

Subdominant d-wave coupling in Ba_{0.6}K_{0.4}Fe₂As₂

Strong Correlations and Unconventional Superconductivity

KITP, Santa Barbara Sep 22 - Sep 26 2014 T. Böhm^{1,2}, A. F. Kemper³, B. Moritz¹, F. Kretzschmar², B. Muschler², H.-M. Eiter², R. Hackl², T. P. Devereaux¹, D. J. Scalapino⁴ and Hai-Hu Wen⁵

¹ SIMES, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA ² Walther Meissner Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany

³ Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

⁴ Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA

⁵ National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China

1 Introduction

2 Theoretical approach

Tight binding model from 5 Fe d-orbitals

Fermi surfaces

• $Ba_{0.6}K_{0.4}Fe_2As_2$ optimally hole doped • dominant s interaction $V_{\rm s}$ • subdominant $d_{x^2-y^2}$ interaction V_d

• Cooper pairs created by $V_s \rightarrow$ pair breaking gives a peak at 2Δ in the Raman spectra • Excitation of a pair bound by V_d gives a peak at $2(\Delta - E_{b})$ in the Raman spectra, Raman selection rules require a $d_{x^2-y^2}$ excitation to be in B_{1a} symmetry for an *s*-symmetric ground state

0.6

0.8

 T/T_{c}

Effective mass approximation gives Raman vertices

Raman response

Bare bubble approximation for pair breaking

First order correction to include subdominant interaction V_{d}

S. Graser et al., Phys. Rev. B 81, 214503 (2010) M. Yi et al., Phys. Rev. B 80, 024515 (2009) D. J. Scalapino, and T. P. Devereaux, Phys. Rev. B 80, 140512 (2009), www.wikipedia.org

3 Experiment and theory

• $\Delta \chi$ " is the response in the superconducting state (8 K) with the normal state (45 K) subtracted off to select the features emerging at the transition to superconductivity ($T_c = 39$ K).

F. Kretzschmar et al., Phys. Rev. Lett. **110**, 187002 (2013)

• weakly anisotropic gaps

consistent with ARPES measurements

K. Nakayama et al., EPL (Europhysics Letters) **85**, 67002 (2009)

• spectral weight is shifted out of the pair breaking peak of the outer electron band into the excitonic mode

• V_{d} acts predominantly at regions with maximal gaps (yellow at the outer electron band) • the coupling strength of V_d is 60% of the coupling strength of V_s