Dimensional Crossover of Charge-Density Wave Correlations in the Cuprates

Yosef Caplan Dror Orgad

Evidence for short-range CDW order

- Short-ranged: $\xi_a \approx 20a$, $\xi_c \approx 0.6c$
- l = 0.5
- Bidirectional
- Competes with superconductivity

Hard x-ray diffraction: ortho-VIII YBCO6.67

Chang et al. (Nat. Phys. 2012)

Forgan et al. (Nat. Commun. 2015)

Evidence for short-range CDW order

A similar signal is observed in other cuprates

Evidence for long-range CDW order

High field x-ray diffraction: ortho-II and ortho-VIII YBCO

Longer-ranged

• *l* = 1

Unidirectional

Chang et al. (Nat. Commun. 2016)

Gerber et al. (Science 2015)

Evidence for long-range CDW order

Splitting of NMR lines

Wu et al. (Nat. Commun. 2013)

Evidence for long-range CDW order

Sound velocity anomaly

LeBoeuf et al. (Nat. Phys. 2012)

Questions

- Are the two orders distinct or related?
- Do they microscopically coexist or do they phase separate?
- What is the source of their different c-axis correlations?
- Why are the short-range correlations bidirectional and the longer-range order unidirectional?
- Is a transition to true long-range order expected at higher fields?

The model

We study a nonlinear sigma model of a 6-component order parameter, residing on the CuO2 planes,

with the constraint
$$|\psi|^2 + |\Phi^a|^2 + |\Phi^b|^2 = 1$$

- Local order always present
- Competition between orders

The model

We study a nonlinear sigma model of a 6-component order parameter, residing on the CuO_2 planes.

The physics at B=0

The physics at B=0

$$\frac{\rho_s}{2} \int d^2r \left[\left| (\boldsymbol{\nabla} + 2ie\boldsymbol{\mathbf{A}})\psi_{\mu j} \right|^2 + \lambda |\boldsymbol{\nabla} \boldsymbol{\Phi}_{\mu j}|^2 + g|\boldsymbol{\Phi}_{\mu j}|^2 \right] + \Delta g |\boldsymbol{\Phi}_{\mu j}^a|^2 \right]$$

Large-N analysis

The CDW correlation matrix

$$G^{\alpha}_{\mu\mu'}(\mathbf{q},l) = \frac{1}{2N_c A} \int d^2r d^2r' \sum_{jj'} e^{-i[\mathbf{q}\cdot(\mathbf{r}-\mathbf{r}')+2\pi(j-j')l]} \overline{\langle \Phi^{\alpha}_{\mu j}(\mathbf{r})\Phi^{*\alpha}_{\mu'j'}(\mathbf{r}') \rangle}$$

$$G_{00}^{\alpha}(0,l) = G_{11}^{\alpha}(0,l) = \frac{T}{\rho_s} \frac{\epsilon_{\alpha}}{\epsilon_{\alpha}^2 - \epsilon_{\perp}^2(l)} + \frac{V^2}{[\epsilon_{\alpha} + \epsilon_{\perp}(l)]^2} + \frac{4V^2 \epsilon_{\alpha} U \sin^2 \pi l}{[\epsilon_{\alpha}^2 - \epsilon_{\perp}^2(l)]^2}$$

$$\epsilon_{\alpha} = g + \Delta g \delta_{\alpha a} + J + \tilde{J}$$

$$\epsilon_{\perp}(l) = [U^2 + \tilde{U}^2 + 2U\tilde{U}\cos 2\pi l]^{1/2}$$

Temperature term peaks at integer 1

Disorder terms peak at half-integer 1, as long as $\epsilon_{\alpha}>3U+\tilde{U}$ dominate if $V^2>2UT/\rho_s$

The structure factor

Large-N analysis

Monte Carlo

The structure factor

Monte Carlo

The physics at B>0

B-dependence

T-dependence

Transition to long-range order

Transition to long-range order

$$\frac{T_{CDW}}{\rho_s} = \kappa r_0^2 \sqrt{tU} - \frac{V^2}{2U}$$

$$\frac{B_{CDW}r_0^2}{\phi_0} \approx \ln^{-2} \left[\kappa^2 r_0^2 U \left(\frac{2U}{V^2} \right)^2 \right]$$

Effects of in-plane disorder

Consequences

Signs for local SC in ortho-VIII YBCO above H_{c2}

Low-field correlations should broadly peak near integer l.

At high fields should move to half-integer *l*

Questions and answers

- Are the two orders distinct or related?
- Both are manifestations of the same CDW, and compete with SC.
- Do they microscopically coexist or do they phase separate?
- They exist in distinct regions. The longer-range order appears around vortices.
- What is the source of their different c-axis correlations?
- The bilayer structure of YBCO and the conflicting ordering conditions set by the disorder and the Coulomb interaction.
- Why is the l=1/2 order bidirectional and the l=1 unidirectional?
- The slight anisotropy induced by the chains hardly affects the weak l=1/2 correlations but suffices to orient the stronger l=1 order.
- Is a transition to true long-range order expected at higher fields?
- Almost. Weak plane disorder turns it into a sharp crossover.

STM on BSCCO 2212

B= 8.5 T

Hamidian et al. (arXiv 2015)