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Strong coupling behavior of the neutron resonance mode in unconven-
tional superconductors [1]
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Motivation

Unconventional superconductors (USC) [e.g. cuprates, iron pnic-
tides] have a wide range of interesting features. The phase dia-
grams of these systems show an interesting regime with possible
coexistence of AF and SC order depending on doping. In the
SC state there is a sharp resonance in neutron scattering experi-
ments at the antiferromagnetic (AF) vector Q. The emergence of
superconductivity and collective spin excitations in these materi-
als can be described by the spin-fermion model. Within one-loop
perturbation theory it is possible to give qualitative statements
about the resonance energy Ωres of the spin mode, their influence
on the fermionic system and the SC properties such as the pair-
ing symmetry below Tc. We examine the validity of the leading-
order results considering both vertex and self-energy corrections
and find that, in general, such correction cannot be ignored in
d = 2 dimensions. Nevertheless, we show that a controlled per-
turbation theory can be performed using an ε-expansion around
the upper critical dimension duc = 3.
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Spin-fermion model

Hamiltonian [see Review: cond-mat/0201140]

H = H(0)
F +H(0)

Spin + g
∫

dxS ·
(
ψ̄ασα,βψβ

)
fermionic quasiparticles ψ with dispersion

εk = vF · (k − kF )− µ

fermionic system contains N so called hot-spots kF con-
nected by the AFV Q

coupled bosonic spin mode S [closeness to AF QCP] with
spin susceptibility

χq(ω) =
1

r + cs(q −Q)2 − Πq(ω)
,

⇒ r ∼ ξ−2 determines the distance to AF QCP

Perturbation theory

In what follows we assume g to be small compared to the
corresponding fermionic scales, which implies smallness of
the dimensionless parameter

γ =
g2N
2πv2

F
.

Normal-state analysis

Coupling to gapless fermionic quasiparticles gives rise to a
damped bosonic one-loop self-energy at the AFV Q [2]

ΠQ(ω) = = iγω.

The corresponding fermionic self-energy at the hot-spots

ΣkF
(iΩn) = =

 −iΩnλ , if |Ωn| � ωsf

−iΩn

∣∣∣ Ω̄
Ωn

∣∣∣ε/2 , if |Ωn| � ωsf
,

is separated by the characteristic frequency

ωsf = r/γ

into a Fermi-liquid regime Σ ∼ Ω and a quantum critical
regime Σ ∼

√
Ω. Here, we defined the dimensionless pairing

parameter λ and the energy scale Ω̄

λ =
3g2

4πvF
√

rcs
Ω̄ =

9g2

2πNcs
(d = 2)

Superconducting transition

Superconductivity due to bo-
son exchange with uncon-
ventional pairing symmetry
[3]

∆kF +Q = −∆kF
≡ ∆ .

~e-1/λ/λ
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Solving the Eliashberg-equations the transition temperature is
given by

Tc = Ω̄ · C(λ)

with dimensionless function

C(λ) =

{
∼ e−1/λ

λ λ� 1, (Tc � ωsf)

≈ 0.2 λ� 1, (Tc � ωsf

Resonance mode in SC at one-loop

One-loop boson self-energy in superconducting state at Q

Π
(1)
Q (ω) = + (1)

obtains for T = 0 a discontinuity in the imaginary part at
ω = 2∆ for unconventional gap symmetries [2]

D0 = lim
η→0

Im Π
(1)
Q (2∆ + η) =

{
πγ∆ for ∆kF +Q = −∆kF
0 for ∆kF +Q = ∆kF

Im Π
(1)
Q (ω < 2∆) = 0 due to the gapped fermionic quasipar-

ticles.

Generalization using ∆kF
= ∆1eiφ1,∆kF +Q = ∆2eiφ2:

D0 = lim
η→0

Im Π
(1)
Q (∆1 + ∆2 + η) = πγ

√
∆1∆2 sin2

(
φ1 − φ2

2

)
.

Discontinuity in the imaginary part leads to logarithmic di-
vergence Re Π

(1)
Q (ω ≈ 2∆) = −γ∆ log

(ω−2∆
2∆

)
in the real

part. Thus we get for φ1 6= φ2 a guaranteed resonance at

Ωres = 2∆
(
1− e

− πr
D0
)

(2)

1 2 3 4

D

Im  χQ(ω)

s-wave

d-wave

ω/Δ

ar
bi

tr
ar

y 
un

its

Im ΠQ(ω)

Re ΠQ(ω)

ω/Δ

ar
bi

tr
ar

y 
un

its

0 1 2 30 Ωres

Note: Discontinuity D is the only important feature to de-
scribe resonance mode!

Self-energy corrections

Self-energy corrections beyond the one-loop calculation

+ + . . . '

λ ' 1, λ � 1: include corrections by a Taylor expansion of
renormalized dispersion and gap

ε̃k ≈ εk + νmεk+Q,

∆k (ω) ≈ ∆ + ∆f (ω −∆).

Discontinuity with self-energy:

DΣ =
D0

(1− νm)2(1−∆f )
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Coefficients νm,∆f ∼ g2 only for the weak-coupling regime
λ� 1 ⇒

self-energy corrections are of order one in the physical
regime λ ∼ 1! ⇒ controlled in the large N limit since
νm,∆f ∼ 1/N .

Vertex corrections

Consider vertex corrections (VC) beyond one-loop

VC to discontinuity

δDVC =

{D0
N κ(λ) for ∆kF +Q = −∆kF
0 for ∆kF +Q = ∆kF

(3)
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→ Calculation only controllable for weak coupling λ� 1
→ λ ' 1: VC are not small . Physical origin of strong-coupling

behavior: QC spin-fluctuations with ω > ωsf contributing to
the above diagrams.

→ Large N theory not applicable as shown by Lee [4] (1/N
expansion breaks down)

→ One-loop calculation is not controlled as vertex correc-
tions are of order unity!

Controlling the calculation via ε-expansion

Similar to Mross et al. [5] we perform ε-expansion around
upper critical dimension duc = 3

ε = 3− d

only bosonic field depends on the additional dimension in
z-direction (fermionic QP still confined to xy-plane)

Vertex corrections to discontinuity
δDVC

D0
∝ γα ∝ g2α with α =

2
ε
− 2 > 0

ε� 1: Exponent α is large and vertex corrections are small
(for d = 3 exponentially small) → One-loop calculation
can be controlled within ε-expansion!

Phase sensitivity beyond two-loop

Higher-order diagrams as

(a) (b) (c)

(d) (e)

for gap symmetry for ∆kF +Q = ∆kF
also show no discontinuity

⇒ Expect resonance mode to be a general feature of USC.
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