Electronic Correlations and Multiorbital Effects in Iron Pnictides and Chalcogenides

Rong Yu

Renmin University of China

Sep. 24, 2014

A BY A R. K.

KITP Conference on Strong Correlations and Unconventional Superconductivity

Collaborators

<u>Theory</u>

Emilian Nica (Rice)

Wenxin Ding (Rice)

Qimiao Si (Rice)

Jian-Xin Zhu (LANL)

<u>ARPES</u>

Ming Yi (Berkeley) Donghui Lu (SLAC) Zhi-Xun Shen (Stanford)

<u>Neutron Scattering</u> Chenglin Zhang (Rice) Pengcheng Dai (Rice)

Outline

- Introduction--electron correlations in ironbased superconductors
- Metal-insulator transition in multiorbital models for iron-based superconductors
 - Slave-spin formulation for multi-orbital models
 - Mott transitions in iron pnictides: phase diagram
 - Alkaline iron selenides: Mott localization and orbitalselective Mott phase
- Pairing amplitudes: orbital selective pairing
- Summary

Family of Iron Based Superconductors

pnictides:

1111: LaOFeAs

111: LiFeAs

Fe Se 0

Ti

Sr

122: BaFe2As2

chalcogenides:

Parent Pnictides: Electronic Properties

Singh & Du, PRL 100, 237003 (2008)

de la Cruz et al., Nature 453, 899 (2008)

columinar (π ,0) antiferromagnetic metal with small electron & hole pockets

Understanding the Magnetic Order in Iron Pnictides

weak coupling: Fermi surface nesting

π ~**Q**_{AFM}=(π,0) ky∕a 0 β_1 α_2 0 π k_x/a

strong coupling: Interacting local moments

 $J_2 > J_1/2$

Evidence for Electron Correlations

Bad metal behavior of the parent compound

✓ Transport: large room-T resistivity, reaches the loffe-Regel limit
✓ Spectroscopy:

large overall spin spectral weight

Qazilbash et al, Nat. Phys. 5, 647 (2009)

Liu et al, Nat. Phys. 8, 376 (2012)

Properties of Alkaline Iron Selenides

Bao et al., CPL 28, 086104 (2011)

- Metallic/Insulating, depending on Fe content
- Fermi surface: electron pockets only
- Magnetic order influenced by ordered Fe

vacancies

Properties of Single-Layer FeSe/SrTiO₃

Liu et al., Nat. Comm. 3, 931 (2012).

✓ Electron pockets only ✓ T_c >=60 K from ARPES, STM and transport measurements

Electron Correlations and Mott Localization

How will the Mott transition take place in the multi-orbital iron-based systems with even number of electrons per unit cell?

Multi-Orbital Hubbard Model

Systems filled with even electrons

Mott Transition

Requiring theoretical tool that is able to access the phases on both sides of the transition

U(1) Slave-Spin Theory

$$d_{i\alpha\sigma}^{\dagger} = S_{i\alpha\sigma}^{+} f_{i\alpha\sigma}^{\dagger} \qquad S_{i\alpha\sigma}^{z} = f_{i\alpha\sigma}^{\dagger} f_{i\alpha\sigma} - \frac{1}{2}$$
Schwinger boson representation:
$$S_{i\alpha\sigma}^{+} = a_{i\alpha\sigma}^{\dagger} b_{i\alpha\sigma}$$

$$d_{i\alpha\sigma}^{\dagger} = z_{i\alpha\sigma}^{\dagger} f_{i\alpha\sigma}^{\dagger} \qquad z_{i\alpha\sigma}^{\dagger} = P_{i\alpha\sigma}^{-} a_{i\alpha\sigma}^{\dagger} b_{i\alpha\sigma} P_{i\alpha\sigma}^{+}$$

$$Z_{i\alpha\sigma}^{\dagger} = |\langle z_{i\alpha\sigma}^{-} \rangle|^{2} \qquad P_{i\alpha\sigma}^{\pm} = 1/\sqrt{1/2 + \delta \pm (a_{i\alpha\sigma}^{\dagger} a_{i\alpha\sigma} - b_{i\alpha\sigma}^{\dagger} b_{i\alpha\sigma})/2}$$

Determining renormalization amplitudes:

$$\begin{split} H_{f}^{\mathrm{mf}} &= \frac{1}{2} \sum_{ij\alpha\beta\sigma} t_{ij}^{\alpha\beta} \langle z_{i\alpha\sigma}^{\dagger} z_{j\beta\sigma} \rangle f_{i\alpha\sigma}^{\dagger} f_{j\beta\sigma} + \sum_{i\alpha\sigma} (\Delta_{\alpha} - \lambda_{i\alpha\sigma} - \mu) f_{i\alpha\sigma}^{\dagger} f_{i\alpha\sigma}, \\ H_{S}^{\mathrm{mf}} &= \frac{1}{2} \sum_{ij\alpha\beta\sigma} t_{ij}^{\alpha\beta} \langle f_{i\alpha\sigma}^{\dagger} f_{j\beta\sigma} \rangle z_{i\alpha\sigma}^{\dagger} z_{j\beta\sigma} + \sum_{i\alpha\sigma} \frac{\lambda_{i\alpha\sigma}}{2} (\hat{n}_{i\alpha\sigma}^{a} - \hat{n}_{i\alpha\sigma}^{b}) + H_{\mathrm{int}} \end{split}$$

RY and Q. Si, PRB 86, 085104 (2012),

Cf. (Z₂ slave-spin theory): L. de'Medici et al., PRB **72**, 205124 (2005).

Possible Ground States

• Metal:

ordered slave spins (Z>0); gapless electrons (finite electron Fermi surface)

Mott Insulator

disordered slave spins (Z=0); gapless spinons (finite spinion Fermi surface)

• Band Insulator

ordered slave spins (Z>0); gapped spinons gapped electrons

Kinetic Part of the Multiorbital Model for Iron Pnictides

S. Graser et al., New J. Phys. 11, 025016 (2009).

- ✓ tight-binding model involving five Fe 3d orbitals✓ nonzero crystal field splitting
- ✓ double degenerate xz and yz orbitals

Mott Transition in the Five-Orbital Model

RY and Q. Si, PRB 86, 085104 (2012)

Correlation Effects in Metallic State

RY and Q. Si, PRB 86, 085104 (2012)

Mott Localization in Alkaline Iron Selenides

Metal-to-Insulator Transition in Parent K_xFe_{2-v}Se₂

kinetic energy reduction by ordered vacancies filling n=6 No Vacancy √5×√5 Vacancy Ordered (c) (a) 0.30.3(b) (đ) OSMP OSMP 0.20.2Я ΜI МІ 0.10.1 Metal Metal 0.0 └─ 2 0.0⁴U (eV) 8 8 2 U (eV)

RY and Q. Si, PRL 110, 146402 (2013)

Evolution of QP Weight Z with U

n=6, J/U=0.2

OSMP: xy orbital localized; others itinerant.

RY and Q. Si, PRL 110, 146402 (2013)

Nature of the Orbital-Selective Mott Phase

✓ crystal level splitting: lowest filling in dxy

 \checkmark dxy bands is narrower than dxz/yz bands

✓ Hund's coupling reduces orbital fluctuations

Cf. (other contexts/regimes): Anisimov et al, Eur. Phys. J. B **25**, 191 (2002); de' Medici et al, PRL **102**, 126401 (2009).

Temperature Induced Mott Localization

M. Yi, RY, et al., PRL 110, 067003 (2013)

Temperature Induced OSMT in K_xFe_{2-v}Se₂

Similar strong orbital selective behavior also observed in sinlge-layer FeSe/STO (M. Yi's talk on Monday)

A Unified Phase Diagram

comparable Tc for iron pnictides & alkaline iron selenides

Effective Exchange Interactions near a Mott Transition

One band Hubbard model

$$H = \sum_{(ij),\sigma} t_{ij} d_{i\sigma}^{\dagger} d_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

• Slave rotor representation

$$d_{i\sigma} = e^{-i\theta_i} f_{i\sigma}$$

S. Florence and A. Georges, Phys. Rev. B **70**, 035114 (2004).

 Effective exchange couplings among spinons

$$H_{\rm ex} = J_{\rm eff} f_{i\sigma}^{+} f_{i\sigma'} f_{j\sigma'}^{+} f_{j\sigma}$$

W. Ding et al., unpublished.

Superconducting pairing in multiorbital t-J₁-J₂ model

$$H = -\sum_{i < j,\alpha,\beta,s} t_{ij}^{\alpha\beta} c_{i\alpha s}^{\dagger} c_{j\beta s} + h.c. - \mu \sum_{i,\alpha} n_{i\alpha}$$
$$+ \sum_{\langle ij \rangle,\alpha,\beta} J_1^{\alpha\beta} \left(\vec{S}_{i\alpha} \cdot \vec{S}_{j\beta} - \frac{1}{4} n_{i\alpha} n_{j\beta} \right) + \sum_{\langle \langle ij \rangle \rangle,\alpha,\beta} J_2^{\alpha\beta} \left(\vec{S}_{i\alpha} \cdot \vec{S}_{j\beta} - \frac{1}{4} n_{i\alpha} n_{j\beta} \right)$$

- \checkmark decomposing the J₁, J₂ interactions in pairing channels
- ✓ intra-orbital singlet pairings
- ✓ do not address coexistence of SC and AFM

P Goswami et al., EPL 91, 37006 (2010)

RY et al., Nat Commun 4, 2783 (2013)

Comparable Pairing Amplitudes

Similar results also for 1-layer FeSe/STO

<u>RY</u> et al., *Nat Commun* **4**, 2783 (2013)

Orbital-Selective Pairing in Multiorbital $t-J_1-J_2$ model d_{xy} B_{1q} 1.2 Pairing dominant 1.0 $_{1} = J_{2}$ J×y_{1,2}/J ×z,yz 1,2 d_{xz}/d_{vz} Pairing dominant $s_{x^2y^2}\sigma_3$ in xz/yz 0.2 subspace 0.0 0.0 0.5 1.0 1.5 $s_{x^2y^2}\sigma_0$ in xz/yz $\int \frac{\alpha \alpha_1}{J \alpha \alpha_2}$

subspace

diagonal but orbital dependent J matrix,
 $r_O = J_{1(2)}^{xy} / J_{1(2)}^{xz/yz}$

✓ competition between s-A_{1g} and d-B_{1g} pairing channels
 ✓ s-B_{1g} pairing stabilized at intermediate r_O.

E Nica, et al, unpublished.

Orbital-Selective Pairing Amplitudes

Dominant pairing channels with A_{1g} symmetry at $r_0 = 1$

Anisotropic Superconducting Gap and Splitting of Spin Resonance Peaks

Yu, Zhu, and Si, PRB **89**, 024509 (2014)

Anisotropic SC Gap and Double Spin Resonances in underdoped Na 111

NaFe_{1-x}Co_xAs

ARPES Neutron Scattering Gap (meV) 7.0 e ·6.0 x=0.015 (UD) 50 (0.5, 0.5, 0.5)-5.0 Counts / min x=0 0175 4.0 δ 0 -50 3K - 28K 3 9 0 NOT compatible with $E \,(\mathrm{meV})$ cosk_xcosk_v

Q Q Ge et al., *PRX* **3**, 011020 (2013)

C Zhang, RY et al., PRL 111, 207002 (2013)

Summary

- Metal-to-Mott-insulator transition studied by slave-spin method in multi-orbital Hubbard models for iron-based superconductors
- Mott localization influenced by various factors: Hund's coupling, Fe vacancy order, crystal level splitting ...
- Strong orbital-selective Mott physics in iron chalcogenides
- Comparable pairing amplitudes for iron pnictides and alkaline iron selenides
- Strong orbital dependent superconducting pairing: gap anisotropy and splitting of neutron resonance in the superconducting state