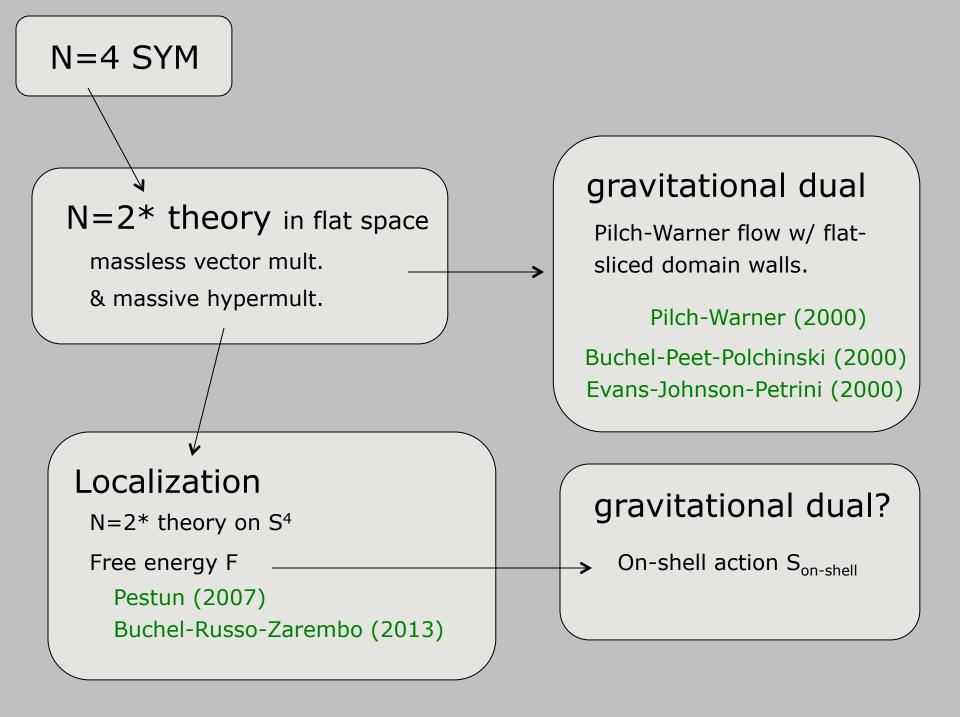
Holography for N=2* on S^4

JoeFest KITP UCSB February 27, 2014

Henriette Elvang University of Michigan



Localization

N=2* theory on S^4

Free energy F

Pestun (2007)

Buchel-Russo-Zarembo (2013)

large N and large 't Hooft coupling $\lambda = g_{\rm YM}^2 N$

mass of hyper radius of S⁴ Euler const
$$F_{S^4}=-\frac{N^2}{2}(1+m^2a^2)\log\frac{\lambda(1+m^2a^2)e^{2\gamma+\frac{1}{2}}}{16\pi^2}$$

Ambiguities due to UV subtractions are eliminated in 3rd derivative:

$$\frac{d^3 F_{S^4}}{d(ma)^3} = -2N^2 \frac{ma(m^2a^2 + 3)}{(m^2a^2 + 1)^2}$$

Localization

N=2* theory on S^4

Free energy F

Pestun (2007)

Buchel-Russo-Zarembo (2013)

$$\frac{d^3 F_{S^4}}{d(ma)^3} = -2N^2 \frac{ma(m^2a^2 + 3)}{(m^2a^2 + 1)^2}$$
$$= N^2(-6ma + 10m^3a^3 + \dots)$$
for $ma \ll 1$

Buchel initiated holographic study.

Showed that m³a³-term in the free energy was **NOT** matched by S⁴-sliced flow in the 5d Pilch-Warner supergravity model. Buchel (2013)

Localization

N=2* theory on S⁴
Free energy F
Pestun (2007)
Buchel-Russo-Zarembo (2013)

$$\frac{d^3 F_{S^4}}{d(ma)^3} = -2N^2 \frac{ma(m^2a^2 + 3)}{(m^2a^2 + 1)^2}$$
$$= N^2(-6ma + 10m^3a^3 + \dots)$$
for $ma \ll 1$

Buchel initiated holographic study.

Showed that m³a³-term in the free energy was **NOT** matched by S⁴-sliced flow in the 5d Pilch-Warner supergravity model. Buchel (2013)

In this talk:

- Explain why Pilch-Warner does not capture flow of N=2* theory on S⁴.
- Construct flow in suitable truncation of 5d N=8 supergravity.
- Use holographic renormalization to exactly match full functional form of the universal part of the free energy.

This offers a precision-test of the gauge-gravity duality in the context of a Euclidean non-conformal setting.

Plan

- N=2* on S^4
- Gravity dual
- Holographic renormalization
- Comments

Based on 1311.1508 with Nikolay Bobev, Dan Freedman, and Silviu Pufu

Review of N=2*: setup in flat space

N=4 SYM

$$A_{\mu}, \qquad \lambda_1, \ \lambda_2, \ \lambda_3, \ \lambda_4, \qquad X_1, X_2, X_3, X_4, X_5, X_6$$
 4 gluinos 6 scalars

Global R-symmetry: $SU(4)_R \sim SO(6)_R$

In N=2 formulation:

N=2 vector multiplet:
$$A_{\mu}, \quad \psi_1=\lambda_3 \\ \psi_2=\lambda_4$$
 , $Z_3=\frac{1}{\sqrt{2}}\big(X_3+iX_6\big)$

N=2 hypermultiplet:
$$\chi_1=\lambda_1 \qquad Z_1=\frac{1}{\sqrt{2}}\big(X_1+iX_4\big) \\ \chi_2=\lambda_2 \qquad Z_2=\frac{1}{\sqrt{2}}\big(X_2+iX_5\big)$$

Add mass for hyper \implies N=2* theory

Review of N=2*: global symmetries

$$SU(4)_{R} \sim SO(6)_{R} \stackrel{\mathsf{N=2}}{\Longrightarrow} |SU(2)_{V}| |SU(2)_{H}| |U(1)_{R}$$

$$A_{\mu} = 0 \qquad 0 \qquad 0$$

$$\Phi = 0 \qquad 0 \qquad +2$$

$$\psi_{1,2} = 1/2 \qquad 0 \qquad +1$$

$$\frac{1/2}{\tilde{\psi}_{1,2}} = 0 \qquad 1/2 \qquad 0$$

$$\chi_{1,2} = 0 \qquad 1/2 \qquad -1$$

$$\tilde{\chi}_{1,2} = 0 \qquad 1/2 \qquad -1$$

$$1/2 \qquad 0$$

Mass term for N=2* in flat space

$$\mathcal{L}_{m}^{\mathbb{R}^{4}} = m^{2} \operatorname{tr} (|Z_{1}|^{2} + |Z_{2}|^{2}) + m \operatorname{tr} (\chi_{1} \chi_{1} + \chi_{2} \chi_{2} + \text{h.c.})$$

breaks
$$SU(2)_V \times SU(2)_H \times U(1)_R \implies SU(2)_V \times U(1)_H$$

Review of N=2*: holography

Mass term for N=2* in flat space $SU(2)_V \times U(1)_{H_2}$

$$\mathcal{L}_{m}^{\mathbb{R}^{4}} = m^{2} \operatorname{tr} (|Z_{1}|^{2} + |Z_{2}|^{2}) + m \operatorname{tr} (\chi_{1} \chi_{1} + \chi_{2} \chi_{2} + \text{h.c.})$$

dimension 2 operator



dual scalar $\,\phi\,$

dual scalar $\,\psi\,$

5d Pilch-Warner flow has flat domain walls

$$ds^2 = dr^2 + e^{2A(r)}\delta_{ij}dx^idx^j$$

and non-trivial radial profiles for the two scalars

Type IIB lift:
$$SU(2)_V \times U(1)_H \times U(1)_Y$$

Now put the theory on S⁴

Euclidean formalism for supergravity

Festuccia and Seiberg (2011)
"Rigid SUSY in curved spacetime"

Freedman and Pufu (2013) "Holography of F-maximization"

On S4: N=4 SYM

N=4 SYM is conformal,

so just need conformal coupling for the scalars:

$$\mathcal{L}_{\mathcal{N}=4}^{S^4} = \mathcal{L}_{\mathcal{N}=4}^{\mathbb{R}^4} \Big|_{\eta_{\mu\nu} \to g_{\mu\nu}} + \frac{2}{a^2} \operatorname{tr}(|Z_1|^2 + |Z_2|^2 + |Z_3|^2)$$

where a is the radius of the sphere.

On S4: N=2* SYM

N=2* theory is NOT conformal,

so in addition to conformal coupling for the scalars,

$$\frac{2}{a^2}\operatorname{tr}(|Z_1|^2 + |Z_2|^2 + |Z_3|^2)$$

the presence of the mass terms

$$m^2 \operatorname{tr} (|Z_1|^2 + |Z_2|^2) + m \operatorname{tr} (\chi_1 \chi_1 + \chi_2 \chi_2 + \text{h.c.})$$

requires another term

$$\frac{im}{2a} \operatorname{tr} \left(Z_1^2 + Z_2^2 + \text{h.c.} \right)$$

in order for supersymmetry to be preserved.

SUSY transf w/ S⁴ Killing spinors $\nabla_{\mu}\epsilon_{\pm}=\pmrac{\imath}{2a}\sigma_{\mu} ilde{\epsilon}_{\pm}$

On S4: N=2* SYM

Consequences of
$$\frac{im}{2a} \operatorname{tr} \left(Z_1^2 + Z_2^2 + \text{h.c.} \right)$$

1)
$$SU(2)_V \times U(1)_{H_2}$$
 is broken to $U(1)_V \times U(1)_H$

2) The gravity dual can be expected to involve one more scalar dual to this dimension 2 operator.

dual scalar χ

The third scalar turns out to be necessary for the gravitational flow dual to N=2* theory on S^4 .

This is why the two-scalar Pilch-Warner model does not capture this flow on S⁴.

Holographic dual of N=2* SYM on S⁴

Fields $g_{\mu\nu}, \phi, \psi, \text{ and } \chi$

with the three scalars dual to the three operators

$$\mathcal{O}_{\phi} = \text{tr}(|Z_1|^2 + |Z_2|^2), \quad \mathcal{O}_{\psi} = \text{tr}(\chi_1 \chi_1 + \chi_2 \chi_2 + \text{h.c.}), \quad \mathcal{O}_{\chi} = \text{tr}(Z_1^2 + Z_2^2 + \text{h.c.}).$$

symmetry
$$U(1)_V \times U(1)_H \times U(1)_Y$$
 Intriligator (1998) Buchel-Peet-Polchinski (2000) bonus symmetry at large-N

Truncation of N=8 gauged supergravity in 5d:

$$\mathcal{L} = \frac{1}{2\kappa^2} \left[-R + \frac{12\partial_{\mu}\eta\partial^{\mu}\eta}{\eta^2} + \frac{4\partial_{\mu}z\partial^{\mu}\tilde{z}}{(1-z\tilde{z})^2} + V \right], \qquad \eta = e^{\phi/\sqrt{6}}$$

$$V \equiv -\frac{4}{L^2} \left(\frac{1}{\eta^4} + 2\eta^2 \frac{1+z\tilde{z}}{1-z\tilde{z}} + \frac{\eta^8}{4} \frac{(z-\tilde{z})^2}{(1-z\tilde{z})^2} \right). \qquad \tilde{z} = \frac{1}{\sqrt{2}} (\chi + i\psi)$$

$$\tilde{z} = \frac{1}{\sqrt{2}} (\chi - i\psi)$$

Holographic dual of N=2* SYM on S4

$\eta = e^{\phi/\sqrt{6}}$ $z = \frac{1}{\sqrt{2}} (\chi + i\psi)$ $\tilde{z} = \frac{1}{\sqrt{2}} (\chi - i\psi)$

1) Bulk theory:

$$V = -3 - 2\phi^2 - 2\chi^2 - \frac{3}{2}\psi^2 + \dots$$

Scale dimension $\Delta = 2 + \sqrt{4 + m^2}$.

Two scaling dimension 2, one 3.

2) Truncation
$$z=-\tilde{z}$$
 gives Pilch-Warner model with flat-sliced domain wall solutions.

Holographic dual of N=2* SYM on S^4

3) We want S⁴-sliced domain wall solutions. Ansatz:

$$ds^{2} = L^{2}e^{2A(r)}ds_{S^{4}}^{2} + dr^{2}$$

$$\eta = \eta(r) \qquad z = z(r) \qquad \tilde{z} = \tilde{z}(r)$$

Note: Euclidean solution, z and \widetilde{z} are indep!

BPS equations:

$$z' = \frac{3\eta'(z\tilde{z}-1)\left[2(z+\tilde{z})+\eta^{6}(z-\tilde{z})\right]}{2\eta\left[\eta^{6}\left(\tilde{z}^{2}-1\right)+\tilde{z}^{2}+1\right]},$$

$$\tilde{z}' = \frac{3\eta'(z\tilde{z}-1)\left[2(z+\tilde{z})-\eta^{6}(z-\tilde{z})\right]}{2\eta\left[\eta^{6}\left(z^{2}-1\right)+z^{2}+1\right]},$$

$$(\eta')^{2} = \frac{\left[\eta^{6}\left(z^{2}-1\right)+z^{2}+1\right]\left[\eta^{6}\left(\tilde{z}^{2}-1\right)+\tilde{z}^{2}+1\right]}{9L^{2}\eta^{2}(z\tilde{z}-1)^{2}}$$

$$e^{2A} = \frac{(z\tilde{z}-1)^{2}\left[\eta^{6}\left(z^{2}-1\right)+z^{2}+1\right]\left[\eta^{6}\left(\tilde{z}^{2}-1\right)+\tilde{z}^{2}+1\right]}{\eta^{8}\left(z^{2}-\tilde{z}^{2}\right)^{2}}$$

(imply EOM)

Holographic dual of N=2* SYM on S^4

Have not found analytic solution to BPS eqs, but can analyze UV and IR behavior:

UV behavior: $r \to \infty$.

Solution approaches Euclidean AdS_5 (scalars \rightarrow 0)

$$ds_5^2 = dr^2 + L^2 \sinh^2\left(\frac{r}{L}\right) ds_{S^4}^2$$

Solving the BPS eqs iteratively order by order gives

$$e^{2A} = \frac{e^{2r}}{4} + \frac{1}{6}(\mu^2 - 3) + \dots \qquad \eta = 1 + e^{-2r} \left[\frac{2\mu^2}{3}r + \frac{\mu(\mu + v)}{3} \right] + \dots$$
$$\frac{1}{2}(z + \tilde{z}) = e^{-2r} \left[2\mu r + v \right] + \dots \qquad \frac{1}{2}(z - \tilde{z}) = \mp \mu e^{-r} \mp \dots$$

Two parameters: μ mass, v vev

Holographic dual of N=2* SYM on S^4

The holographic dual of N=2* SYM should depend on Just one dimensionless parameter: ma

IR behavior:

Solution approaches Euclidean flat space smoothly as S^4 shrinks to zero size and scalars \rightarrow constants.

Solve BPS equations iteratively as $r \to 0$

Smoothness condition gives 1-parameter family

$$\eta = \eta_0 + O(r^2)$$

$$\frac{1}{2}(z + \tilde{z}) = \sqrt{\frac{\eta_0^6 - 1}{\eta_0^6 + 1}} \frac{\eta_0^6}{\eta_0^6 + 2} + O(r^2)$$

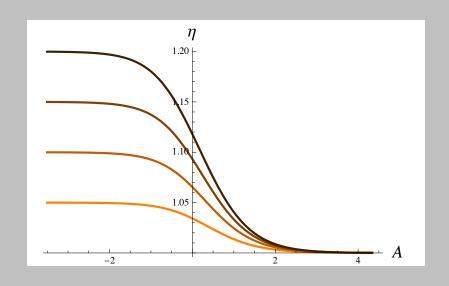
$$e^{2A} = O(r^2)$$
etc

Holographic dual of N=2* SYM on S⁴

Now match

UV and **IR** behavior

Numerical solution interpolates between UV and IR region: fixes the



two UV parameters in terms of the single IR parameter:

$$\mu(\eta_0)$$
 and $v(\eta_0)$

Extract from the numerics

$$v(\mu) = -2\mu - \mu \log(1 - \mu^2)$$

Official Old San Marcos Pass. 3 miles, 1165 ft. JoeP Personal Record 23:02min. Feb 26, 2014.

Recap:

We have constructed a candidate dual for the RG flow of N=2* on S^4

Next is calculation of the *on-shell action*.

Recap:

We have constructed a candidate dual for the RG flow of N=2* on S^4

Next is calculation of the on-shell action.

Divergent, but standard systematic technique for handling it with *infinite* counterterms:

Holographic renormalization

Leaves ambiguity of *finite* counterterms

Holographic renormalization

Finite counterterms tricky.

For *flat-sliced* domain walls, one can use the **Bogomolnyi trick** to determine the counterterms.

Idea:

Supergravity theory with several scalars, Kahler potential, and scalar potential given in terms of superpotential as

$$V = \frac{1}{2}K^{ij}\partial_i W \,\partial_j W - \frac{4}{3}W^2$$

gives BPS eqs

the action can be rearranged to sum of squares:

$$S = \int d^4x \int^{r_0} \left(e^{4A} \left[-3\left(A' - \frac{2}{3}W \right)^2 + \frac{1}{2}K_{ij} \left(\phi^{i\prime} - K^{il}\partial_l W \right) \left(\phi^{j\prime} - K^{jm}\partial_m W \right) \right] - \frac{d}{dr} \left(e^{4A}W \right) \right)$$

Bdr counterterms thus fixed by SUSY:

$$S_W = \int d^4x \, e^{4A(r_0)} \, W(\phi_i(r_0))$$

Holographic renormalization

- Our flows have S⁴-slicing. The flat-sliced limit is only consistent for $\tilde{z}=\pm z$
- There is no superpotential W for our scalar potential.

No Bogo. for us!!?

Holographic renormalization

- Our flows have S⁴-slicing. The flat-sliced limit is only consistent for $\tilde{z}=\pm z$
- There is no superpotential W for our scalar potential.

No Bogo. for us!!?

Idea:

Our scalar potential has an approximate superpotential, valid near the boundary:

$$W = \frac{3}{2} + \phi^2 + \frac{1}{2}\psi^2 + \frac{1}{2}\chi^2 + \sqrt{\frac{2}{3}}\phi \psi^2 + \frac{1}{4}\psi^4$$

Use it to determine finite counterterms for flat-sliced case.

Call upon counterterm universality!

$$S_{\text{susy}} = \int d^4x \, \sqrt{\gamma} \, W_{\text{o}}$$

Satisfies multiple checks & truncations

On-shell action & the free energy

$$S_{\text{ren}} = S_{5D} + S_{GH} + S_{\text{susy}}, \quad \text{with} \quad S_{\text{susy}} = \int d^4x \sqrt{\gamma} W_{\alpha}$$

Show that the derivative of the free energy with respect to the source parameter is given in terms of 1-point functions:

$$\frac{dF}{d\mu} = \frac{N^2}{2\pi^2} \int d^4x \sqrt{g_0} \left(\langle \mathcal{O}_{\psi} \rangle \frac{\partial \psi_0}{\partial \mu} + \langle \mathcal{O}_{\phi} \rangle \frac{\partial \phi_0}{\partial \mu} + \langle \mathcal{O}_{\chi} \rangle \frac{\partial \chi_0}{\partial \mu} \right)$$

where

$$\langle \mathcal{O}_{\psi} \rangle = \lim_{\epsilon \to 0} \frac{1}{\epsilon^{3/2}} \frac{1}{\sqrt{\gamma}} \frac{\delta S_{\mathrm{ren}}}{\delta \psi} \qquad \text{and} \qquad \langle \mathcal{O}_{\phi} \rangle = \lim_{\epsilon \to 0} \frac{\log \epsilon}{\epsilon} \frac{1}{\sqrt{\gamma}} \frac{\delta S_{\mathrm{ren}}}{\delta \phi}$$

and we have used $1/4\pi G_5 = N^2/2\pi^2$,

$$\frac{dF}{d\mu} = \frac{N^2}{2\pi^2} \operatorname{vol}_0(S^4) \left(4\mu - 12v(\mu) \right) = N^2 \left(\frac{1}{3}\mu - v(\mu) \right)$$

On-shell action & the free energy

Take two more derivatives:

$$\frac{d^3F}{d\mu^3} = -N^2 v''(\mu) = -2N^2 \frac{\mu (3-\mu^2)}{(1-\mu^2)^2} \blacksquare$$

using

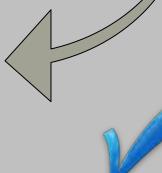
$$v(\mu) = -2\mu - \mu \log(1 - \mu^2)$$

from the UV/IR match in the BPS flow solution.

Compare with the field theory result:

$$\frac{d^3 F_{S^4}}{d(ma)^3} = -2N^2 \frac{ma(m^2a^2 + 3)}{(m^2a^2 + 1)^2}$$

Perfect match after identification $\mu = \pm i m a$



Comments

1) Finite counterterms were key for cancelation of $\,\mu^3\,$ terms

Could we have found a match without using supersymmetry and universality argument to fix finite counterterms?

Yes.

One can list the possible ambiguous finite counterterms, such as

$$R[\gamma] \psi^2$$
, $(\log \epsilon)^{-1} \psi^2 \phi$, ψ^4 etc

and calculate their potential contribution to $\frac{dF}{d\mu}$

Turns out that they contribute only $\,\mu\,$ or $\,\mu^3$, but never $\,v(\mu)\,$

So all ambiguity of finite counterterms eliminated in $\frac{d^5 R}{d\mu^5}$

Full functional match with field theory result.

2) Why
$$\frac{d^3F}{d\mu^3}$$
 ?

Superconformal theory on S⁴ has free energy of the form

$$F = \alpha_2 \frac{a^2}{\epsilon^2} + \alpha_0 - a_{\text{anom}} \log \frac{a}{\epsilon} + \mathcal{O}(\epsilon/a)$$
 small distance cutoff ϵ .

For N=2* theory on S⁴, F can also depend on dim'less $m^2\epsilon^2$

For small $\,m^2\epsilon^2\,$, the coefficients of the non-universal terms can be expressed as

$$\alpha_2 = \tilde{\alpha}_2 + m^2 \epsilon^2 \beta_2 + O(m^4 \epsilon^4)$$
 and $\alpha_0 = \tilde{\alpha}_0 + O(m^2 \epsilon^2)$

So the non-universal contributions $\tilde{\alpha}_2 \frac{a^2}{\epsilon^2} + \tilde{\alpha}_0 + \beta_2 m^2 a^2$

are eliminated in
$$\frac{d^3F}{d(ma)^3}$$

3) $\frac{d^3F_{S^4}}{d(ma)^3} = -2N^2\frac{ma(m^2a^2+3)}{(m^2a^2+1)^2} \qquad \text{What is special about } m^2a^2 = -1 \ \textbf{?}$

Recall the mass terms in N=2* on S^4 :

$$\frac{2}{a^2}\operatorname{tr}(|Z_1|^2 + |Z_2|^2 + |Z_3|^2) + m^2\operatorname{tr}(|Z_1|^2 + |Z_2|^2) + \frac{im}{2a}\operatorname{tr}(Z_1^2 + Z_2^2 + \text{h.c.})$$

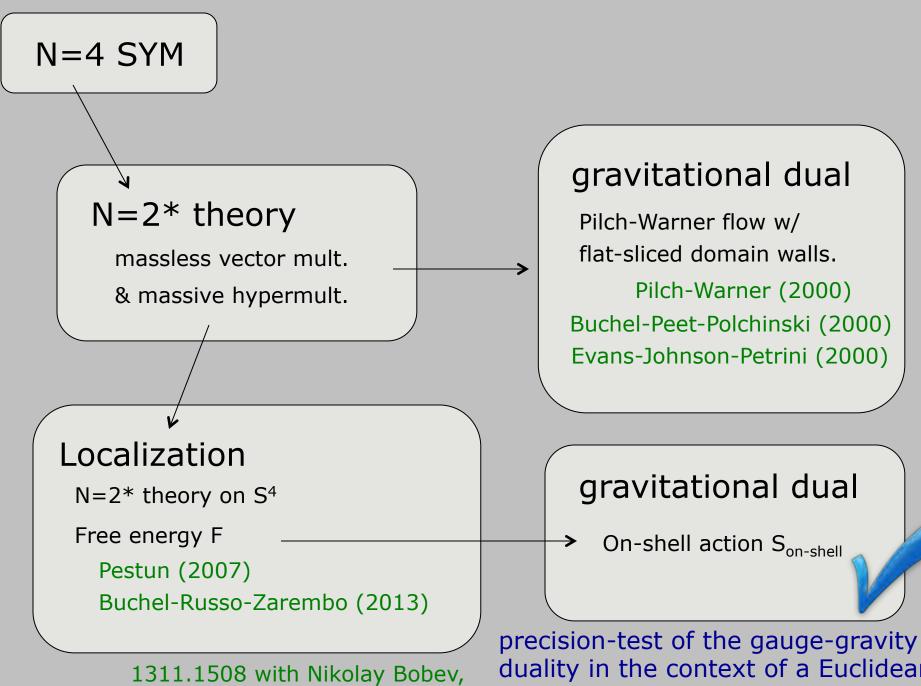
Write $Z = \frac{1}{\sqrt{2}}(A + iB)$ to find

$$\mathcal{L}_{\text{scalar}} = \frac{1}{2} \left[\left(\frac{2}{a^2} + i \frac{m}{a} + m^2 \right) A^2 + \left(\frac{2}{a^2} - i \frac{m}{a} + m^2 \right) B^2 \right]$$

$$= \frac{1}{2a^2} \left[(1 + ima)(2 - ima)A^2 + (1 - ima)(2 + ima)B^2 \right]$$

$$-1 < ima < 2 \qquad -2 < ima < 1$$

So $ma = \pm i$ is the tachyon threshold!



duality in the context of a Euclidean non-conformal setting. Dan Freedman, and Silviu Pufu

Happy Birthday, Joe!

thank you for all the good you have done for us