Dual fermions with **longrange** interactions

(Wang, Senthil 2015; Metlitski, Vishwanath 2015; Kachru, Mulligan, Torroba, Wang 2015; Mross, Alicea, Motrunich 2015; Karch, Tong 2016, Seiberg, Senthil, Wang, Witten 2016)

• Duality can be implemented as exact transformation in wire models (Mross, Alicea, Motrunich 2015)

Fermions with **long-** range interactions

Dual fermions with **shortrange** interactions

(Wang, Senthil 2015; Metlitski, Vishwanath 2015; Kachru, Mulligan, Torroba, Wang 2015; Mross, Alicea, Motrunich 2015; Karch, Tong 2016, Seiberg, Senthil, Wang, Witten 2016)

• Duality can be implemented as exact transformation in wire models (Mross, Alicea, Motrunich 2015)

Fermions with **intermediaterange** interactions Dual fermions with intermediate-range interactions

Duality can be implemented as exact transformation in wire models

(Mross, Alicea, Motrunich 2015)

• Fermionic duality:

• Fermionic duality:

Bosonic symmetry:

Symmetries and dualities II: fermionic duality

$$\mathcal{L}_{CS} = i\bar{\Psi}_{F}(\partial_{\mu} - iA_{\mu})\gamma^{\mu}\Psi_{F} + \frac{i}{8\pi}A_{\lambda}\epsilon_{\lambda\mu\nu}\partial_{\mu}A_{\nu}$$

$$\mathcal{L}_{CS} = i\bar{\Psi}_{DF}(\partial_{\mu} - ia_{\mu})\gamma^{\mu}\Psi_{DF} - \frac{i}{8\pi}a_{\lambda}\epsilon_{\lambda\mu\nu}\partial_{\mu}a_{\nu}$$

(Karch, Tong 2016, Seiberg, Senthil, Wang, Witten 2016)

- Bosonic self-duality ↔ fermionic time-reversal symmetry
- Fermionic self-duality ↔ bosonic time-reversal symmetry

- Bosonic self-duality ↔ fermionic time-reversal symmetry
- Fermionic self-duality → bosonic time-reversal symmetry

Can bosons and fermions be simultaneously self-dual?

- Bosonic self-duality ←→ fermionic time-reversal symmetry
- Fermionic self-duality → bosonic time-reversal symmetry

Can bosons and fermions be simultaneously self-dual?

Need self-dual bosons with time-reversal symmetry (no Chern-Simons term)!

Symmetries and dualities III: simultaneous duality

Bosons with time-reversal invariant **intermediate- range** interactions

Vortices with time-reversal invariant intermediate-range interactions

(Fradkin, Kivelson 1996)

Bosons with time-reversal invariant **intermediaterange** interactions Vortices with time-reversal invariant **intermediate- range** interactions

(Fradkin, Kivelson 1996)

Bosons with time-reversal invariant **intermediate- range** interactions

Vortices with time-reversal invariant intermediate-range interactions

(Fradkin, Kivelson 1996)

Symmetries and dualities III: simultaneous duality

$$\mathcal{L}_{\text{Boson}} = |(\partial_{\mu} - iA_{\mu})\Psi_{\text{Boson}}|^{2} + \frac{1}{4\pi|\mathbf{k}|}|\mathbf{k} \times A|^{2}$$

$$\mathcal{L}_{\text{Fermion}} = i\bar{\Psi}_{\text{F}}(\partial_{\mu} - iA_{\mu})\gamma^{\mu}\Psi_{\text{F}} + \frac{1}{8\pi|\mathbf{k}|}|\mathbf{k} \times A|^{2}$$

$$\mathcal{L}_{\text{Vortex}} = |(\partial_{\mu} - ia_{\mu})\Psi_{\text{Vortex}}|^{2} + \frac{1}{4\pi|\mathbf{k}|}|\mathbf{k} \times a|^{2}$$

$$\mathcal{L}_{\text{Dual Fermion}} = i\bar{\Psi}_{\text{DF}}(\partial_{\mu} - ia_{\mu})\gamma^{\mu}\Psi_{\text{DF}} + \frac{1}{8\pi|\mathbf{k}|}|\mathbf{k} \times a|^{2}$$

Bosons

$$\begin{array}{c|c}
\bullet & |\mathbf{k} \times A|^2 \\
\frac{\lambda}{4\pi} \frac{|\mathbf{k} \times A|^2}{|\mathbf{k}|} \\
\bullet & \rho_s A^2
\end{array}$$

Fermions

(DFM, Alicea, Motrunich, 2017)

Phase diagrams

$$\mathcal{L}_{\text{Boson}} = |(\partial_{\mu} - iA_{\mu})\Psi_{\text{Boson}}|^{2} + \lambda_{\text{B}} \frac{1}{4\pi |\mathbf{k}|} |\nabla \times A|^{2} + \gamma_{\text{B}} \frac{i}{4\pi} A dA$$

$$\mathcal{L}_{\text{Fermion}} = i\bar{\Psi}_{\text{F}} (\partial_{\mu} - iA_{\mu})\gamma^{\mu}\Psi_{\text{F}} + \lambda_{\text{F}} \frac{1}{8\pi |\mathbf{k}|} |\nabla \times A|^{2} + \gamma_{\text{F}} \frac{i}{8\pi} A dA$$

$$\lambda_{V} = \frac{\lambda_{B}}{\gamma_{B}^{2} + \lambda_{B}^{2}}$$
 $\gamma_{V} = \frac{-\gamma_{B}}{\gamma_{B}^{2} + \lambda_{B}^{2}}$

$$\gamma_{\rm V} = \frac{-\gamma_{\rm B}}{\gamma_{\rm B}^2 + \lambda_{\rm B}^2}$$

$$\lambda_{\rm DF} = \frac{\lambda_{\rm F}}{\gamma_{\rm F}^2 + \lambda_{\rm F}^2}$$

$$\lambda_{\rm DF} = \frac{\lambda_{\rm F}}{\gamma_{\rm F}^2 + \lambda_{\rm F}^2}$$
 $\gamma_{\rm DF} = \frac{-\gamma_{\rm DF}}{\gamma_{\rm DF}^2 + \lambda_{\rm DF}^2}$

Outlook

Strong or weak duality?

- Concrete predictions from strong duality
- Need numerical verification

Additional dualities

- Extra symmetries (e.g., N-flavor QED)
- Spin models (e.g, quantum spin liquids)
- Majorana fermions (bosonized theory proposed, but symmetries unclear)

(Metlitski, Vishwanath, Xu 2016)

$B_{\mu\nu}$ y x

(Beekman, Sadri, Zaanen 2011)

Different dimensions

 Known particle-vortex duality in 3+1 dimensions.