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Area and Information

I We understand the holographic connection between
geometry and information best in AdS.

I The Covariant Entropy Bound is a general relation
conjectured to hold in arbitrary spacetimes, including
cosmology:

I The entropy on a light-sheet is bounded by the difference
between its initial and final area.

I In this talk I will present a proof of this relation in a
nontrivial limiting regime.
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Surface-orthogonal light-rays

out orthogonally1 from B. But we have four choices: the family of light-
rays can be future-directed outgoing, future-directed ingoing, past-directed
outgoing, and past-directed ingoing (see Fig. 1). Which should we select?

time

space

B

F1

F2

F3

F4

Figure 1: There are four families of light-rays projecting orthogonally away from
a two-dimensional surface B, two future-directed families (one to each side of
B) and two past-directed families. At least two of them will have non-positive
expansion. The null hypersurfaces generated by non-expanding light-rays will be
called “light-sheets.” The covariant entropy conjecture states that the entropy on
any light-sheet cannot exceed a quarter of the area of B.

And how far may we follow the light-rays?
In order to construct a selection rule, let us briefly return to the limit in

which Bekenstein’s bound applies. For a spherical surface around a Beken-
stein system, the enclosed entropy cannot be larger than the area. But the

1While it may be clear what we mean by light-rays which are orthogonal to a closed
surface B, we should also provide a formal definition. In a convex normal neighbourhood
of B, the boundary of the chronological future of B consists of two future-directed null
hypersurfaces, one on either side of B (see Chapter 8 of Wald [19] for details). Similarly, the
boundary of the chronological past of B consists of two past-directed null hypersurfaces.
Each of these four null hypersurfaces is generated by a congruence of null geodesics starting
at B. At each point on p ∈ B, the four null directions orthogonal to B are defined by
the tangent vectors of the four congruences. This definition can be extended to smooth
surfaces B with a boundary ∂B: For p ∈ ∂B, the four orthogonal null directions are the
same as for a nearby point q ∈ B − ∂B, in the limit of vanishing proper distance between
p and q. We will also allow B to be on the boundary of the space-time M , in which case
there will be fewer than four options. For example, if B lies on a boundary of space, only
the ingoing light-rays will exist. We will not make such exceptions explicit in the text, as
they are obvious.
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I Any 2D spatial surface B bounds four (2+1D) null
hypersurfaces

I Each is generated by a congruence of null geodesics
(“light-rays”) ⊥ B



Light-sheets

An orthogonal null hypersurface is called light-sheet if the
generating light-rays are nonexpanding away from the initial
surface.



The Nonexpansion Condition
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I θ ≡ ∇̂aka, where ka is the affine tangent vector field
I In terms of an infinitesimal area element A spanned by

nearby light-rays,

θ =
dA/dλ
A

Demand
θ ≤ 0 ↔ nonexpansion

everywhere on the
light-sheet.



Light-sheets
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Out of the 4 orthogonal directions, usually at least 2 will initially
be nonexpanding.



Covariant Entropy Bound

In an arbitrary spacetime, choose an arbitrary two-
dimensional surface B of area A. Pick any light-sheet of B.
Then S ≤ A/4G~, where S is the entropy on the light-sheet.

RB 1999



(1) Closed universe

The Holographic Principle for General Backgrounds 9

as the two-sphere area goes to zero [1]. This illustrates the power of the decreasing area

rule.
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Figure 4. The closed FRW universe. A small two-sphere divides the S3

spacelike sections into two parts (a). The covariant bound will select the small

part, as indicated by the normal wedges (see Fig. 1d) near the poles in the

Penrose diagram (b). After slicing the space-time into a stack of light-cones,

shown as thin lines (c), all information can be holographically projected towards

the tips of wedges, onto an embedded screen hypersurface (bold line).

5.4. Questions of proof

More details and additional tests are found in Ref. [1]. No physical counterexample

to the covariant entropy bound is known (see the Appendix). But can the conjecture

be proven? In contrast with the Bekenstein bound, the covariant bound remains valid

for unstable systems, for example in the interior of a black hole. This precludes any

attempt to derive it purely from the second law. Quite conversely, the covariant bound

can be formulated so as to imply the generalized second law [17].

FMW [17] have been able to derive the covariant bound from either one of two sets

of physically reasonable hypotheses about entropy flux. In effect, their proof rules out

a huge class of conceivable counterexamples. Because of the hypothetical nature of the

FMW axioms and their phenomenological description of entropy, however, the FMW

proof does not mean that one can consider the covariant bound to follow strictly from

currently established laws of physics [17]. In view of the evidence we suggest that the

covariant holographic principle itself should be regarded as fundamental.

6. Where is the boundary?

Is the world really a hologram [5]? The light-sheet formalism has taught us how to

associate entropy with arbitrary 2D surfaces located anywhere in any spacetime. But

to call a space-time a hologram, we would like to know whether, and how, all of its

information (in the entire, global 3+1-dimensional space-time) can be stored on some

surfaces. For example, an anti-de Sitter “world” is known to be a hologram [6, 9]. By

this we mean that there is a one-parameter family of spatial surfaces (in this case, the

I Consider a small 2-sphere on a closed spatial manifold.
I The light-sheets are directed towards the “small” interior,

avoiding an obvious contradiction.



(2) Flat FRW universe

null infinityr=0

big bang

B

I Naively, S ∼ R3, A ∼ R2, so S/A diverges
I Sufficiently large spheres at fixed time t are anti-trapped
I Light-sheets are truncated by the singularity
I The entropy on these light-sheets grows only like R2



(3) Collapsing star
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I At late times the surface of the star is trapped
I Only future-directed light-sheets exist
I They do not contain all of the star



Generalized Covariant Entropy Bound
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If the light-sheet is terminated at finite cross-sectional area
A′, then the covariant bound can be strengthened:

S ≤ A− A′

4G~

Flanagan, Marolf & Wald, 1999
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How is the entropy defined?

The above definition is not fully satisfactory:
I Quantum systems are not sharply localized. Under what

conditions can we consider a matter system to “fit” on L?

I The vacuum, restricted to L, contributes a (divergent)
entropy. What is the justification for ignoring this piece?



How is the entropy defined?

The above definition is not fully satisfactory:
I Quantum systems are not sharply localized. Under what

conditions can we consider a matter system to “fit” on L?
I The vacuum, restricted to L, contributes a (divergent)

entropy. What is the justification for ignoring this piece?



How is the entropy defined?

I In cosmology and for large well-separated systems, these
subtleties do not present a serious obstruction.

I However, the GCEB is nontrivial even in the perturbative
regime, where matter has small backreaction on the
geometry. For example, a single wavepacket has
S ∼ O(1), ∆A ∼ O(1).

I Fortunately, in the G~→ 0 limit, a sharp definition of S is
possible.

I In the context of spatial regions, this definition was
introduced by Casini (2008), building on work of Marolf,
Minic, and Ross (2003).
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Casini Entropy

Consider two field theory states in Minkowski space: the
vacuum, |0〉, and some excited state ρglobal. In the absence of
gravity, G = 0, the geometry is identical in all matter states, and
one can restrict both states to a subregion V :

ρ ≡ tr−V ρglobal

ρ0 ≡ tr−V |0〉〈0|

Due to vacuum entanglement entropy, the van Neumann
entropy of each density operator diverges like A/ε2, where A is
the boundary area of V , and ε is a cutoff. However, the
difference is finite as ε→ 0:

∆S ≡ S(ρ)− S(ρ0) .

Marolf, Minic & Ross 2003, Casini 2008



Properties of the Casini Entropy

I For excitations that are well localized to the interior of V ,
one has ∆S ≈ S(ρglobal)

I For an incoherent superposition of n light species, then ∆S
does not diverge logarithmically with n, even though
S(ρglobal) does.
→ No Species Problem

I The observer-dependence is physically appropriate: an
observer with access only to V is unable to discriminate an
arbitrary number of species due to thermal effects.
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Assumptions

I will present a perturbative proof of the GCEB for free fields.
RB, Casini, Fisher, Maldacena 2011

The proof builds on work of H. Casini (2008) and of A. Wall
(2010, 2011)

Despite the limited regime, the proof is interesting for the
following reasons:

I It does not require any explicit assumptions of a relation
between entropy and energy, nor classical energy
conditions on matter such as the NEC.

I It relies sensitively on the nonexpansion condition, which
must be enforced even if the NEC is violated.



Relative Entropy

Given any two states, the (asymmetric!) relative entropy

S(ρ|ρ0) = −tr ρ log ρ0 − S(ρ)

satisfies positivity and monotonicity. That is, under further
restrictions of ρ and ρ0 to a subalgebra (e.g., a subset of V ), the
relative entropy is nonincreasing.

Lindblad 1975



Modular Hamiltonian

Definition: Let ρ0 be the vacuum state, restricted to some
region V . Then the modular Hamiltonian, K , is defined up to a
constant by

ρ0 ≡
e−K

tr e−K .

The modular energy is defined as

∆K ≡ tr Kρ− tr Kρ0 (1)



A Central Result

Positivity of the relative entropy implies immediately that

∆S ≤ ∆K .

This is useful because ∆K can be related to
I the area increase of a causal horizon Wall 2011
I the perturbative area difference of an “optimized”

light-sheet RB, Casini, Fisher, Maldacena 2011



GSL for Rindler Space

The modular Hamiltonian on the Rindler horizon
(x+ = x + t > 0) is given by

K =
2π
~

∫
d2x⊥

∫ ∞
0

dx+ x+ T++ ,

where T++ = Tabkakb and ka is the affine tangent vector to the
horizon. Bisognano, Wichmann 1975



GSL for Rindler Space

By integrating the Raychaudhuri equation

− dθ
dx+

=
1
2
θ2 + σabσ

ab + 8πGTabkakb

once, at leading order in G one finds the expansion along the
Rindler horizon:

θ(x+) = 8πG
∫ ∞

x+

T++dx̂+



GSL for Rindler Space

Integrating a second time and using

A(x+) = A(∞) exp
∫ ∞

x+

dx̂+θ(x̂+)

one finds that the Rindler horizon grows in area from x+ = 0 to
x+ =∞ by

∆A = 8πG
∫

d2x⊥
∫ ∞

0
dx+ x+ T++ .



GSL for Rindler Space

Hence one finds

∆S ≤ ∆K =
2π
~

∆A
8πG

=
∆A
4G~

and thus, the Generalized Second Law of Thermodynamics for
the Rindler horizon. Wall 2010

This and all subsequent results obtain at leading order in G
(weak backreaction).
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GSL for Rindler Space

I This result applies to the process where all of the entropy
in the wedge passes through the Rindler horizon.

I By exploiting monotonicity, it can be generalized to the
GSL for a sequence of horizon slices (nested Rindler
wedges). Wall 2010



GSL for Causal Horizons

I By quantizing directly on the light-front, one can further
generalize this to arbitrary horizon slices, of arbitrary
causal horizons (black hole, de Sitter) Wall 2011

I This exploits the “Ultralocality” of the operator algebra on
the null hypersurface: A(H) =

∏
i A(Hi) .

I Justified so far only for free fields. (Assume for now.)



Finite regions

I In finite volumes, the modular Hamiltonian K is generally
nonlocal.

I However, again one finds that null hypersurfaces have
special properties: K simplifies dramatically.

I In addition to ultralocality, a special conformal symmetry
along each generator was noted (though not needed) by
Wall (2011).

I We may obtain the modular Hamiltonian for a finite
light-sheet by application of an inversion, x+ → 1/x+, to
the Rindler Hamiltonian on x+ ∈ (1,∞).



Finite regions

We obtain

K =
2π
~

∫
d2x⊥

∫ 1

0
dx+ x+(1− x+) T++ .

If T++ ≥ 0 (null energy condition holds), then since
(1− x+) < 1 we would have ∆K ≤ ∆A/4G~, and the GCEB
would follow from positivity of the relative entropy.

But it is easy to find quantum states for which T++ < 0. In fact,
explicit examples can be found for which ∆S > ∆A/4G~, if the
initial expansion vanishes (θ0 = 0).
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Initial expansion and negative energy
I If the null energy condition holds, initially vanishing

expansion is the “toughest” choice for testing the GCEB.
I However, if the NEC is violated, then θ0 = 0 does not

guarantee that the nonexpansion condition holds
everywhere.

I To have a valid light-sheet, we must require that

0 ≥ θ(x+) = θ0 + 8πG
∫ 1

x+

dx̂+ T++(x̂+) ,

holds for all x+ ∈ [0,1].
I This can be accomplished in any state.
I But the light-sheet may have to contract initially:

θ0 ∼ O(G~) < 0 .



Nonzero Initial Expansion Enhances Area Loss

The area loss from x+ = 0 to x+ = 1 is now given by

∆A
A

= −
∫ 1

0
dx+θ(x+) = −θ0 + 8πG

∫ 1

0
dx+(1− x+)T++ .

at leading order in G.

One can eliminate θ0 using the nonexpansion condition: let
f (x+) be any positive function, such that F (1) = 1, where
F (x+) =

∫ x+

0 dx̂+f (x̂+). By nonexpansion, we have
0 ≥

∫ 1
0 fθdx+, and thus

θ0 ≤ 8πG
∫

dx+[1− F (x+)]T++ .
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Proof of the GCEB

With the specific choice f (x+) = 2− 2x+ we find that the area
difference is bounded from below by the modular Hamiltonian:

∆A
4G~

≥ A× 2π
~

∫ 1

0
dx+ x+(1− x+) T++ = ∆K .

The positivity of the relative entropy implies ∆S ≤ ∆K , so the
generalized covariant bound follows.



Comments

I Demanding nonexpansion on entire light-sheet is crucial.
(As opposed to, e.g., demanding only initial nonexpansion
plus some averaged version of the NEC.)

I No classical energy conditions or assumptions restricting
entropy in terms of energy density were needed.

I Existence of vacuum on each null generator (which goes
into the definition of the modular Hamiltonian) apparently
captures all the necessary restrictions.
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Generalizations

I Monotonicity can be shown: As the size of the null interval
is increased, ∆S −∆A/4G~ is nondecreasing.

I The same result follows from any local and concave
modular Hamiltonian with the correct Rindler limit.



Interacting Theories

I At linear order in the departure from the vacuum, one has
∆S = ∆K .

I This fixes the modular Hamiltonian if one can compute ∆S.
I For theories with a bulk dual, one can compute the

modular Hamiltonian by vacuum tomography
Blanco, Casini, Hung, Myers 2013

I In the null limit, one finds that the modular Hamiltonian
again takes a local form, and that it is concave.

I However we also seem to find that ∆S = ∆K for all states.
I Stay tuned.
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