

Raman scattering in detwinned BaFe₂As₂

Strong Correlations and

Unconventional

Superconductivity

Santa Barbara, 09/2014

A. Baum¹, T. Böhm¹, F. Kretzschmar¹, B. Muschler¹, J.-H. Chu^{2,3}, I. R. Fisher^{2,3}, R. Hackl¹

¹Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany

²Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

³Geballe Laboratory for Advanced Materials & Dept. of Applied Physics, Stanford University, CA 94305, USA

Introduction Anisotropy and detwinning BaFe₂As₂ 1-Fe BZ (4)Interplay of magnetic and structural order o_b/ρ_a-1 Vicinity of magnetic order and superconductivity Sr

Figure: Chu et al., Phys. Rev. B 79, 014506 (2009)

Open questions:

Origin of the magnetic order? Driving force of the phase transition?

Figure: Detwinning by uniaxial pressure (1) spacer, (2) spring, (3) sample holder, (4) sample, (5) screw

14000

16000

18000

20000

excitation energy (cm⁻¹)

22000

24000

(c) The phonon intensity increases for shorter excitation wavelengths, showing a resonant behavior.

Splitting of the E_g phonon

Conclusion

10

260Ŏ0

mW⁻¹)

່ຈ

symmetry

Ъ

Uniaxial pressure can detwin the BaFe₂As₂ crystals, facilitating access to anisotropic features

The A_g phonon shows a resonance at approximately 3.1 eV for polarizations along the afm and fm direction.

The widths of this resonance differ significantly for the afm and fm direction, indicating a strong influence of the band reconstruction along the afm ordered axis

The E_g phonon at 125 cm⁻¹ splits into a B_{2g} (afm) and B_{3g} (fm) mode at the magnetic phase transition