Superconductivity and charge density wave physics near an antiferromagnetic quantum critical point: insights from Quantum Monte Carlo studies

> Xiaoyu Wang University of Minnesota

KITP Seminar 07/27/2017

Minnesota Supercomputing Institute

UNIVERSITY OF MINNESOTA Driven to Discover™

Collaborators

Rafael Fernandes (U. Minnesota)

Erez Berg (U. Chicago)

Yoni Schattner (Weizmann)

Yuxuan Wang (U. Illinois)

- Phys. Rev. B **95**, 174520 (2017)
- PR? (2017): in preparation

QCP as an organizing principle

- QCP: a continuous T=0 phase transition tuned by an external parameter
- QCPs well understood for insulators
 - e.g., transverse field Ising model
 - Quantum critical "fan" at finite T: temporal fluctuations are important
- What happens at a metallic QCP?
 - Non Fermi liquid behavior
 - Enhanced Tc for emergent electronic orders

QCP as an organizing principle

- QCP: a continuous T=0 phase transition tuned by an external parameter
- QCPs well understood for insulators
 - e.g., transverse field Ising model
 - Quantum critical "fan" at finite T: temporal fluctuations are important
- What happens at a metallic QCP?
 - Non Fermi liquid behavior
 - Enhanced Tc for emergent electronic orders

Cuprates

Iron pnictides

Adapted from Fernandes & Chubukov, Rep. Prog. Phys. (2017)

Contents

- Antiferromagnetic QCP and spin-fermion model
 - Hot spots and damped spin fluctuations
 - Emergent SU(2) and implications for SC and CDW
 - Eliashberg approximation
- What do we learn from numerics?
 - Sign-problem-free Quantum Monte Carlo
 - Superconductivity
 - CDW

Spin-fermion model

Abanov, Chubukov & Schmalian, Adv. in Phys. (2003) Metlitski & Sachdev, PRB (2010) ...

- Effective low energy model
- Electrons near the Fermi surface coupled to quantum critical spin fluctuations

$$S_F = \int_{\tau} \sum_{\mathbf{k}\alpha} \bar{\psi}_{\mathbf{k}\alpha} (\partial_{\tau} + \varepsilon_{\mathbf{k}-\mu}) \psi_{\mathbf{k}\alpha}$$

• Fermi surface

٠

Spin-fermion coupling:

$$S_{\lambda} = \lambda \int_{\mathbf{x},\tau} \vec{\phi} \cdot \bar{\psi}_{\alpha} \vec{\sigma}_{\alpha\beta} \psi_{\beta}$$

$$S_B = \int_{\mathbf{q},i\Omega} \chi_0^{-1}(\mathbf{q},i\Omega) \vec{\phi}_q \cdot \vec{\phi}_{-q}$$

- Magnetism comes from high energy
- · Spin fluctuation peaked at ${\bf Q}$

$$\chi_0^{-1}(\mathbf{q}, i\Omega) = r_0 + (\mathbf{q} - \mathbf{Q})^2 + \frac{\Omega^2}{v_s^2}$$

$$r_0 > 0$$
:

 $r_0 < 0$:

Hot spots: Points on the Fermi surface that couple strongly to spin fluctuations

Hot spots: Points on the Fermi surface that couple strongly to spin fluctuations

Low-energy physics governed by linearized hot spot approximation:

$$\varepsilon_{i,\mathbf{k}} \approx \mathbf{v}_F^{(i)} \cdot (\mathbf{k} - \mathbf{k}_{hs}^{(i)}); \ i = 1, 2$$

• Emergent SU(2) symmetry at each pair of hot spots

$$\begin{pmatrix} \psi_{i,\mathbf{k\uparrow}} \\ \psi_{i,\mathbf{k\downarrow}} \end{pmatrix} \rightarrow \begin{pmatrix} \psi_{i,-\mathbf{k\downarrow}}^{\dagger} \\ -\psi_{i,-\mathbf{k\uparrow}}^{\dagger} \end{pmatrix}; \ i = 1, 2$$

- Enlarged order parameter O(4): complex SC and CDW
 - Robust against perturbations?

$$\Delta_{1,\mathrm{SC}} = \langle \psi_{1,\uparrow} \psi_{1',\downarrow} - \psi_{1,\downarrow} \psi_{1',\uparrow} \rangle$$

$$\Delta_{1,\text{CDW}} = \langle \psi_{1,\uparrow} \psi_{1',\uparrow}^{\dagger} + \psi_{1,\downarrow} \psi_{1',\downarrow}^{\dagger} \rangle$$

Metlitski & Sachdev, PRB (2010) Wang, Agterberg & Chubukov, PRB (2015)

- Spin fluctuations decay into an electron-hole pair near the Fermi surface
- Low frequency spin fluctuations are Landau-damped:

$$\chi(\mathbf{q}, i\Omega_n) = \frac{1}{r_0 + (\mathbf{q} - \mathbf{Q})^2 + \Omega_n^2 / v_s^2 + |\Omega_n| / \gamma} \qquad \frac{1}{\gamma} \propto \frac{\lambda^2}{v_f^2 \sin(\theta_{\rm hs})}$$

Polarization bubble:

Abanov, Chubukov & Schmalian, Adv. in Phys. (2003) Metlitski & Sachdev, PRB (2010) Mross et al, PRB (2010) ...

How to study SC and non-FL due to quantum critical spin fluctuations?

-Hot-spot Eliashberg approximation

• How to understand the angle dependence of T_c ?

• $\theta_{hs} \rightarrow 0$: Spin fluct. strongly damped; insufficient to mediate pairing

How to study SC and non-FL due to quantum critical spin fluctuations?

-Hot-spot Eliashberg approximation

- How to understand the angle dependence of T_c ?
 - $\theta_{hs} \rightarrow 0$: Spin fluct. strongly damped; insufficient to mediate pairing

<u>Assumpt. of hot-spot Eliashberg approx.</u>: Neglecting vertex correction; not fully justified!

Sign-free Quantum Monte Carlo method

- How to avoid the fermion sign problem?
 - Two electron bands

•

Spin fluct. couple inter-band

• Kramer's symmetry:

$$\tilde{U} = i\sigma_2 \otimes \tau_3 \mathcal{C}$$

• Hot spots dominate low-energy physics

Numerical characterization of low-energy properties

Schattner et al, PRL (2016); Gerlach et al, PRB (2017)

Numerical characterization of low-energy properties

Schattner et al, PRL (2016); Gerlach et al, PRB (2017)

- Study a series of band structures with different δ/t
- Different low-energy properties, while maintaining same bandwidth 8t

Blue band shifted by **Q**; pair of hot spots overlap

• For each band parameter δ/t :

Spin-fermion interaction: $\lambda^2 = 8t$

System sizes: L = 8, 10, 12, 14

Temperatures: $T \ge 0.04t$

- QMC procedure:
 - Locate AF QCP by varying bare mass r₀ of spin fluct.
 - Obtain T_c via BKT criterion

$$\rho_s(T_c) = \frac{2T_c}{\pi}$$

For each band parameter δ/t :

Spin-fermion interaction: $\lambda^2 = 8t$

System sizes: L = 8, 10, 12, 14

Temperatures: $T \ge 0.04t$

- QMC procedure:
 - Locate AF QCP by varying bare mass r₀ of spin fluct.
 - Obtain T_c via BKT criterion

 $\rho_s(T_c) = \frac{2T_c}{\pi}$

• T_c is not correlated with density of states at the Fermi energy

T_c is strongly correlated with the relative angle between Fermi velocities at a pair of hot spots

Caveat: Eliashberg T_c does not capture BKT physics

• Static pair susceptibility:

$$\chi_{\text{pair}} = \int_{\mathbf{r},\tau} \langle \hat{\Gamma}(\mathbf{r},\tau) \hat{\Gamma}^{\dagger}(0,0) \rangle \qquad \hat{\Gamma}(\mathbf{r},\tau) \sim \psi_{\uparrow}(\mathbf{r},\tau) \psi_{\downarrow}(\mathbf{r},\tau)$$

Static pair susceptibility:

- Scaled susceptibilities collapse onto a single universal curve
- The curve is fitted well by hot spot Eliashberg approximation

• T_c dependence on the spin-fermion interaction strength: unbounded?

Saturation of Tc deviates from linearized hot spot approx. $T_c \propto \lambda^2 \sin \theta_{
m hs}$

• Damped spin fluct. propagator:

$$\chi^{-1}(\mathbf{q}, i\Omega_n) = r_0 + (\mathbf{q} - \mathbf{Q})^2 + \frac{|\Omega_n|}{\gamma} \rightarrow (\delta p_{h.s.})^2$$

$$\frac{\delta p_{h.s.}}{p_0} \sim 1$$

- The whole Fermi surface becomes "hot"
- T_c saturates at crossover from hot-spot dominated to Fermi-surface dominated pairing.

Brief Summary

- Hot spots govern SC properties near AF QCP up to large interactions comparable with fermionic bandwidth
- T_c saturates to a few percent of the bandwidth at the crossover from hot-spot dominated to Fermi-surface dominated pairing
- Despite uncontrolled, Eliashberg approximation shows quantitative agreement with numerical results
 - Why are vertex corrections absent?

•

Charge Density Wave

- CDW: periodic charge modulations that break translational symmetry
- Observed in the pseudogap region in various hole-doped cuprates
- Competes with SC
- Previous analytical work: CDW can emerge due to spin fluctuations
- Previous QMC: no significant CDW correlations

Charge Density Wave

- CDW: periodic charge modulations that break translational symmetry
- Observed in the pseudogap region in various hole-doped cuprates
- Competes with SC
- Previous analytical work: CDW can emerge due to spin fluctuations
- Previous QMC: no significant CDW correlations

Hole doping

Bipartite lattice at half-filling: exact SU(2) symmetry

•

- + SC and (π,π) CDW transform like a three-component order parameter
- Similar symmetries have been studied, e.g., negative-U Hubbard Moreo & Scalapino, PRL (1991)

Moreo & Scalapino, PRL (1991) Chakravarty, Laughlin, Morr & Nayak, PRB (2001) Bipartite lattice at half-filling: exact SU(2) symmetry

•

- · SC and (π,π) CDW transform like a three-component order parameter
- Similar symmetries have been studied, e.g., negative-U Hubbard
 Moreo & Scalapino, PRL (1991)

Moreo & Scalapino, PRL (1991) Chakravarty, Laughlin, Morr & Nayak, PRB (2001)

- Bipartite lattice at half-filling: exact SU(2) symmetry
 - SC and (π,π) CDW transform like a three-component order parameter
 - Similar symmetries have been studied, e.g., negative-U Hubbard • model

Moreo & Scalapino, PRL (1991) Chakravarty, Laughlin, Morr & Nayak, PRB (2001)

•

- Bipartite lattice at half-filling: exact SU(2) symmetry
 - SC and (π,π) CDW transform like a three-component order parameter
 - Similar symmetries have been studied, e.g., negative-U Hubbard

model

•

Moreo & Scalapino, PRL (1991) Chakravarty, Laughlin, Morr & Nayak, PRB (2001)

• Can approximate hot spot SU(2) symmetry lead to significant CDW fluctuations?

Sachdev & La Placa, PRL (2013)

- Can approximate hot spot SU(2) symmetry lead to significant CDW fluctuations?
- Consider purely 1D dispersions; exemplify nesting at the antinode

Sachdev & La Placa, PRL (2013)

- Can approximate hot spot SU(2) symmetry lead to significant CDW fluctuations?
- Consider purely 1D dispersions; exemplify nesting at the antinode

Sachdev & La Placa, PRL (2013)

- Can approximate hot spot SU(2) symmetry lead to significant CDW fluctuations?
- Consider purely 1D dispersions; exemplify nesting at the antinode

Sachdev & La Placa, PRL (2013)

- No near-degeneracy observed
- Strong SC fluctuations suppress CDW

- Can approximate hot spot SU(2) symmetry lead to significant CDW fluctuations?
- Consider purely 1D dispersions; exemplify nesting at the antinode
- Axial versus diagonal CDW?

- Shift of CDW wave-vector across magnetic phase transition
 - Fermi surface reconstruction
 - Competition between SC and diagonal CDW

Some other discussions on axial CDW: Wang & Chubukov, PRB (2014) Chowdhury & Sachdev, arXiv:1501.00002

Summary

- Hot spots govern SC properties near AF QCP up to large interactions comparable with fermionic bandwidth
- T_c saturates to a few percent of the bandwidth at the crossover from hot-spot dominated to Fermi-surface dominated pairing
- CDW is delicate to the fine tuning of Fermi surface properties beyond hot spots
- The approximate symmetry from linearized hot spot approx. insufficient to lead to significant CDW correlations