Metallic quantum criticality

2 theory talks: Sung-Sik Lee and Yoni Schattner

1 experimental talk: Ian Hayes (Ba-122)

Two theory talks address a very specific problem: what happens in a 2D metal near a (π,π) SDW instability.

Fermions interact by exchanging quanta of collective excitations in a spin channel (spin fluctuations)

Spin-fermion model

"Canonical" description: Eliashberg-type theory of spin-fermion model in 2D at the onset of magnetic order

1. Critical bosons have dynamical exponent $Z_B=2$

$$\chi(\mathbf{q}, \Omega_m) = \frac{\chi_0}{(\mathbf{q} - \pi)^2 + \gamma |\Omega_m|}$$

2. Fermions show a non-FL behavior at hot spots

$$\Sigma(k,\omega_m) \approx \Sigma(\omega_m) \propto \omega_{\rm m}^{1/2}$$

Millis, 1993

Fermi liquid with position-dep. Z-factor

$$\Sigma(k,\omega_m) \approx \Sigma(k_{\parallel},\omega_m) \propto \omega_m / |k_{\parallel}|$$

Abanov, A.C. Schmalian

At one loop order: Anomalous dimensions

Corrections to Eliashberg theory are logarithmically singular

$$A m_{ajor} repair of the octions contain Log \omega$$
• Corrections to velocity contains Log ω
• Corrections to velocity contains Log ω
• Corrections to $n_{ajo} repair of the original properties of t$

At two loop order: bosonic dynamical exponent Zb begins flowing

$$\chi(\mathbf{q}, \Omega_m) = \frac{\chi_0}{((\mathbf{q} - \pi)^{2-\delta} + \gamma |\Omega_m|)^{1-\eta}}$$

Metlitski & Sachdev

Senthil et al S-S Lee et al

Various attempts to control the theory: large N expansion, expansion near D=3, etc...

Yoni Schattner: QMC

What about larger energies: does Eliashberg theory work? (even non-logarithmical corrections are not parametrically small)

Non FL physics is one aspect of the story Superconductivity is the other

 (π,π) spin fluctuations give rise to an attraction in d-wave channel Scalapino, Varma, Pines.

What is the interplay between non-FL behavior and superconductivity

Thermodynamics

Fermi liquid with position-dep. Z-factor

$$\Sigma(k, \omega_m) \approx \Sigma(k_{\parallel}, \omega_m) \propto \omega_m / |k_{\parallel}|$$

$$C(T) \propto T \text{ Log } T$$

Transport properties

Optical conductivity is singular at a QCP due to composite scattering:

Hartnoll, Hofman, Metlitsli, Patel, Sachdev, Maslov, Yudson, A.C.

Resistivity:

In a dirty system

$$\rho(T) = \rho_{imp} + AT$$

A. Rosch

$$\rho_{\rm imp} > AT$$

In a clean system

$$\rho(T) \propto T^2$$

at the lowest T

Resistivity at the lowest T is determined predominantly by cold fermions with FL spectral properties

At in Id ω Im $\Sigma(\omega)$ (arb. units) "hot" SCARTOONSTOCK ACOM each D: shm783 ω/ω_{sf} 10

At arbitrary point along the FS

Ian Hayes

Non-FL phenomenology in Ba122

Fe-based superconductor

Hashimoto et al

Mazin & Schmalian

$$\rho(T, H) \propto \sqrt{T^2 + (\mu_B H)^2}$$

Enjoy the talks