Topological superconductivity in doped nodal-line semimetals

Yuxuan Wang
University of Illinois at Urbana-Champaign
08/I7/2017
Intertwined program, KITP

YW and Nandkishore, Phys. Rev. B 95, 060506(R)
Shapourian, YW and Ryu, to appear

Outline

- Nodal-line semimetals/metals
- SC orders in the bulk and on the surface
- Odd parity pairing and its topology

Nodal-line semimetals

- Low energy fermions in 3D band structures

Co-dimension $=1 \quad$ Co-dimension $=2 \quad$ Co-dimension $=3$

- Nodal lines, with FS co-dimension 2, proposed in $\mathrm{Ca}_{3} \mathrm{P}_{2}$, $\mathrm{CaAgP}, \mathrm{CaAgAs}$, and TITaSe2. Burkor, Hook, and Balents (2013) H.Weng, C. Fang, Z. Fang, B.A. Bernevig, and X. Dai (20|5), Cava group (20|5), Takenaka group (20|6),

TITaSe2 (Proposed)
G. Bian et al, PRB (2016)

Nodal-line semimetals

- A minimal model is a two-band model ('Weyl loop')

$$
\mathcal{H}=\sigma^{x}\left(k_{x}^{2}+k_{y}^{2}-k_{F}^{2}\right)+\sigma^{y} k_{z}
$$

- We can use a mirror symmetry along z direction protects the nodal line, which is given by $M_{z}=\sigma^{x}$
- On the surface, within the momentum range of the projection of the line node, there exist bounds states with $\sigma^{z}= \pm 1$

These so-called drumhead bands can lead to a topological polarization. Ramamurthy and Hughes 2015 Also its large density of states can lead to interesting correlation effects.

Nodal-line metals

- Today we focus on a Fermi surface obtained by 'doping a nodal line'.

$$
\mathcal{H}=\sigma^{x}\left(k_{x}^{2}+k_{y}^{2}-k_{F}^{2}\right)+\sigma^{y} k_{z}-\mu
$$

- The nontrivial properties of the nodal line now has been 'passed on' to the (pseudo)spin-textured Fermi surface.
- The torus-shaped FS naturally hosts superconducting instabilities.

Outline

- Nodal-line semimetals/metals
- SC orders in the bulk and on the surface
- Odd parity pairing and its topology

s-wave SC order

- The Fermi surface is spin-textured

- When projected to the Fermi surface, even s-wave order parameter can obtain nontrivial form factors (nodal lines).

Surface states of s-wave SC order

- The s-wave SC order also gets projected to the surface. However, the surface drumhead states are fully spin polarized, and hence is immune to s-wave pairing. SC bulk + Metallic surface!
- The 'new' nodal lines create their own surface states within the range of their surface projection. Due to a particle-hole symmetry they have strictly zero energy (Majorana flat band).

(a)

(b)

p-wave SC orders

- The torus-shaped FS with spin polarization is a natural host of a p-wave orders.

$$
\mathcal{H}_{p}=e^{i \theta} c_{\mathbf{k}}^{\dagger}(\mathbf{d} \cdot \vec{\sigma})\left(i \sigma^{y}\right) c_{-\mathbf{k}}^{\dagger}
$$

- Again, the bulk and the surface can behave differently.

$\mathbf{d}=\mathbf{d}_{x}$	metallic bulk	gapped surface
$\mathbf{d}=\mathbf{d}_{y}$	fully gapped bulk	fully gapped surface
$\mathbf{d}=\mathbf{d}_{\mathbf{z}}$	bulk line-nodal SC	metallic surface

Outline

- Nodal-line semimetals/metals
- SC orders in the bulk and on the surface
- Odd parity pairing and its topology

Topology of the fully-gapped SC state

- Fully gapped SC (both bulk and surface)with $\mathbf{d =} \mathbf{d}_{\mathbf{y}}$.

$$
\mathcal{H}_{p}=e^{i \theta} c_{\mathbf{k}}^{\dagger}(\mathbf{d} \cdot \vec{\sigma})\left(i \sigma^{y}\right) c_{-\mathbf{k}}^{\dagger}
$$

- Found to be leading instability with short-range repulsion. Sur and Nandkishore (2016)
- What about its topology?

Topology of the fully-gapped SC state

- Fully gapped SC (both bulk and surface)with $\mathbf{d =}=d_{y}$.

$$
\mathcal{H}_{p}=e^{i \theta} c_{\mathbf{k}}^{\dagger}(\mathbf{d} \cdot \vec{\sigma})\left(i \sigma^{y}\right) c_{-\mathbf{k}}^{\dagger}
$$

- Found to be leading instability with short-range repulsion. Sur and Nandkishore (2016)
- What about its topology?

Symmetry				Dimension							
AZ	T	C	S	1	2	3	4	5	6	7	8
A	0	0	0	0	2	0	Z	0	2	0	Z
AIII	0	0	1	Z	0	2	0	Z	0	Z	0
AI	1	0	0	0	0	0	Z	0	Z_{2}	Z_{2}	Z
BDI	1	1	1	Z	0	0	0	Z	0	Z_{2}	Z_{2}
D	0	1	0	Z_{2}	Z	0	0	0	Z	0	Z_{2}
DIII	-1	1	1	Z_{2}	Z_{2}	Z	0	0	0	Z	0
All	-1	0	0	0	Z_{2}	Z_{2}	Z	0	0	0	Z
CII	-1	-1	1	Z	0	Z_{2}	Z_{2}	Z	0	0	0
C	0	-1	0	0	Z	0	Z_{2}	Z_{2}	Z	0	0
Cl	1	-1	1	0	0	2	0	Z_{2}	Z_{2}	Z	0

Topology of the fully-gapped SC state

- Fully gapped SC (both bulk and surface)with $\mathbf{d =} \mathbf{d}_{\mathbf{y}}$.

$$
\mathcal{H}_{p}=e^{i \theta} c_{\mathbf{k}}^{\dagger}(\mathbf{d} \cdot \vec{\sigma})\left(i \sigma^{y}\right) c_{-\mathbf{k}}^{\dagger}
$$

- Found to be leading instability with short-range repulsion. Sur and Nandkishore (2016)
- What about its topology?

Topology of the fully-gapped SC state

- Fully gapped SC (both bulk and surface) with $\mathbf{d =} \mathbf{d}_{\mathbf{y}}$.

$$
\mathcal{H}_{p}=e^{i \theta} c_{\mathbf{k}}^{\dagger}(\mathbf{d} \cdot \vec{\sigma})\left(i \sigma^{y}\right) c_{-\mathbf{k}}^{\dagger}
$$

- Found to be leading instability with short-range repulsion. Sur and Nandkishore (2016)
- What about its topology?
- At a given k_{z}, the Fermi surface slice is composed of two circles. One is an electron-like FS, and the other is an hole-like FS. Both of them are subject to $p+i p$ pairing. The Chern numbers on the FS's are $\pm \mathrm{I}$, and cancel each other.

Topology of the fully-gapped SC state

- Mirror symmetry given by $M_{z}=\sigma^{1}$, which protects the nodal line in the normal state and is intact with SC.

$$
\begin{aligned}
h(\mathbf{k})= & \sigma_{1} \tau_{z}\left(6-t_{1}-2 \cos k_{x}-2 \cos k_{y}-2 \cos k_{z}\right) \\
& +2 t_{2} \sigma_{2} \tau_{z} \sin k_{z}-\mu \sigma_{0} \tau_{z}+\Delta \sigma_{0}\left(\tau_{x} \sin k_{x}+\tau_{y} \sin k_{y}\right),
\end{aligned}
$$

- It turns out that our system is a topological crystalline superconductor in Class 'D+Reflection', characterized by a mirror Chern number $C_{M}=I$.
*Needs $M_{z}{ }^{2}=1$

AZ Class	T	C	S	R operator	MSC	$d=1$	$d=2$	$d=3$	$d=4$	$d=5$	$d=6$	$d=7$	$d=8$
AIII	0	0	1	R_{+}	AIII^{2}	0	$M \mathbb{Z}$						
				R_{-}	A	\mathbb{Z}^{1}	0	\mathbb{Z}^{1}	0	\mathbb{Z}^{1}	0	\mathbb{Z}^{1}	0
A	0	0	0	R	A^{2}	$M \mathbb{Z}$	0						
AI	+	0	0	$R_{+}{ }^{\text {c }}$	AI^{2}	$M \mathbb{Z}$	0	0	0	$2 M \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
				R_{-}	A	0	0	$2 M \mathbb{Z}$	0	0	\mathbb{Z}_{2}	$M \mathbb{Z}$	0
BDI		+	1	$R_{++}{ }^{\text {c }}$	BDI^{2}	\mathbb{Z}_{2}	$M \mathbb{Z}$	0	0	0	$2 M \mathbb{Z}$	0	\mathbb{Z}_{2}
				$R_{\text {-- }}$	AIII	0	0	0	$2 M \mathbb{Z}$	0	0	\mathbb{Z}_{2}	$M \mathbb{Z}$
				R_{+-}	AI	$2 \mathbb{Z}^{1}$	0	0	0	\mathbb{Z}^{1}	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
				R_{-+}	D	$2 \mathbb{Z}$	0	$2 M \mathbb{Z}$	0	$2 \mathbb{Z}$	0	$2 M \mathbb{Z}$	0
D	0	$+$	0	$R_{+}{ }^{\text {c }}$	D^{2}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	$M \mathbb{Z}$	0	0	0	$2 M \mathbb{Z}$	0
				$R_{-}{ }^{\text {d }}$	A	$M \mathbb{Z}$	0	0	0	$2 M \mathbb{Z}$	0	0	\mathbb{Z}_{2}

Chiu-Yao-Ryu 2013

- The mirror Chern number protects the gapless yz and xz surfaces. What about xy surface that breaks mirror?

Topology of the surface states

- What about the xy surface states in a slab geometry?
- First, suppose we allow a dispersion to the surface bands; they can have a 'surface Fermi surface'.
- The surface drumhead bands are subject to a $p+i p$ pairing, and thus mimics a two-dimensional topological superconductor.
- Guess:Vortex lines in z-direction may trap Majorana modes

Topology of the surface states

- But what about the following cases?

- These states don't have a ‘surface Fermi surface'. (Let's call these 'strong' phases, for the lack of a better name)
- For the 2D $p+i p$ state, there are two phases, a trivial phase and a topological phase. Moore-Read 1991

'weak' pairing phase, topological

'strong' pairing phase, trivial

Gap closing argument

- For a 2D $p+i p$ state, going from weak to strong pairing phase, the bulk gap has to close, signifying a change in topology.

(a)

Gap closing argument

- For a 2D p+ip state, going from weak to strong pairing phase, the bulk gap has to close, signifying a change in topology.

$$
\begin{gathered}
\text { pairing gap vanishes } \\
\text { here by odd parity }
\end{gathered}
$$

(a)

- For the drumhead bands, going from 'weak' to 'strong' case doesn't require such a gap closing! (Both are topo.?)

Layer-resolved Chern number

- The two surfaces are not stand-alone 2D systems, and one cannot use a homotopy to define a quantized Chern number.
- One can nevertheless define a layer-resolved Chern number Essin-Moore-Vanderbilt 2009

$$
\begin{aligned}
C & =\frac{2 \pi}{i L^{2}} \sum_{\mathbf{k}} \operatorname{Tr}\left[\mathcal{P}_{\mathbf{k}} \epsilon_{i j}\left(\partial_{i} \mathcal{P}_{\mathbf{k}}\right)\left(\partial_{j} \mathcal{P}_{\mathbf{k}}\right)\right] \\
C_{z} & =\frac{2 \pi}{i L^{2}} \sum_{\mathbf{k}} \operatorname{Tr}\left[\mathcal{P}_{\mathbf{k}} \epsilon_{i j}\left(\partial_{i} \mathcal{P}_{\mathbf{k}}\right)|z\rangle\langle z|\left(\partial_{j} \mathcal{P}_{\mathbf{k}}\right)\right]
\end{aligned}
$$

- It turns out layers from each surface contributes to a layer Chern number I/2, which comes from drumhead bands subject to p+ip pairing, for both "strong" and "weak" cases
- Total Chern number =I, meaning one Majorana mode for a vortex line. Different from a Fu-Kane SC where there are two.

Wave function of Majorana zero modes

- Numerically, the wave function profile for strong and weak cases are different, but in both cases there is only one Majorana zero mode.
(a) $\mu=-0.2$

(b) $\mu=0.1$

- For weak case, despite the resemblance with two p+ip SC's, the wave function of the Majorana mode cannot be split into two.

Wave function of Majorana zero modes

- Numerically, the wave function profile for strong and weak cases are different, but in both cases there is only one Majorana zero mode.
(a) $\mu=-0.2$

(b) $\mu=0.1$

- For weak case, despite the resemblance with two p+ip SC's, the wave function of the Majorana mode cannot be split into two.
- The MZM is localized on surface if mirror is broken.

Wave function of Majorana zero modes

- Numerically, the wave function profile for strong and weak cases are different, but in both cases there is only one Majorana zero mode.
(a) $\mu=-0.2$

(b) $\mu=0.1$

With E field

- For weak case, despite the resemblance with two p+ip SC's, the wave function of the Majorana mode cannot be split into two.
- The MZM is localized on surface if mirror is broken.

Where does the Chern number come from

- The lattice BdG Hamiltonian:

$$
\begin{aligned}
h(\mathbf{k})= & \sigma_{1} \tau_{z}\left(6-t_{1}-2 \cos k_{x}-2 \cos k_{y}-2 \cos k_{z}\right) \\
& +2 t_{2} \sigma_{2} \tau_{z} \sin k_{z}-\mu \sigma_{0} \tau_{z}+\Delta \sigma_{0}\left(\tau_{x} \sin k_{x}+\tau_{y} \sin k_{y}\right)
\end{aligned}
$$

- Viewed as an insulator, the EM response is given by:

$$
\mathcal{S}=\frac{\theta}{8 \pi^{2}} \int d^{3} x d t \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}
$$

where $\theta=\pi$. At the surface this action gives rise to the half (layer-resolved) Chern number.

- Here the quantization $\theta=\pi$ is protected by mirror symmetry. $\theta=\pi$ can even survive a small mirror breaking field, as long as the torus FS is intact.

Extension to Dirac loop case

- In real materials the nodal loop is four-fold degenerate, which, without spin-orbit coupling, can be viewed as the spin double of a Weyl loop. (Weyl loop is still desirable!)
- The same p-wave order can still be the leading instability for a repulsive interaction.
- It is a topological crystalline superconductor in the same class with $C_{M}=2$.
- Top and bottom surfaces combine to Chern number $C=2$. This typically does not lead to two vortex core Majorana modes, as they can gap out each other.

Extension to Dirac loop case

- However, consider a spin-orbit coupling term which couples like a $+E$ field for spin up, and a $-E$ field for spin down.
- With such a spin-orbit coupling the two Majorana modes can be spatially separated onto top and bottom surfaces and thus remain at zero energy.

- Spin-orbit coupling does exist in candidate materials such as CaAgAs .

Summary

- The torus-shaped FS is a natural host of many unconventional SC.
- The s-wave state features metallic surface bands, Majorana flat bands, and bulk nodal-line superconductivity.
- The p-wave state is a topological crystalline superconductor hosting MZM's. This result can be extended to four-band Dirac loop case.

Thank You!

