An Upper Bound on Transport

Sean Hartnoll (Stanford)

Order, fluctuations and strong correlations @ KITP July — 2017

Unconventional transport

- Unconventional transport regimes are ubiquitous and represent a long-standing challenge to theory.
- Some of these systems may be beyond well-established methods (Boltzmann equations, large N, etc.) which are typically framed around a quasiparticle lifetime, so that:

$$\rho = \frac{m}{ne^2} \frac{1}{\tau} \tag{*}$$

- (Although $\tau \to \tau_{\rm tr}$ in general).
- Objective: find results on transport that hold with or without quasiparticles, where (*) cannot be assumed.

Diffusion bound — '15 version

- One confusing aspect of T-linear resistivity in cuprates is that it seems oblivious to the change in scattering mechanisms from low to high temperatures.
- Also potentially surprising similarities between T-linear resistivity in different materials.
- A logical perspective from which these facts make sense is that these materials are saturating a fundamental bound on transport. How to formulate this bound?

Diffusion bound — '15 version

- Some history to the idea that the timescale $au \sim \frac{h}{(k_BT)}$ is the "fastest possible". [Sachdev '99, Zaanen '04, Bruin et al. '13]
- Was not clear (to me) exactly how this timescale would feed into transport in the absence of Drude-like formulae.
- In [Nat. Phys. '15] I proposed that it would instead be a transport observable that is directly subject to a fundamental bound.

diffusivity
$$D \gtrsim v_F^2 \frac{\hbar}{k_B T}$$

• This bound was inspired by the [Kovtun-Son-Starinets '05] bound on η/s , which also determines a diffusivity.

Diffusion bound — '15 version

- The bound has some problems.
 - (i) It is incompatible with residual resistivities.
 - (ii) Not clear what v_F is.
- We will return to these points.
- Nonetheless, this bound has motivated new, different types of measurements on unconventional materials, and seems to be a useful way to think about the results of these measurements

Thermal diffusivity in YBCO

[J.-C. Zhang, E.M. Levenson-Falk, B.J. Ramshaw, D.A. Bonn, R. Liang, W.N. Hardy, S.A. Hartnoll, A. Kapitulnik. PNAS '17]

Thermal diffusivity in YBCO

- There are many more phonons than electrons: $c_{ph} >> c_{el}$.
- But the electrons are much faster: V_F >> V_S.
- The crossover between these two effects occurs on the temperature scales of the experiment.
- Excellent fit of diffusivity to $D_{\rm heat} \sim v_B^2 \frac{\hbar}{k_B T} \,,$
- Where V_S < V_B < V_F:

$$v_B^2 = \alpha \, \frac{c_{\rm el}}{c} v_F^2 + \beta \, \frac{c_{\rm ph}}{c} v_s^2$$

Thermal diffusivity in SmCeCuO

$$D^{-1} = \left(\frac{v_F^2}{3} \frac{\hbar}{k_B T}\right)^{-1} + \left(\frac{\hbar}{3m^*}\right)^{-1}$$

[J.-C. Zhang, A. Kapitulnik. unpublished]

Diffusion bound — '17 version

- I have spent some time trying to prove a diffusion bound.
- These efforts recently landed on a result that has a different character to the bound discussed so far, but addresses some of the same puzzles.
- The new bound will go the other direction to previously conjectured diffusivity bounds.

An Upper Bound on Transport

- Based on 1706.00019 [hep-th]
- With Raghu Mahajan and Thomas Hartman

Implications of locality I

• Even non-relativistic systems have a 'lightcone': bounded propagation of signals from locality.

[Lieb-Robinson '72]

$$||[A(t,x),B(0,0)]|| \lesssim ||A||||B||e^{-\mu(|x|-vt)}$$

- The "Lieb-Robinson" velocity: $v \sim \frac{J a}{\hbar}$
- In some systems a less microscopic "butterfly velocity" defined by

$$\langle [A(t,x), B(0,0)]^2 \rangle \sim e^{\lambda_L(t-|x|/v_B)}$$

also bounds signals.

[Roberts et al '14]

[Bohrdt et al '17 (Bose-Hubbard)]

Implications of locality II

Conserved densities diffuse (assume no sound modes):

$$\langle [n(t,x), n(0,0)] \rangle \propto \nabla^2 \frac{e^{-x^2/(4Dt)}}{t^{d/2}}$$
 $(t \gtrsim \tau_{\rm eq}, |x| \gtrsim \ell_{\rm eq}).$

The diffusivity controls transport, e.g.:

$$\sigma = \chi D_{\text{charge}}, \qquad \kappa = c D_{\text{heat}}, \qquad \eta = \chi_{\pi\pi} D_{\text{momentum}}.$$

 At short times, diffusion is too fast!

Transport bound

 To avoid contradiction with the lightcone, disallowed region must not be diffusive — i.e. must occur before the local equilibration time, so that:

$$D \lesssim v^2 \tau_{\rm eq}$$

- In a quasiparticle system, $au_{\rm eq} \sim au$ or $au_{\rm tr}$. The inequality is saturated in quasiparticle regimes, where $D \sim v_{\rm qp}^2 au$.
- More generally, the inequality relates transport to a relaxation timescale, without assuming the existence of quasiparticles. D, v, τ_{eq} independently defined with no reference to quasiparticles.

Diffusion in ultracold atomic (non)-Fermi liquids

Unitary cold Fermions: spin and momentum diffusion

 $mD \lesssim E_F \tau_{\rm eq}$

Diffusivities and relaxation rates

Relaxation rates (?) 0.12 0.10 0.06 Sommer et al. '11 0.4 Damping rate $\Gamma_{ extsf{Q}}/\omega_{\scriptscriptstyle \perp}$ 0.2 0.0 10 250 500 $ln(k_F a_{2D})$

Vogt et al. '12

Transport in metals

- In a metal τ_{eq} can be measured from both transport and single-particle probes, e.g. $\sigma(\omega)$ or $\Sigma(\omega)$.
- Expect v ~ v_F, in which case the bound implies:

$$\rho \gtrsim \frac{m}{e^2 n} \frac{1}{\tau_{\rm eq}}$$

- Consistent with transport data in unconventional metals.
- The existence of the $\tau \sim \hbar/(k_BT)$ timescale may not be the most mysterious aspect of these materials. What is lacking is a non-quasiparticle way to translate this timescale into a resistivity. Drude formula not allowed!

Relaxation rates in T-linear metals

The T-linear resistivity is indeed due to $au \sim \hbar/(k_B T)$

 $\hbar\omega/k_{\rm B}T$

Looking forward

- Lieb-Robinson velocity best understood in spin systems.
 Experiments and numerics in e.g. 1d Bose-Hubbard.
- Theoretical and experimental opportunity to understand the role of a non-quasiparticle velocity in metals.
- Some interesting structure in measured velocities. E.g.

[Lanzara et al. 01]

Summary

- Bounds may help to organize our thinking about nonquasiparticle transport.
- A conjectured (and currently imperfect) lower bound on diffusion has motivated, and is consistent with the results of, new experiments in cuprates.
- We obtained an upper bound on diffusion in terms of the lightcone velocity and local equilibration time.
- A better understanding of characteristic velocities in nonquasiparticle metals may lead to further insights.