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Outline

• Underdoped cuprates have charge and nematic order 
!

• 3-band Hubbard model has a nematic instability 
!

• Nematic charge fluctuations contribute to d-wave 
pairing

Maier & Scalapino, arXiv:1405.5238 
see also: Lederer et al., arXiv:1406.1193
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Charge order and nematicity in the cuprates

•Broken symmetries in 
underdoped cuprates 
— Evidence for static, but short-

ranged charge order from NMR, 
XRD, STM, … 

— Charge order accompanied by 
intra-unit-cell nematic order 

— d-form factor density wave
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Pseudogap quantum critical fluctuations and pairing

•Quantum oscillations:  
Ramshaw et al., arXiv ‘14 
— m*→∞ identifies QCP at 
pc = 0.18 where T*(p) →0 

— Magnetic field needed to 
suppress superconductivity 
peaked at pc 

— Pseudogap quantum 
critical fluctuations 
involved in pairing 

FIG. 4. Fig. 4: A quantum critical point near optimal doping. The blue curves correspond

to T
c

, as defined by the resistive transition (right axis), at magnetic fields of 0, 15, 30, 50, 70, and

82 T (data points taken from Grissonnanche et al. (39), Ramshaw et al. (50), and unpublished

data on YBa2Cu3O6.998 at 82 T). As the magnetic field is increased, the superconducting T
c

is

suppressed. By 30 T two separate domes remain, centred around p ⇡ 0.08 and p ⇡ 0.18; by

82 T only the dome at p ⇡ 0.18 remains. The inverse of the e↵ective mass has been overlaid

on this phase diagram (left axis), extrapolating to maximum mass enhancement at at p ⇡ 0.08

and p ⇡ 0.18 (white points taken from Sebastian et al. (49)). This makes explicit the connection

between e↵ective mass enhancement and the strength of superconductivity, which both converge

on QCPs (marked by cyan triangles).

(10, 11), representing an unidentified form of broken symmetry (that persists inside the

superconducting phase for the Kerr experiment). Third, in high magnetic fields, both the

sign-change of Hall coe�cient, from positive to negative, and the onset of long-range or-

der observed by NMR, go to zero near p ⇡ 0.18(22, 44), suggesting that Fermi surface

reconstruction from electron-like to hole-like occurs at this doping. Finally, p ⇡ 0.18 repre-

sents the maximum extent of incommensurate charge density wave (CDW) order reported

in several di↵erent experiments (13, 22, 25). While the Fermi surface reconstruction is likely

related to this CDW order, its short correlation length and the weak doping dependence

of its onset temperature appears to be at odds with the traditional picture of long range

9

Ramshaw et al., arXiv ‘14
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Pairing near a nematic QCP: Theory

•Doped Mott insulator 
Kivelson, Fradkin, Emery, Nature ‘89 
— Nematic QCP just beyond 

optimal doping 
•Pairing near nematic QCP 
Metlitski et al., NJP ’10; arXiv ‘14 
— Nematic charge (bond) 

ordered phase near SDW 
— Nematic fluctuations mediate 

attractive interaction
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FIG. 1: Top: Conventional phase diagram of a quantum crit-
ical point (QCP) associated with an order parameter �, with
a superconducting dome (SC) partially overlapping the quan-
tum critical region of the ‘bare’ QCP of a metal. Bottom:
the phase diagram obtained in the present paper, with the
SC dome fully overlapping the incipient regime of incoherent
fermionic quasiparticles, while the quantum critical � fluctu-
ations survive into higher temperatures in the normal state.

nient setting for studying the interplay between quantum
criticality, nFL and pairing physics.

We perform a systematic renormalization group (RG)
analysis of the Ising-nematic QCP. Our approach uti-
lizes an idea introduced by D. T. Son in his study of
quark pairing by the color gauge field in dense baryonic
matter.43 We combine the conventional Fermi-liquid RG
treatment of Refs. 44,45 with the so-called “two-patch”
scaling approach of Refs. 12,46–48. Analytical control is
gained through the ✏-expansion introduced in Ref. 49 and
its subsequent large-N improvement.24 We find that the
Ising-nematic QCP is always unstable to superconduc-
tivity. In particular, attractive pairing interaction medi-
ated by the order parameter fluctuations dominates over
other residual short range interactions (even if they are
repulsive) and drives a pairing instability as the QCP is
approached. However, the residual short range interac-
tions determine the angular momentum/spin channel in
which the pairing instability occurs; as a result, the pair-
ing symmetry is non-universal. The usual weak coupling
BCS formula, T

c

⇠ exp(�1/|V |), relating the supercon-
ducting T

c

to the strength of the short-range interac-
tion V clearly does not hold in the vicinity of the QCP.

Rather the superconductivity is strongly enhanced, and
T

c

at the QCP scales in a power-law manner with the
coupling between order-parameter fluctuations and the
electrons. Thus, in this example we clearly demonstrate
the importance of quantum criticality in optimizing the
superconducting T

c

. Moreover, in the regime where our
calculation is controlled (small ✏), the energy scale at
which superconductivity sets in is parametrically larger
than the energy scale at which electronic quasiparticles
are destroyed. Thus, the superconducting instability is so
strong that it preempts the nFL physics (see the bottom
figure in Fig. 1). The above results of our RG analysis are
in exact agreement with a direct solution of Eliashberg-
like integral equations, as is shown elsewhere by one of
us.50,51

We also apply the same RG treatment (albeit with
very di↵erent conclusions) to two other nFL states, as
described in the following subsections.

B. Spinon Fermi-surface phase

The spinon Fermi-surface phase is an exotic Mott-
insulating spin-liquid with emergent spin-1/2 fermionic
spinon excitations, f

↵

(x), ↵ =", #. The spinon disper-
sion is such that they form a Fermi-surface. This phase
may be accessed in the slave-particle (parton) treat-
ment, where electron spin operators ~S

i

are represented
as ~S

i

= 1

2

f†
i↵

~�
↵�

f
i�

, subject to the local constraint,

f†
i↵

f
i↵

= 1. While the spinons are neutral under the
physical electromagnetic field, they carry a charge un-
der an emergent U(1) gauge field a

µ

, hence this phase is
also often referred to as a U(1) spin-liquid. An e↵ective
Lagrangian of the spinon FS phase may be written as,

L = f†
↵

[@
⌧

� ia
⌧

+ ✏(�ir �~a)]f
↵

+
1

2g2

(✏
µ⌫�

@
⌫

a
�

)2 + . . .

(1.1)

where ✏(~k) is the spinon dispersion and the ellipses de-
note additional perturbations, such as four-spinon inter-
actions.

The presence of gapless spinon excitations in the vicin-
ity of the FS strongly a↵ects the gauge field dynam-
ics. The longitudinal fluctuations of the emergent electric
field are Debye screened by the spinon FS and become
gapped. The fluctuations of the emergent magnetic field
are Landau-damped by the FS, but remain gapless. The
coupling of these Landau-damped magnetic field fluctua-
tions to spinons is expected to lead to “non-Fermi-liquid”
behavior of the spinon FS,46,47 e.g. the anomalous scal-
ing of specific heat C ⇠ T 2/3.

The spinon FS phase is expected to naturally arise
in so-called “weak” Mott insulators - ones proximate
to a metal-insulator transition. There is numerical ev-
idence for the presence of this phase in the triangu-
lar lattice Hubbard model in the intermediate range of
U/t.52–55 Moreover, it has been proposed as a candidate
for the quasi-2d triangular lattice organic insulators  �

Metlitski et al., arXiv ‘14
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(where t is time) for arbitrary dj are non-vanishing only near the
‘surface’, so in the thermodynamic limit the phases fj of the CDW
fluctuations on neighbouring stripes are not locked together and
there is no CDW order. The physical origin of this effect is easily
understood. The difference in arc lengths, DjL ¼ Ljþ1ðxÞ 2 LjðxÞ, is a
sum of contributions with random sign, which are more or less
independently distributed along the distance jxj. For this reason,
DjL (and the dephasing) grow with increasing jxj roughly as in a
random walk, that is jDjLj2,Djxj, where D is a transverse diffusion
constant.

This result may be obtained formally by integrating out the stripe
fluctuations (Y) perturbatively in powers of V and, subsequently, J.
To first order in V, the effective interaction between the CDWs on
neighbouring stripes, V(1)(x; Df(x)), is given by the expression:

V ð1Þðx; DfÞ ¼ hVðDYÞcos½
ÅÅÅÅÅÅ
2p

p
ðDfÞ 2 2kFðDLÞÿi ð6Þ

where h i implies averaging over transverse stripe fluctuations. To
lowest order in a cumulant expansion:

V ð1Þðx; DfÞ ¼ V̄ðxÞcos½
ÅÅÅÅÅÅ
2p

p
ðDfÞÿ ð7Þ

V̄ðxÞ ¼ hVðDYÞiexp{ 2 ð2k2
FÞh½DLðxÞÿ2i}

At any non-zero temperature, in agreement with the simple physical
argument given above, it is straightforward to show that
h½DLðxÞÿ2i,ATjxj for large jxj, where A is a complicated measure
of the magnitude of the transverse stripe fluctuations. It is impor-
tant to note that A is dominated by short-wavelength transverse
fluctuations, and is insensitive to details of their quantum
dynamics. At precisely T ¼ 0, for technical reasons that are not
important for present purposes, the dephasing effect is somewhat
more subtle, and in fact h½DLðxÞÿ2i,A~q̄logjxj, which implies that V̄
falls as a power of jxj as opposed to the exponential fall-off at non-
zero T. These expressions, which can readily be extended to higher
order in perturbation theory and higher order in the cumulant
expansion, capture the essential general point of the physics—that
the effective coupling between CDWs vanishes except in a narrow
‘surface’ region at the ends of the stripes, and hence can be ignored
in the thermodynamic limit.

The effect of Josphenson coupling between stripes may be
analysed in the same way. To first order in J, the effective action is
proportional to:

h J i < J0exp{ða2=2Þh½DjYÿ2i} ð8Þ

Hence the superconducting coupling is strongly enhanced by the
transverse stripe fluctuations. (There is a similar enhancement of
the CDW coupling, V, but it is overwhelmed by the dephasing
effect.) Physically, this enhancement reflects the fact that the mean
value of J is dominated by regions where neighbouring stripes
come close together so that h J i is very much larger than the median.
From equation (1) it can be seen that, when Kc . 1=2, the pair
susceptibility on an individual stripe diverges as T ! 0 and
hence, for non-zero J, the smectic phase is always globally super-
conducting below a finite (Kosterlitz–Thouless) ordering tem-
perature, Tc,ðh J i¢sÞKc =ð2Kc 2 1Þ. Because of the broken rotational
symmetry of this phase, all that can be said about the symmetry
of the superconducting state is that it is singlet; its symmetry is
necessarily a mixture of ‘s-wave’ and ‘d-wave’. On the other hand, for
Kc , 1=2 and h J i sufficiently small, the system remains a (quantum
critical) non-Fermi liquid all the way to T ¼ 0. Although such
quantum critical phases are common in one dimension10, where
they are often called ‘Luttinger liquids’, we believe this is the first
theoretically well justified example in two dimensions.

To complete the physical picture of the quantum smectic, we
construct a global phase diagram, shown schematically in Fig. 2, by
considering the possible zero and finite temperature phase transi-
tions from the smectic state to states with other symmetries. This
can be done, to a large extent, on the basis of general considerations

of symmetry and by analogy with the phase diagram of conventional
liquid crystals; the argument relies on nothing more than the
existence (and electronic character) of the quantum smectic phase.

Along the T ¹ 0 axis of the figure, the phases evolve as ~q̄ is
varied. Starting from the smectic phase:

(1) To the left, as the system becomes progressively more
‘classical’, there is a (first-order) phase transition to a crystalline
state, in which the phases of the CDWs on neighbouring stripes are
locked, the transverse stripe fluctuations become the phonons of a
fully ordered crystal, superconducting order is destroyed, and the
system becomes globally insulating.

(2) To the right, as the system becomes more quantum and, in
particular, when the r.m.s. magnitude of the transverse fluctuations
of the stripes becomes comparable to their spacing, there is a T ¼ 0
transition to a quantum nematic phase. This transition is driven by
dislocations which destroy the stripe positional ordering at long
distances. We generally expect this transition to be continuous. This
implies that, for Kc . 1=2, the superconducting order must con-
tinue across the smectic to nematic phase boundary. Similarly, in
the case Kc , 1=2, the Luttinger liquid behaviour must persist across
the phase boundary.

(3) At still larger ~q̄=V, there must be a transition to an isotropic
phase. Landau theory suggests that the nematic to isotropic tran-
sition should be continuous in two spatial dimensions, although it is
first-order in three.

(4) For Kc . 1=2, there are two possible schemes for the termina-
tion of the high-temperature superconducting order with increas-
ing ~q̄: If the nematic region of the phase diagram is narrow, so that
significant local stripe correlations survive into the isotropic phase,
then the superconducting state could survive until some larger value
of ~q̄, as shown in Fig. 2; in this case, the superconducting state will
have a pure symmetry (‘s’ or ‘d’) where it extends into the isotropic
phase. Otherwise, the high-temperature superconducting phase
could terminate at a critical point within the nematic phase. In
either case, beyond this point, the ground state is a (possibly)
anisotropic Fermi liquid (similar to a conventional metal) or, if
there remain sufficient residual interactions, a low-temperature
superconductor. A highly schematic view of the local stripe order
in these various phases is shown in Fig. 3.

Except for the choices among the possible schemes described
above, and so long as the phase transitions are continuous, the
topology of the phase diagram is constrained to be as shown in Fig. 2
for the case Kc . 1=2. At high enough temperature, there must be a

Te
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Isotropic (disordered)

Superconducting

C C12C3

Crystal

Smectic

˘v

Figure 2Phase diagram for Kc . 1=2. Here ~q̄ is a measureof the magnitude of the

transverse zero-point fluctuations of the stripes. Thin lines represent continuous

transitions, and the thick line is a first-order transition. The dashed line is the

superconducting Tc. The symbols Cj label various quantum-critical points.

Depending on microscopic details, the positions of C1 and C2 could be inter-

changed.

Kivelson, Fradkin, Emery, Nature ‘89
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3-band Hubbard model for CuO2
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Nematicity in 3-band model: RPA

SPATIALLY MODULATED ELECTRONIC NEMATICITY IN . . . PHYSICAL REVIEW B 88, 155132 (2013)

FIG. 4. (Color online) Charge-density modulations for (a)–(c)
diagonal and (d)–(f) axial modulated nematic order, at hole densities
p = 0.14 and 0.20, respectively, for tpp = 0.5. The corresponding q∗

values are given in Fig. 6(b). Circle diameter indicates the magnitude
of the charge modulation, with red (blue) corresponding to a negative
(positive) modulation. While all orbitals are shown, modulations
are only large enough to be seen on the oxygen px and py orbitals.
The bidirectional patterns in (c) are obtained by adding the patterns
in (a) and (b); those in (f) are obtained by adding (d) and (e).

phase boundary marks where χN (q∗) first diverges as Vpp is
increased. The value of q∗ at which this happens depends on
the hole density p, and is shown in Figs. 5(b) and 6(b).

Figures 5(a) and 6(a) also include the curves along which
χN (q = 0) diverges. We see that there is a wide range of p over
which χN (q∗) diverges at a lower Vpp than χN (0), signaling
that MNO dominates over commensurate nematic order. There
are also regions where only the q = 0 instability is shown; in
these regions, this is the first instability which appears as Vpp

is increased.
The magnitude and the orientation of q∗ depend on the

filling relative to the “van Hove filling” pvH, which is defined as
the hole density p at which the van Hove singularities at (π,0)
and (0,π ) cross the Fermi energy. pvH marks the boundary
between holelike (p < pvH) and electronlike (p > pvH) Fermi
surfaces. The value of pvH depends on the Fermi surface
curvature: pvH = 0 for tpp = 0 and pvH = 0.177 for tpp = 0.5.

0.5
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V
pp

q=0
axial order

-0.08 -0.04 0 0.04 0.08 0.12 0.16 0.2
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0.8

|q
* |

tpp= 0

Isotropic(a)

(b)
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FIG. 5. (Color online) (a) Charge instabilities for the commen-
surate (q = 0) and axial modulated nematic phases for tpp = 0 at
T = 0.0005. The system is isotropic for small Vpp . Solid curves
indicate the leading divergence of χN (q) as Vpp is increased; dashed
curves indicate subleading instabilities. The phase transition is thus to
an axial nematic phase for p ! 0.09, and to a commensurate nematic
phase for p > 0.09. The modulation wave vector for the axial nematic
phase is shown in (b), and it vanishes at the van Hove filling pvH = 0.0.
The model parameters are tpd = 1, ϵd = 0, $CT = ϵd − ϵp = 2.5,
Vpd = 1, Ud = 9, and Up = 3.

For reference, cuprate superconductors have holelike Fermi
surfaces in the doping range where charge-ordered phases are
observed.
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FIG. 6. (Color online) As in Fig. 5, but for tpp = 0.5. Here, the
leading instability is to a diagonal nematic phase for p < pvH, where
pvH = 0.177 for this value of tpp .
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Spatially modulated electronic nematicity in the three-band model of cuprate superconductors

S. Bulut,1,2 W. A. Atkinson,1,* and A. P. Kampf3

1Department of Physics and Astronomy, Trent University, Peterborough Ontario, Canada, K9J 7B8
2Department of Physics, Queen’s University, Kingston Ontario, Canada, K7L 3N6

3Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg,
86135 Augsburg, Germany

(Received 14 May 2013; revised manuscript received 16 October 2013; published 28 October 2013)

Charge order in cuprate superconductors is a possible source of anomalous electronic properties in the
underdoped regime. Intraunit cell charge ordering tendencies point to electronic nematic order involving
oxygen orbitals. In this context, we investigate charge instabilities in the Emery model and calculate the charge
susceptibility within diagrammatic perturbation theory. In this approach, the onset of charge order is signaled by
a divergence of the susceptibility. Our calculations reveal three different kinds of order: a commensurate (q = 0)
nematic order, and two incommensurate nematic phases with modulation wave vectors that are either axial or
oriented along the Brillouin zone diagonal. We examine the nematic phase diagram as a function of the filling,
the interaction parameters, and the band structure. We also present results for the excitation spectrum near the
nematic instability, and show that a soft nematic mode emerges from the particle-hole continuum at the transition.
The Fermi surface reconstructions that accompany the modulated nematic phases are discussed with respect to
their relevance for magneto-oscillation and photoemission measurements. The modulated nematic phases that
emerge from the three-band Emery model are compared to those found previously in one-band models.

DOI: 10.1103/PhysRevB.88.155132 PACS number(s): 74.72.Kf, 71.45.Lr, 71.27.+a, 74.25.Jb

I. INTRODUCTION

Cuprate superconductors are susceptible to spin- and
charge-density-ordered phases that compete with supercon-
ductivity. This is well established in La-based cuprates,1–3

where (quasi)static spin/charge stripes are widely observed,
even in coexistence with superconductivity.4,5 However, their
presence in other cuprate families is generally unconfirmed.
Because density waves are one of the proposed origins for
the pseudogap in the underdoped regime, it is necessary
to establish whether charge and spin order are universal
amongst the cuprates. The recent discovery of charge order
(without spin order) in underdoped YBa2Cu3O6+x (YBCO)
is an important step in this direction. In this work, we
describe incommensurate charge-ordered phases that arise in
the three-band Emery model for cuprates, and discuss the
extent to which these are consistent with the charge order
detected in YBCO.

Early evidence for broken-symmetry phases in YBCO
came from magneto-oscillation experiments, which identified
a reconstructed Fermi surface6,7 with an electronlike Fermi
surface pocket8 that emerges when strong magnetic fields are
applied. These experiments were theoretically discussed from
the perspective of density waves.9 Nernst effect measurements
found a uniaxial symmetry breaking,10 consistent with a
charge-density wave (CDW). Subsequent nuclear magnetic
resonance (NMR) experiments further suggested a commen-
surate CDW with a period of four unit cells, with no evidence
for any spin ordering.11 In this work, the authors made a
clear distinction between ortho-II YBCO (with hole doping
p ∼ 0.108–0.12) where only charge order is seen, and lower
dopings near the superconductor-insulator transition where
charge and spin order are both seen.12–14

More recently, x-ray scattering15–17 experiments have
identified a CDW phase in the same doping and magnetic
field range in which Fermi surface pockets are detected.

The charge pattern is aligned with the crystalline axes15,16

and is incommensurate, with a weakly doping dependent
period of ∼3.2 lattice constants. Whether this CDW is
uniaxial10,11 or biaxial18,19 has not been resolved, and may
depend on doping.17 Regardless of the details, x-ray and
NMR experiments established that the incommensurate CDW
competes with the superconductivity,16,20 implying that both
phases operate on similar energy scales.

The x-ray results suggest that this charge-ordered state
is distinct from the stripe phase in La-based cuprates;5,17,19

however, its relation to apparent charge-ordered phases in Bi-
based cuprates is still not clear. Photoemission experiments on
underdoped Bi cuprates have found spectral features21–24 that
are consistent with competing nonsuperconducting phases.
Scanning tunneling microscopy (STM) experiments25–31 fur-
ther pointed to intraunit cell charge order. The simplest
candidates for such order are uniaxial “nematic” or biaxial
“checkerboard” phases involving a spontaneous transfer of
charge between oxygen px and py orbitals within the CuO2
unit cell.

In this work, we report on possible charge-ordered phases
within the three-band Emery model,32 which includes cop-
per d and oxygen p orbitals. We have calculated the
charge susceptibility χαβ(q,ω) (α and β are orbital indices)
diagrammatically.33,34 The leading instabilities of the model
are obtained from divergences of the static susceptibility
χαβ(q). We find that, through much of the phase diagram, the
leading instability is to an incommensurate (finite-q) charge
modulation involving primarily the oxygen orbitals. When
the ordering wave vector q∗ tends to zero, this phase evolves
continuously into the commensurate nematic phase proposed
by Fischer and Kim35 to explain the STM results for Bi
cuprates.

The possibility of finite-q “modulated nematic order”
(MNO) was raised previously in one-band models.36–42 In this

155132-11098-0121/2013/88(15)/155132(13) ©2013 American Physical Society

Bulut, Atkinson & Kampf, PRB ‘13

From Bulut, Atkinson & Kampf, PRB ‘13
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• What is the nature of the pairing 
interaction associated with these 

nematic fluctuations?
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Random phase approximation

Berk, Schrieffer 1966
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•Pairing interaction

•Spin/Charge Susceptibility
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For 3-band model see Littlewood, PRB ’90; 
Bulut, Atkinson & Kampf, PRB ’13 
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d-wave pairing near Q=(π,π) SDW
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Miyake, Schmitt-Rink, Varma, PRB ’86 
Scalapino, Loh, Hirsch, PRB ’86 

Monthoux, Balatsky, Pines, PRL ‘91 
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d-wave pairing near Q=(π,π) SDW
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d-wave pairing near Q=(π,π) SDW
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Charge fluctuations and pairing
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Charge fluctuations and pairing
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Charge fluctuations and pairing
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Pairing from charge fluctuations in 3-band model

— Consider only charge part of the interaction and neglect spin 

interaction: 

— Solve linearized gap equation: 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Maier & Scalapino, arXiv (2014)
Ud=9, Up=3, Vpd=1, Vpp=2
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RPA pairing interaction from  
nematic q=0 charge fluctuations

Nematic�(k , k �) =
Vc

2
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Nematic charge susceptibility Pairing interaction
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——
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Leading gap structures

d-wave xs-wave

Nematic pairing interaction attractive in d-wave and xs-wave channels
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RPA pairing interaction from  
nematic q*=(q0,q0) fluctuations

Nematic

nematic charge susceptibility

�(k , k �) =
Vc

2
� 1

2
Vc�

c
RPA(k � k �)Vc

pairing interaction
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Leading gap structures

xs-wave
λs=1.1

Compared to case with q*=0

d-wave
λd=1.2

θ
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Approaching the QCP
Nematic

q = 0 nematic susceptibility vs. doping pairing strength λ vs. doping

Pairing strength increases as nematic QCP is approached



Gap momentum structure on approaching the QCP
p = 0.22 p = 0.205

Longer ranged interaction reflected in higher d-wave harmonics
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The role of Vpd �(k , k �) =
Vc
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Vpd couples d-band to nematic fluctuations on p-orbitals
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The role of the repulsive static interaction
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s-wave g(θ)

α=0.7
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• Who is the main player: Charge or spin?
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Charge vs. Spin

Nematic

Charge susceptibility (Ud=9, Up=3, Vpd=1, Vpp=2)

Spin susceptibility (Ud=0.7, Up=0.2, Vpd=0.1, Vpp=0.1)
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+
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Ūd = 4, Ūp = 1, V̄pd = 0.8, V̄pp = 0.6

Pairing strength from charge interaction:   λd = 0.76 
Pairing strength from spin interaction:   λd = 16
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Conclusions

— The nematic pairing interaction is attractive for small momentum 
transfer 

— Nematic charge fluctuations contribute to the d-wave pairing 
interaction with increasing strength as the nematic QCP is 
approached. 

!

— It can cooperate with the repulsive, large momentum transfer 
spin fluctuation interaction so that both the spin and the charge 
channel contribute to the d-wave pairing strength. 

Maier & Scalapino, arXiv:1405.5238 
see also: Lederer et al., arXiv:1406.1193


