Spin, orbital, and lattice correlations in Fe(Te,Se) superconductors

John Tranquada

Strong Correlations and Unconventional Superconductivity KITP, UCSB September 22, 2014

Collaborators

Genda Gu

Igor Zaliznyak

Guangyong Xu

Jinsheng Wen Nanjing Univ.

Zhijun Xu LBNL

David Fobes

John Schneeloch SBU

Ruidan Zhong SBU

Outline

In superconducting FeTe_{1-x}Se_x:

• Spin correlations are short range

- Characteristic Q changes with T
- Likely due to orbital ordering

Fe(Se,Te) phase diagram

Two types of spin correlations

Spin glass: incommensurate SRO

Model:

exponentially decaying correlations among identical plaquettes

Wen et al., PRB (2009)

Fe_{1.1}Te

Excitations at 7.5 meV in ordered state

Fe_{1+y}Se_xTe_{1-x}

x=0.27 non-bulk SC

x=0.49 bulk SC

Lumsden et al., Nat. Phys. (2010)

Generalized plaquette models

$FeTe_{0.3}Se_{0.7}$ $T_c = 14 K$

G.Y. Xu et al., unpublished

Thermal evolution of magnetic dispersion

 $Fe_{0.96}Ni_{0.04}Te_{0.5}Se_{0.5}$ $T_c = 8 K$

Z. Xu et al., PRL (2012)

Fe1.08Te0.55Se0.45 non-SC

-1.0-0.5 0.0 0.5 1.0-0.5 0.0 0.5 1.0-0.5 0.0 0.5 1.0 (H,0,0) (r.l.u)

models: (π ,0) correlations with various plaquette choices Never see (π , π) in non-superconducting samples!

G.Y. Xu et al., unpublished

Temperature dependent change in spin-correlation pattern is quite unusual.

What could cause this?

Magnetic interactions influenced by orbital order

$$J_{Iy} = 0.1 J_{Ix}$$

$$J_2 = 0.4 J_{1\times}$$

C.C. Lee et al., PRL (2009)

Competition between superexchange and double-exchange has been invoked to explain multiple magnetic structures

W.G.Yin et al., PRL (2010)

Fe_{1.1}Te

Commensurate AF order and conductivity are tied to a first order transition to an Fe-Fe bond-order wave; orbital order implied.

Fobes et al., PRL (2014)

FeSe: Orbital order below 80 K O-T transition

ARPES (2nd deriv) from detwinned crystal

Shimojima et al., arXiv:1407.1418

Anomalous expansion: evidence of orbital correlations?

Dynamic orbital correlations and spin fluctuations

no orbital correlations

Wei-Cheng Lee et al., PRB (2012)

Conclusions

In superconducting FeTe_{1-x}Se_x:

• Spin correlations are short range

• Characteristic Q changes with T

• Likely due to orbital ordering