Exact critical exponents for the
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Breakdown of Fermi liquid near Quantum Critical Point
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* Specific heat: C~ T log(1/T),
* Resistivity:p~T",n< 2

Goal : capture universal low-energy physics of metals
without well-defined quasiparticle



Antiferromagnetic phase transition in
metal
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Minimal Theory




Parameters of the theory

* v: Fermivelocity perpendicularto Q,
e c:boson velocity
e g:coupling bet’'n fermion and boson

* If v=0, hot spots connected by Q,; are nested



Scale invariance

* At QCP, the correlation length is infinite.

 The scale invariance is characterized by a set of
critical exponents

* The critical exponents determine the scaling
forms of the physical observables at low
energies, e.g.
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Scaling analysis (non-interacting)
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Strong quantum fluctuations in 2+1D
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Interactions are relevant at the Gaussian fixed point



Ea rller WOrkS (incomplete list)

Fermi surfaces get nested and quasiparticle is
destroyed near the hot spots [abanov, chubukov,Schmalian]

The theory flows to strong coupling regime even
in the large N limit [Metlitski, sachdev]

The field theory can be regularized by a sign-
problem-free lattice model : QMC shows

enhancement of d-wave SC at QCP [gerg,Metlitski,
Sachdev; ... ]

The precise nature of the NFL state has not been
understood due to a lack of control over the
theory



Strategy

 Deform the strongly coupled theory to a limit
in which quantum fluctuations can be
included in a controlled way

e Use the intuition from the perturbative
answer to construct a non-perturbative
Ansatz for the original theory

* Check the consistency of the Ansatz



Strategies for taming quantum fluctuations
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A continuous interpolation between 2d
Fermi surface and 3d metal with line nodes

Marginal NFL
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Lesson from the e-expansion

[Sur, Lee (14); Lunts, Andres, Lee(17)]

g-expansion # loop expansion

Emergent quasi-locality with a hierarchy in velocities
2
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Collective mode is strongly damped by particle-hole excitation
and acquire an O(g) anomalous dimension
Fermions remain largely coherent



Ansatz in 2+1D:
Interaction driven scaling

Scaling which leaves the interaction marginal at
the expense of dropping kinetic energy as
irrelevant term
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Ansatz in 2+1D:
Interaction driven scaling

Drop the boson kinetic term because collective
mode is damped by the particle-hole excitations
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Ansatz in 2+1D:
Interaction driven scaling

[kO] — [kx] — [ky] = 1,

* Electron keeps the classical scaling dimension

* Collective mode has a large anomalous
dimension

e |t turns out that these are exact

[Andres, Lunts, Lee (17)]



Self-consistent boson propagator

D(q)™' = mer — WUZ/dk Tr [ Gr(k + ¢)T'(k, ¢)Gr(k)]

* |In general, it is hard to solve the self-consistent
equation because G(k), I'(k,q) depend on D(q)

e However, in the small v limit, this can be solved
* Furthermore, v dynamically flows to zero in the IR



Dynamical Susceptibility " (w, Qir + )

W

* Incoherent peak centered at Q,¢ at all w
* The width in momentum space scales linearly in energy



Spectral function at the hot spots

 Weak deviation from Fermi liquid



Divergent correlation length
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Superconductivity

* |[n the low T limit, d-wave superconductivity is
enhanced

* Hierarchy in energy scales

z=2 scaling
sc z=1 scaling (one-loop) Gaussian
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The crossover energy scales are sensitive to the bare value of v,
which can be experimentally tested

In the small v limit, there is a large window for the z=1 critical
scaling



Summary

* Low Antiferromagnetic critical metal in 2+1D

— Exact critical exponents are predicted based on a
non-perturbative solution

— Precise measurements are needed to test the
predictions

* Open problems
— How general is the interaction-driven scaling ?

— AF critical metal with different symmetries [e.g.
U(l) symmetric theory] [Gerlach, Schattner, Berg, Trebst]



