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Unconventional transport

- Unconventional transport regimes are ubiquitous and
represent a long-standing challenge to theory.

- Some of these systems may be beyond well-established
methods (Boltzmann equations, large N, etc.) which are
typically framed around a quasiparticle lifetime, so that:
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- (Although 7 — 7% In general).

- Objective: find results on transport that hold with or
without quasiparticles, where (*) cannot be assumed.
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+ One confusing aspect of T-linear resistivity in cuprates is
that it seems oblivious to the change in scattering
mechanisms from low to high temperatures.

- Also potentially surprising similarities between T-linear
resistivity in different materials.

- Alogical perspective from which these facts make sense
IS that these materials are saturating a fundamental
bound on transport. How to formulate this bound?




Diffusion bound — 15 version

- Some history to the idea that the timescale 7 ~ (ipT)

IS the “fastest possible”. [sachdev '99, Zaanen '04, Bruin et al. *13]

- Was not clear (to me) exactly how this timescale would feed
iNnto transport in the absence of Drude-like formulae.

IN [Nat. Phys. *15] | proposed that it would instead be a transport
observable that is directly subject to a fundamental bound.
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* This bound was inspired by the [Kovtun-Son-Starinets '05]
bound on n/s, which also determines a diffusivity.

diffusivity — D > vZ




Diffusion bound — 15 version

'he bound has some problems.
(1) It Is Incompatible with residual resistivities.
(i) Not clear what v is.

- We will return to these points.

Nonetheless, this bound has motivated new, different
types of measurements on unconventional materials, and
seems to be a useful way to think about the results of
these measurements ....



Thermal diffusivity in YBCO
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[J.-C. Zhang, E.M. Levenson-Falk, B.J. Ramshaw, D.A. Bonn,
R. Liang, W.N. Hardy, S.A. Hartnoll, A. Kapitulnik. PNAS ’'17]



Thermal diffusivity in YBCO

+ There are many more phonons than electrons: Con >> Cal.
But the electrons are much faster: v >> vs.

- The crossover between these two effects occurs on the
temperature scales of the experiment.

Excellent fit of diffusivity to
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- Where vs < VB < VE:
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Thermal diffusivity in SmCeCuO
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Diffusion bound — 17 version

| have spent some time trying to prove a diffusion bound.

- These efforts recently landed on a result that has a
different character to the bound discussed so far, but
addresses some of the same puzzles.

-+ The new bound will go the other direction to previously
conjectured diffusivity bounds.
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Based on 1706.00019 [hep-th]

With Raghu Mahajan and Thomas Hartman




Implications of locality |

Even non-relativistic systems have a ‘lightcone’: [Lieb-
bounded propagation of signals from locality, ~ 1oPnson 72l

[[A(t, ), B(0,0)][| < ||A|[|B]|le~#=I=0

J
The “Lieb-Robinson” velocity: v ~ 7&

(a) 15 (1)) = [{ch(t)cle;(B)es)]
10

In some systems a less
microscopic “butterfly
velocity” defined by

[Bohrdt et al '17
(Bose-Hubbard)]

([A(t,z), B(0,0)]%) ~ eret=lel/ve)

also bounds signals.
|[Roberts et al "14]



Implications of locality I

Conserved densities diffuse (assume no sound Modes):

o~z /(4Dt)
([n(t, x),n(0,0)]) oc V?

+d /2 (t Z Teqs ‘ZB‘ Z éeq) -

- The diffusivity controls transport, e.g.:

0O =X Dcharge 9 R = CDheat 9 1 = waDmomentum :

» At short times, diffusion _ 2= VDi

IS too fast!
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- To avoid contradiction with the lightcone, disallowed
region must not be diffusive — I.e. must occur before the
local equilibration time, so that:

2
D < v77¢q

In a quasiparticle system, 7eq ~ 7 or 1, . The inequality is

2

saturated in quasiparticle regimes, where D ~ v3 1 .

More gene

mescale, withou

guasipartic

qp

rally, the inequality relates transport to a
relaxation ti

- assuming the existence of

es. D, v, Teq INde

reference to quasiparticles.

oendently defined with no



Diffusion In ultracold atomic (non)-Fermi liquids

Unitary cold Fermions: spin and momentum diffusion

[Sommer

etal. ’11] £ [Cao et al. "11]




Diffusivities and relaxation rates

Diffusivities
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Transport in metals

In @ metal Teg can be measured from both transport and
single-particle probes, e.g. o(w) or 2(w).

Expect v ~ vk, In which case the bound implies:
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e%N Toq
+ Consistent with transport data in unconventional metals.

- The existence of the T~ h/(kgT) timescale may not
be the most mysterious aspect of these materials. \What
IS lacking Is a non-quasiparticle way to translate this
timescale into a resistivity. Drude formula not allowed!
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Relaxation rates in T-linear metals
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The T-linear resistivity is indeed due to 7 ~ h/(kgT)
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Looking forward

Lielb-Robinson velocity best understood in spin systems.
Experiments and numerics in e.g. 1d Bose-Hubbard.

Theoretical and experimental opportunity to understand
the role of a non-quasiparticle velocity in metals.

Some interesting structure in measured velocities. E.Q.
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Summary

Bounds may help to organize our thinking albout non-
guasiparticle transport.

- A conjectured (and currently imperfect) lower bound on
diffusion has motivated, and is consistent with the results
of, new experiments in cuprates.

- We obtained an upper bound on diffusion in terms of the
ightcone velocity and local equilibration time.

- A better understanding of characteristic velocities in non-
quasiparticle metals may lead to further insights.



