Accretion-Ejection Instability: a model for the LF-QPO in microquasars

Peggy Varnière

University of Rocester, USA

- I. Presentation of the Instability
- II. Ejection ability
- III. The AEI as a model for the low frequency QPO
- IV. The Magnetic Flood Scenario /30 min cycle of GRS 1915+105
 - V. Conclusion and Perspectives

Accretion-Ejection Instability

- properties of the spiral
- \rightarrow most often the m = 1 (one armed spiral) with ω ~ 0.1 -0.3 Ω int (rotation frequency at the inner edge of the disk)
- differential rotation + differential vorticity
 - → unstable by coupling to a Rossby vortex (~ great red spot of Jupiter)
- ullet extracts energy and angular momentum from the disk (ullet accretion) and stores them in the Rossby vortex
- if the disk has a low density corona
- energy and angular momentum from the vortex are transferred upward as Alfven waves to the corona
 - > power for a jet or a wind

Variational form

We describe the system with a varionational form

Efficiency of the mecanism: ratio of the flux emitted toward the corona to the energy removed from the inner region

$$\frac{F_{Alfven}}{F_{disk}} \sim \left(\frac{\rho_{corona}}{\rho_{disk}}\right)^{1/2} \left(\frac{r}{h}\right)^{3/2}$$

For a typical X-ray binaries $h/r \sim 10^{-2}$

 $F_{Alfven}/F_{disk} \sim 1$ very efficient mechanism if $\rho_{corona}/\rho_{disk} \sim 10^{-6}$

AEI: a model for QPO

- frequency between 1-10 Hertz
- the spiral wave frequency $\omega\sim 0.1\text{-}0.3~\Omega int$ (rotation frequency at the inner radii of the disk)
- long stability in time
 - → coherent large scale structure as in galaxies
- * rms amplitude up to 20%
 - → up to 10% in the simplified simulation
- ** correlation with the soft flux (disk)
 - → successful comparison with observations
- **QPO** associated with a state where the power-law flux (corona) dominates
 - → accretion energy is not deposited locally (no heating of the disk)
- # linked with the presence of a jet
 - → AEI linked naturally QPO and transfer of energy upward
- * temporal lag sometimes changing sign, sub harmonics structures
 - → geometrical effect linked to the jet

Some Observations: 30min cycle of GRS 1915 + 105

The 30min cycle (β) is the second most common state of GRS 1915 +105 after χ .

It is a transition from the high state to the low state and return to high state.

* radio and IR emission after the X-ray spike

Low-Frequency Quasi Periodic modulation $\frac{1}{5}$ 10 of the X-ray flux during the transition up 12 to the spike

some observation: the QPO appears just before the transition

Magnetic Flood Scenario

The Magnetic Flood Scenario is an attempt to explain the 30 min cycle of GRS 1915 + 105 using the AEI as a model for the LF-QPO and see what it can say about the source

- high state: turbulence such as created by the MagnetoRotational Instability
 - \rightarrow accretion of magnetic flux toward the inner region makes β decrease
- \Rightarrow β ~ 1 in the inner region: the AEI turns on and a QPO appears
- \rightarrow at the same time the energy and angular momentum are transported by the spiral wave: no heating of the disk, β decreases faster... \rightarrow sharp transition
 - change in the magnetic configuration
 - → the disk is not unstable to the AEI anymore.

Conclusion and Perspectives

- Instability in the disk as an explanation for LF-QPO
 - → agreement on frequency, general properties, ...
 - really creates a modulation of the flux
- linear theory of the AEI shows the emission of energy and angular momentum toward the corona as Alfven waves with high efficiency
 - → energy to power a wind or a jet
- ⇒ the Magnetic Flood: a working scenario for the 30 min cycle of GRS 1915 + 105

Flux Modulation from the AEI

work in progress with M. Muno MIT/UCLA

the effects of the spiral shock is the creation of a hot-point in the disk

— and also a thickening of the disk

from 2D non-linear MHD simulation we get the following (with a simplistic model for disk height and temperature)

computing the X-ray emission
from such an accretion disk
shows a modulation in the flux
comparable with the lowfrequency Quasi-Periodic
Oscillation observed in X-ray
Binaries

Results from the simulation (2)

vorticity: $W = \frac{\kappa^2}{2\Omega}$

Rossby vortex ⇒vorticity gradient

sharp feature observed at $r \sim 1.5 \Rightarrow corotation$

Contour plot of radial velocity against time in the inner disk and spectral analysis (200 to 225 orbits)

⇒ propagation after the corotation and standing pattern inside

⇒ m=1 mode

Emission of Alfven Waves

The Rossby vortex twists the footpoint of the field lines threading the disk. If the disk has a low density corona:

twisting \leftarrow emission of Alfven Waves

energy and angular momentum extracted from the disk will be transferred to the corona where they can power a wind or a jet

We describe this via a variational form: \leftarrow

F = energy of the waves + i (outgoing spiral + coupling with the vortex + kz Alfven Waves)

imaginary term √ amplification or damping of the wave

the Alfven terms are singular at the vortex radius