Arborescent Vs non-arborescent knots and links

P. Ramadevi
Dept of Physics, IIT Bombay
Collaborators:Satoshi Nawata, Zodinmawia, Vivek Kumar Singh, Saswati Dhara
Andrei Mironov, Alexei Morozov, Andrey Morozov, Alexei Sleptov See our updates on colored HOMFLY-PT on knotebook.org website

9th Nov 2018, KITP

Outline

- Introduction

Outline

- Introduction
- Computation of colored HOMFLY-PT of arborescent knots

Outline

- Introduction
- Computation of colored HOMFLY-PT of arborescent knots
- Computation methods for non-arborescent knots

Outline

- Introduction
- Computation of colored HOMFLY-PT of arborescent knots
- Computation methods for non-arborescent knots
(i) Highest weight method

Outline

- Introduction
- Computation of colored HOMFLY-PT of arborescent knots
- Computation methods for non-arborescent knots
(i) Highest weight method
(ii) Eigenvalue Hypothesis

Outline

- Introduction
- Computation of colored HOMFLY-PT of arborescent knots
- Computation methods for non-arborescent knots
(i) Highest weight method
(ii) Eigenvalue Hypothesis
- Hybrid approach

Outline

- Introduction
- Computation of colored HOMFLY-PT of arborescent knots
- Computation methods for non-arborescent knots
(i) Highest weight method
(ii) Eigenvalue Hypothesis
- Hybrid approach
mixture of tools developed for arborescent and non-arborescent knots

Outline

- Introduction
- Computation of colored HOMFLY-PT of arborescent knots
- Computation methods for non-arborescent knots
(i) Highest weight method
(ii) Eigenvalue Hypothesis
- Hybrid approach
mixture of tools developed for arborescent and non-arborescent knots
- Summary and open problems

Introduction

(a) $(\overline{3}, \overline{3},-\overline{3}, \overline{3})$ anti-parallel pretzel link

Example:

(b) $\mathbf{8}_{18}$ knot

Eigenbasis of Braiding operator B

For the four-punctured S^{2} boundary, the conformal block bases are:

Eigenbasis of Braiding operator B

For the four-punctured S^{2} boundary, the conformal block bases are:

$a_{s, r_{1} r_{2}}^{t, r_{3} r_{4}}\left[\begin{array}{ll}R_{1} & R_{2} \\ R_{3} & R_{4}\end{array}\right]$ is the duality matrix relating the two basis

Figure 8 knot invariant

Figure 8 knot invariant

Involves braidings in middle as well as side two-strands.

Figure 8 knot invariant

Involves braidings in middle as well as side two-strands. Duality matrix required to go from middle to side-strand basis! The invariants will involve braiding eigenvalues and duality matrices

Arborescent Knots

- The knots with more than four-strands which can be drawn as

Arborescent Knots

- The knots with more than four-strands which can be drawn as

are called Arborescent knots.

Arborescent Knots

- The knots with more than four-strands which can be drawn as

are called Arborescent knots.
- These knots in S^{3} are obtained from gluing three-balls where some three-balls have two or more four-punctured S^{2} boundaries

10_{152} and 10_{71} arborescent knots

Knot 10_{71}

Building blocks

Requires the following building blocks to compute knot polynomials

Building blocks

Requires the following building blocks to compute knot polynomials

$$
\begin{aligned}
& \nu_{3}=\sum_{t, r_{1}, r_{2}, r_{3}}\left(\Omega\left(t, r_{1}, r_{2}, r_{3}\right)\left|\phi_{t, r_{1}, r_{2}}^{(1)}\right\rangle\left|\phi_{t, r_{2}, r_{3}}^{(2)}\right\rangle \ldots\left|\phi_{t, r_{3}, r_{1}}^{(3)}\right\rangle\right. \\
& \Omega\left(t ; r_{1}, r_{2}, r_{3}\right)=\frac{\left\{R, \bar{R}, t, r_{1}\right\}\left\{R, \bar{R}, t, r_{1}\right\}\left\{R, \bar{R}, t, r_{1}\right\}}{\sqrt{\operatorname{dim}_{q} t}}
\end{aligned}
$$

Equivalent Building Blocks

- To write states of some diagrams, equivalent diagrams are shown:

Equivalent Building Blocks

- To write states of some diagrams, equivalent diagrams are shown:

Arborescent knot- Feynman diagram analogy

Family Approach: Arborescent knots

one universal invariant as a function of parameters- choice of parameters gives different knot invariants!

Arborescent knot : drawn as Feynman tree diagram

Family Approach: Arborescent knots

one universal invariant as a function of parameters- choice of parameters gives different knot invariants!

The best parametric family (for describing upto 10 -crossing knots) in this class (of 4-point Feynman trees with up to 7 parameters)
A.Mironov, A. Morozov, An. Morozov, V.Singh, A. Sleptsov, PR (2016)
$d_{R} \sum_{X, \bar{Y}} F_{a p}(X) F_{p a p}(X) T_{X}^{n} \bar{P}_{X \bar{Y}} F_{a p a}(\bar{Y}) F_{a a}(\bar{Y})$
$9_{32-33}, 10_{45}, 10_{57}, 10_{62}, 10_{64}, 10_{66}, 10_{79-85}, 10_{87-91}, 10_{94}, 10_{98}, 10_{99}, 10_{139}, 10_{141}, 10_{143}, 10_{148-154-}$ list not contained!

Arborescent knot invariants

- arborescent knot invariants will involve braiding eigenvalues and two types of duality matrices $a_{s ; r_{1}, r_{2}}^{t ; r_{3}, r_{4}}\left[\begin{array}{ll}\bar{R} & R \\ \bar{R} & R\end{array}\right]$ and or $a_{s_{1}, r_{1}, r_{2}}^{t ; r_{3}, r_{4}}\left[\begin{array}{ll}\bar{R} & R \\ R & \bar{R}\end{array}\right]$

Arborescent knot invariants

- arborescent knot invariants will involve braiding eigenvalues and two types of duality matrices $a_{s ; r_{1}, r_{2}}^{t ; r_{3}, r_{4}}\left[\begin{array}{ll}\bar{R} & R \\ \bar{R} & R\end{array}\right]$ and or $a_{s_{1}, r_{1}, r_{2}}^{t ; r_{3}, r_{4}}\left[\begin{array}{ll}\bar{R} & R \\ R & \bar{R}\end{array}\right]$
- However, other duality matrices are needed for non-arborescent knot invariants!

Current status on the duality matrix elements

- Duality matrices proportional to quantum Wigner 6j (completely known for $S U(2)$ (Kirillov, Reshetikhin) and hence we can write the polynomial form of any knot invariant (colored Jones' polynomials $\left.J_{n}(q)\right)$

Current status on the duality matrix elements

- Duality matrices proportional to quantum Wigner 6j (completely known for $S U(2)$ (Kirillov, Reshetikhin) and hence we can write the polynomial form of any knot invariant (colored Jones' polynomials $\left.J_{n}(q)\right)$
- For symmetric and antisymmetric R of $\operatorname{SU}(\mathrm{N})$, we conjectured closed form of duality matrices from twist knot invariants -Satoshi, Zodinmawia,PR(2013) -hence arborescent knot invariants in polynomial form is possible.

Current status on the duality matrix elements

- Duality matrices proportional to quantum Wigner 6j (completely known for $S U(2)$ (Kirillov, Reshetikhin) and hence we can write the polynomial form of any knot invariant (colored Jones' polynomials $\left.J_{n}(q)\right)$
- For symmetric and antisymmetric R of $\operatorname{SU}(\mathrm{N})$, we conjectured closed form of duality matrices from twist knot invariants -Satoshi, Zodinmawia,PR(2013) -hence arborescent knot invariants in polynomial form is possible.
- For \square , Gu-Jockers have worked out (2014)

Current status on the duality matrix elements

- Duality matrices proportional to quantum Wigner 6j (completely known for $S U(2)$ (Kirillov, Reshetikhin) and hence we can write the polynomial form of any knot invariant (colored Jones' polynomials $\left.J_{n}(q)\right)$
- For symmetric and antisymmetric R of $\operatorname{SU}(\mathrm{N})$, we conjectured closed form of duality matrices from twist knot invariants -Satoshi, Zodinmawia,PR(2013) -hence arborescent knot invariants in polynomial form is possible.
- For
 , Gu-Jockers have worked out (2014)
- For \square
\square are known.

Current status on the duality matrix elements

- Duality matrices proportional to quantum Wigner 6j (completely known for SU(2) (Kirillov, Reshetikhin) and hence we can write the polynomial form of any knot invariant (colored Jones' polynomials $\left.J_{n}(q)\right)$
- For symmetric and antisymmetric R of $\operatorname{SU}(\mathrm{N})$, we conjectured closed form of duality matrices from twist knot invariants -Satoshi, Zodinmawia,PR(2013) -hence arborescent knot invariants in polynomial form is possible.
- For
 , Gu-Jockers have worked out (2014)
- For \square
\square are known.
- Challenging open problem : to write a Kirillov-Reshetikhin type form for $\mathrm{SU}(\mathrm{N})$

Status on mutation from our approach

- On any two tangle, mutation refers to π rotation about x or y axis $\left(M_{x}, M_{y}\right)$

Status on mutation from our approach

- On any two tangle, mutation refers to π rotation about x or y axis $\left(M_{x}, M_{y}\right)$

- Mutation is seen as identity operation by symmetric colors.

Status on mutation from our approach

- On any two tangle, mutation refers to π rotation about x or y axis $\left(M_{x}, M_{y}\right)$

- Mutation is seen as identity operation by symmetric colors.
- need to go beyond symmetric representation.

[2,1] colored HOMFLY-PT

[2,1] colored HOMFLY-PT

- The two types of Wigner 6 j has been determined for $[2,1]$ (Gu,Jockers), 2014-

[2,1] colored HOMFLY-PT

- The two types of Wigner 6 j has been determined for $[2,1]$ (Gu,Jockers), 2014-first mixed representation

[2,1] colored HOMFLY-PT

- The two types of Wigner 6 j has been determined for $[2,1]$ (Gu,Jockers), 2014-first mixed representation
- Using these matrix elements, we obtained [2,1] colored HOMFLY polynomials for the KT-Conway mutant pair-

[2,1] colored HOMFLY-PT

- The two types of Wigner 6 j has been determined for $[2,1]$ (Gu,Jockers), 2014-first mixed representation
- Using these matrix elements, we obtained [2,1] colored HOMFLY polynomials for the KT-Conway mutant pair- they are indeed distinct

[2,1] colored HOMFLY-PT

- The two types of Wigner 6 j has been determined for $[2,1]$ (Gu,Jockers), 2014-first mixed representation
- Using these matrix elements, we obtained [2,1] colored HOMFLY polynomials for the KT-Conway mutant pair- they are indeed distinct Satoshi Nawata, Vivek Singh, PR (2015)

Additional information in mixed representation

Additional information in mixed representation

- Crucial input in the context of mixed representation: multiplicity

$$
\begin{aligned}
(21 ; 0) \otimes(21 ; 0)= & (42 ; 0)_{0} \oplus\left(2^{3} ; 0\right)_{0} \oplus\left(31^{3} ; 0\right)_{0} \oplus(321 ; 0)_{0} \\
& \oplus(321 ; 0)_{1} \oplus\left(41^{2} ; 0\right)_{0} \oplus\left(3^{2} ; 0\right)_{0} \oplus\left(2^{2} 1^{2} ; 0\right)_{0}
\end{aligned}
$$

Additional information in mixed representation

- Crucial input in the context of mixed representation: multiplicity

$$
\begin{aligned}
(21 ; 0) \otimes(21 ; 0)= & (42 ; 0)_{0} \oplus\left(2^{3} ; 0\right)_{0} \oplus\left(31^{3} ; 0\right)_{0} \oplus(321 ; 0)_{0} \\
& \oplus(321 ; 0)_{1} \oplus\left(41^{2} ; 0\right)_{0} \oplus\left(3^{2} ; 0\right)_{0} \oplus\left(2^{2} 1^{2} ; 0\right)_{0}
\end{aligned}
$$

- Hence the states in the four-point conformal blocks involve multiplicity index $r_{i}:\left|\phi_{s, r_{1}, r_{2}}\right\rangle$

Mutation operation on two-tangles

$|\mathbf{E}\rangle=b_{1}^{(-)}\left[b_{3}^{(-)}\right]^{-1}|\mathbf{F}\rangle$
$=\sum_{t, r_{1}, r_{2}}\left\{R, \bar{R}, \bar{t}, r_{1}\right\}\left\{R, \bar{R}, \bar{t}, r_{2}\right\}\left|\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R})\right\rangle\left\langle\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R}) \mid \mathbf{F}\right\rangle$

Mutation operation on two-tangles

$$
\begin{aligned}
|\mathbf{t}\rangle & =b_{1}^{(-)}\left[b_{3}^{(-)}\right]^{-1}|\mathbf{F}\rangle \\
& =\sum_{t, r_{1}, r_{2}}\left\{R, \bar{R}, \bar{t}, r_{1}\right\}\left\{R, \bar{R}, \bar{t}, r_{2}\right\}\left|\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R})\right\rangle\left\langle\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R}) \mid \mathbf{F}\right\rangle \\
|\boldsymbol{\exists}\rangle & =\left(\left[b_{1}^{(-)}\right]^{-1} b_{2}^{(+)}\left[b_{1}^{(-)}\right]^{-1}\right) b_{1}^{(-)}\left[b_{3}^{(-)}\right]^{-1}\left(\left[b_{1}^{(-)}\right]^{-1} b_{2}^{(+)}\left[b_{1}^{(-)}\right]^{-1}\right)|\mathbf{F}\rangle \\
& =\sum_{t, r_{1}, r_{2}}\left\{R, \bar{R}, \bar{t}, r_{1}\right\}\left\{R, \bar{R}, \bar{t}, r_{2}\right\}\left|\phi_{t, r_{2}, r_{1}}^{(1)}(R, \bar{R}, R, \bar{R})\right\rangle\left\langle\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R}) \mid \mathbf{F}\right\rangle .
\end{aligned}
$$

Mutation operation on two-tangles

$$
\begin{aligned}
|\mathbf{t}\rangle & =b_{1}^{(-)}\left[b_{3}^{(-)}\right]^{-1}|\mathbf{F}\rangle \\
& =\sum_{t, r_{1}, r_{2}}\left\{R, \bar{R}, \bar{t}, r_{1}\right\}\left\{R, \bar{R}, \bar{t}, r_{2}\right\}\left|\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R})\right\rangle\left\langle\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R}) \mid \mathbf{F}\right\rangle \\
|\mathbf{Z}\rangle & =\left(\left[b_{1}^{(-)}\right]^{-1} b_{2}^{(+)}\left[b_{1}^{(-)}\right]^{-1}\right) b_{1}^{(-)}\left[b_{3}^{(-)}\right]^{-1}\left(\left[b_{1}^{(-)}\right]^{-1} b_{2}^{(+)}\left[b_{1}^{(-)}\right]^{-1}\right)|\mathbf{F}\rangle \\
& =\sum_{t, r_{1}, r_{2}}\left\{R, \bar{R}, \bar{t}, r_{1}\right\}\left\{R, \bar{R}, \bar{t}, r_{2}\right\}\left|\phi_{t, r_{2}, r_{1}}^{(1)}(R, \bar{R}, R, \bar{R})\right\rangle\left\langle\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R}) \mid \mathbf{F}\right\rangle .
\end{aligned}
$$

parenthesis denotes signs ± 1.

Mutation operation on two-tangles

$$
\begin{aligned}
|\mathbf{t}\rangle & =b_{1}^{(-)}\left[b_{3}^{(-)}\right]^{-1}|\mathbf{F}\rangle \\
& =\sum_{t, r_{1}, r_{2}}\left\{R, \bar{R}, \bar{t}, r_{1}\right\}\left\{R, \bar{R}, \bar{t}, r_{2}\right\}\left|\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R})\right\rangle\left\langle\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R}) \mid \mathbf{F}\right\rangle \\
|\boldsymbol{\exists}\rangle & =\left(\left[b_{1}^{(-)}\right]^{-1} b_{2}^{(+)}\left[b_{1}^{(-)}\right]^{-1}\right) b_{1}^{(-)}\left[b_{3}^{(-)}\right]^{-1}\left(\left[b_{1}^{(-)}\right]^{-1} b_{2}^{(+)}\left[b_{1}^{(-)}\right]^{-1}\right)|\mathbf{F}\rangle \\
& =\sum_{t, r_{1}, r_{2}}\left\{R, \bar{R}, \bar{t}, r_{1}\right\}\left\{R, \bar{R}, \bar{t}, r_{2}\right\}\left|\phi_{t, r_{2}, r_{1}}^{(1)}(R, \bar{R}, R, \bar{R})\right\rangle\left\langle\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R}) \mid \mathbf{F}\right\rangle .
\end{aligned}
$$

parenthesis denotes signs ± 1. Notice the amplitudes of mutant tangles are related by sign when $r_{1} \neq r_{2}$

Mutation operation on two-tangles

$$
\begin{aligned}
|\mathbf{t}\rangle & =b_{1}^{(-)}\left[b_{3}^{(-)}\right]^{-1}|\mathbf{F}\rangle \\
& =\sum_{t, r_{1}, r_{2}}\left\{R, \bar{R}, \bar{t}, r_{1}\right\}\left\{R, \bar{R}, \bar{t}, r_{2}\right\}\left|\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R})\right\rangle\left\langle\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R}) \mid \mathbf{F}\right\rangle \\
|\mathbf{Z}\rangle & =\left(\left[b_{1}^{(-)}\right]^{-1} b_{2}^{(+)}\left[b_{1}^{(-)}\right]^{-1}\right) b_{1}^{(-)}\left[b_{3}^{(-)}\right]^{-1}\left(\left[b_{1}^{(-)}\right]^{-1} b_{2}^{(+)}\left[b_{1}^{(-)}\right]^{-1}\right)|\mathbf{F}\rangle \\
& =\sum_{t, r_{1}, r_{2}}\left\{R, \bar{R}, \bar{t}, r_{1}\right\}\left\{R, \bar{R}, \bar{t}, r_{2}\right\}\left|\phi_{t, r_{2}, r_{1}}^{(1)}(R, \bar{R}, R, \bar{R})\right\rangle\left\langle\phi_{t, r_{1}, r_{2}}^{(1)}(R, \bar{R}, R, \bar{R}) \mid \mathbf{F}\right\rangle .
\end{aligned}
$$

parenthesis denotes signs ± 1. Notice the amplitudes of mutant tangles are related by sign when $r_{1} \neq r_{2}$ (occurs only for irreps with multiplicity),

Tangle and its M_{y} mutation

- The mutation operation $\left(M_{y}\right)$ on $|\mathbf{F}\rangle$ which gives $|\boldsymbol{7}\rangle$ whose state can also be obtained.

- The coefficients are related by mutation operation :

$$
\tilde{f}_{s, r_{1}, r_{2}}=(-1)^{r_{1}+r_{2} f_{s, r_{2}, r_{1}}} .
$$

Difference between tangle F and mutant tangle of F

For some mutants, these coefficients could be zero(for example, pretzel mutant knot pairs with odd antiparallel braidings.)

Difference between tangle F and mutant tangle of F

For some mutants, these coefficients could be zero(for example, pretzel mutant knot pairs with odd antiparallel braidings.)
We require duality matrix for $R=\square$ (two-row representations) with multiplicity more than two to compute difference between such antiparallel pretzel mutants

Knot and its mutant invariant

Let us cap each of these tangles with a tangle $\langle\mathbf{G}|$, which we write

$$
\text { Cr }=\sum_{s, r_{1}, r_{2}} g_{s, r_{1}, r_{2}}\left\langle\phi_{s, r_{1}, r_{2}}^{(1)}(R, \bar{R}, \bar{R}, R)\right|
$$

Then, the difference between the invariants of the mutant pairs arising from these 2-tangles will be

Kinoshita-Terasaka and Conway mutants

- This mutant pair is made of the following F and G-tangle

Knot invariant for the mutant pair

The explicit expression for the coefficient for tangle G turns out to be

$$
\begin{aligned}
& g_{t, r_{10}, r_{11}}=\operatorname{dim}_{q} R \sum \Omega\left(i, r_{1}, r_{2}, r_{3}\right) \Omega\left(j, r_{6}, r_{7}, r_{8}\right) \lambda_{l ; r_{5}}^{+}{ }^{2} a_{l ; r_{5}, r_{5}}^{* 0 ; 0}\left[\begin{array}{cc}
\bar{R} & R \\
R & \bar{R}
\end{array}\right] \\
& a_{l ; r_{5}, r_{5}}^{* i ; r_{2}, r_{5}}\left[\begin{array}{ll}
\bar{R} & R \\
R & \bar{R}
\end{array}\right] \lambda_{k ; r_{4}}^{+{ }^{-3}} a_{k ; r_{4}, r_{4}}^{0000,0}\left[\begin{array}{ll}
\bar{R} & R \\
R & \bar{R}
\end{array}\right] a_{k ; r_{4}, r_{4}}^{i ; r_{1}, r_{4}}\left[\begin{array}{ll}
\bar{R} & R \\
R & \bar{R}
\end{array}\right]\left(\lambda_{s ; r_{9}}^{-}\right)^{2} \\
& a_{s ; r_{9}, r_{9}}^{* ; ; 0,0}\left[\begin{array}{ll}
R & \bar{R} \\
R & \bar{R}
\end{array}\right] a_{s ; r_{9}, r_{9}}^{* j ; r_{2}, r_{6}}\left[\begin{array}{ll}
R & \bar{R} \\
R & \bar{R}
\end{array}\right] a_{j ; r_{8}, r_{9}}^{t: r_{0}}\left(\lambda_{t ; r_{10}}\right)^{-1}\left[\begin{array}{ll}
R & \bar{R} \\
R & \bar{R}
\end{array}\right] \\
& a_{j ; r_{8}, r_{6}}^{i, r_{1}, r_{3}}\left[\begin{array}{ll}
R & \bar{R} \\
R & \bar{R}
\end{array}\right]
\end{aligned}
$$

Similarly, the coefficients in the tangle F state is

$$
\begin{aligned}
f_{t, r_{10}, r_{11}}= & \sum_{w, u} \sum_{r_{14}, r_{13}, r_{12}} \Omega\left(t, r_{10}, r_{11}, r_{12}\right)\left(\lambda_{w ; r_{14}}^{+}\right)^{3} a_{w ; r_{14}, r_{14}}^{* 0 ; 0,0}\left[\begin{array}{ll}
\bar{R} & R \\
R & \bar{R}
\end{array}\right] \\
& a_{w, r_{14}, r_{14}}^{t, r_{11}, r_{12}}\left[\begin{array}{ll}
\bar{R} & R \\
R & \bar{R}
\end{array}\right]\left(\lambda_{u ; r_{13}}^{-}\right)^{-2} a_{u ; r_{13}, r_{13} 0 ; 0,0}^{0 ;,}\left[\begin{array}{ll}
R & \bar{R} \\
R & \bar{R}
\end{array}\right] a_{u ; r_{13}, r_{13}}^{* t, r_{12}, r_{10}}\left[\begin{array}{ll}
R & \bar{R} \\
R & \bar{R}
\end{array}\right]
\end{aligned}
$$

Non-Arborescent Knots

Other methods to obtain these knot invariants -

Non-Arborescent Knots

Other methods to obtain these knot invariants - tedious

Non-Arborescent Knots

Other methods to obtain these knot invariants - tedious - Our recent works:

Non-Arborescent Knots

Other methods to obtain these knot invariants - tedious

- Our recent works:(S. Dhara, A. Mironov, A. Morozov, An.Morozov, PR, VKS, A.Sleptsov, arXiv:1711.10952, 1805.03916)

Non-Arborescent Knots

Other methods to obtain these knot invariants - tedious

- Our recent works:(S. Dhara, A. Mironov, A. Morozov, An.Morozov, PR, VKS, A.Sleptsov, arXiv:1711.10952, 1805.03916)
- obtained symmetric [2]-colored HOMFLY-PT for non-aborescent knots from 4-strand braids

Non-Arborescent Knots

Other methods to obtain these knot invariants - tedious

- Our recent works:(S. Dhara, A. Mironov, A. Morozov, An.Morozov, PR, VKS, A.Sleptsov, arXiv:1711.10952, 1805.03916)
- obtained symmetric [2]-colored HOMFLY-PT for non-aborescent knots from 4-strand braids
- Proved for knots and links obtained from closure of 3-strand braid (using eigenvalue hypothesis):

$$
a_{i j}\left[\begin{array}{cc}
{\left[r_{1}\right]} & {\left[r_{2}\right]} \\
{\left[r_{3}\right]} & \overline{\left[\ell_{\nu}-n_{\nu}, m_{\nu}-n_{\nu}\right]}
\end{array}\right]=a_{i j}^{\left(s /_{2}\right)}\left[\begin{array}{cc}
\left(r_{1}-n_{\nu}\right) / 2 & \left(r_{2}-n_{\nu}\right) / 2 \\
\left(r_{3}-n_{\nu}\right) / 2 & \left(\ell_{\nu}-m_{\nu}\right) / 2
\end{array}\right]
$$

Non-Arborescent Knots

Other methods to obtain these knot invariants - tedious

- Our recent works:(S. Dhara, A. Mironov, A. Morozov, An.Morozov, PR, VKS, A.Sleptsov, arXiv:1711.10952, 1805.03916)
- obtained symmetric [2]-colored HOMFLY-PT for non-aborescent knots from 4-strand braids
- Proved for knots and links obtained from closure of 3-strand braid (using eigenvalue hypothesis):

$$
a_{i j}\left[\begin{array}{cc}
{\left[r_{1}\right]} & {\left[r_{2}\right]} \\
{\left[r_{3}\right]} & \overline{\left[\ell_{\nu}-n_{\nu}, m_{\nu}-n_{\nu}\right]}
\end{array}\right]=a_{i j}^{\left(s /_{2}\right)}\left[\begin{array}{cc}
\left(r_{1}-n_{\nu}\right) / 2 & \left(r_{2}-n_{\nu}\right) / 2 \\
\left(r_{3}-n_{\nu}\right) / 2 & \left(\ell_{\nu}-m_{\nu}\right) / 2
\end{array}\right]
$$

enabling invariants for links from 3-strand braids carrying different symmetric colors.

Colored HOMFLY-PT from quantum \mathcal{R} matrices

- For $\mathrm{m}=3$ strand and each strand carrying representation R, parameterized by a sequence of integers ($a_{1}, b_{1}, a_{2}, b_{2}$) (H.Itoyama, A. Mironov, A. Morozov, And. Morozov arXiv:1209.6304v1)
As a example: sequence of integers ($-1,-1,-1,-1$)

- colored HOMFLY-PT using quantum \mathcal{R} matrices will be

$$
H_{R}=\operatorname{Tr}\left\{(\mathcal{R} \otimes \mathcal{I})^{a_{1}}(\mathcal{I} \otimes \mathcal{R})^{b_{1}}(\mathcal{R} \otimes \mathcal{I})^{a_{2}}(\mathcal{I} \otimes \mathcal{R})^{b_{2}}\right\}
$$

- Instead of working in tensor space $R^{\otimes 3}$, it is simpler to work using the irreducible representation

For example.,

$$
\begin{aligned}
H_{[1]}= & \sum_{[111],[21],[3]} \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{Q}\right)^{a_{1}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{1}}\left(\mathcal{R}_{1}^{Q}\right)^{a_{2}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{2}}\right\} \\
= & q^{a_{1}+b_{1}+a_{2}+b_{2}} S_{[3]}^{*}+q^{-\left(a_{1}+b_{1}+a_{2}+b_{2}\right)} S_{[111]}^{*}+ \\
& \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{[21]}\right)^{a_{1}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[21]}\right)^{b_{1}}\left(\mathcal{R}_{1}^{[21]}\right)^{a_{2}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[21]}\right)^{b_{2}}\right\} S_{[21]}^{*}
\end{aligned}
$$

where S_{Q}^{*} are the quantum dimensions of the representation Q.

For example.,

$$
\begin{aligned}
H_{[1]}= & \sum_{[111],[21],[3]} \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{Q}\right)^{a_{1}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{1}}\left(\mathcal{R}_{1}^{Q}\right)^{a_{2}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{2}}\right\} \\
= & q^{a_{1}+b_{1}+a_{2}+b_{2}} S_{[3]}^{*}+q^{-\left(a_{1}+b_{1}+a_{2}+b_{2}\right)} S_{[111]}^{*}+ \\
& \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{[21]}\right)^{a_{1}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[21]}\right)^{b_{1}}\left(\mathcal{R}_{1}^{[21]}\right)^{a_{2}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[21]}\right)^{b_{2}}\right\} S_{[21]}^{*}
\end{aligned}
$$

where S_{Q}^{*} are the quantum dimensions of the representation Q.

- quantum \mathcal{R}_{1} is diagonalisable and there is a unitary transformation U_{Q} to obtain $\mathcal{R}_{2}=U_{Q} \mathcal{R}_{1} U_{Q}$.

For example.,

$$
\begin{aligned}
H_{[1]}= & \sum_{[111],[21],[3]} \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{Q}\right)^{a_{1}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{1}}\left(\mathcal{R}_{1}^{Q}\right)^{a_{2}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{2}}\right\} \\
= & q^{a_{1}+b_{1}+a_{2}+b_{2}} S_{[3]}^{*}+q^{-\left(a_{1}+b_{1}+a_{2}+b_{2}\right)} S_{[111]}^{*}+ \\
& \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{[21]}\right)^{a_{1}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[21]}\right)^{b_{1}}\left(\mathcal{R}_{1}^{[21]}\right)^{a_{2}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[21]}\right)^{b_{2}}\right\} S_{[21]}^{*}
\end{aligned}
$$

where S_{Q}^{*} are the quantum dimensions of the representation Q.

- quantum \mathcal{R}_{1} is diagonalisable and there is a unitary transformation U_{Q} to obtain $\mathcal{R}_{2}=U_{Q} \mathcal{R}_{1} U_{Q}$.
- U_{Q} is non-trivial when paths to obtain Q from $R^{\otimes 3}$ is two or more.

For example.,

$$
\begin{aligned}
H_{[1]}= & \sum_{[111],[21],[3]} \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{Q}\right)^{a_{1}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{1}}\left(\mathcal{R}_{1}^{Q}\right)^{a_{2}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{2}}\right\} \\
= & q^{a_{1}+b_{1}+a_{2}+b_{2}} S_{[3]}^{*}+q^{-\left(a_{1}+b_{1}+a_{2}+b_{2}\right)} S_{[111]}^{*}+ \\
& \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{[21]}\right)^{a_{1}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[21]}\right)^{b_{1}}\left(\mathcal{R}_{1}^{[21]}\right)^{a_{2}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[21]}\right)^{b_{2}}\right\} S_{[21]}^{*}
\end{aligned}
$$

where S_{Q}^{*} are the quantum dimensions of the representation Q.

- quantum \mathcal{R}_{1} is diagonalisable and there is a unitary transformation U_{Q} to obtain $\mathcal{R}_{2}=U_{Q} \mathcal{R}_{1} U_{Q}$.
- U_{Q} is non-trivial when paths to obtain Q from $R^{\otimes 3}$ is two or more.
- Highest weight method is one method which enables determining these U matrices.

For example.,

$$
\begin{aligned}
H_{[1]}= & \sum_{[111],[21],[3]} \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{Q}\right)^{a_{1}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{1}}\left(\mathcal{R}_{1}^{Q}\right)^{a_{2}}\left(\mathcal{R}_{2}^{Q}\right)^{b_{2}}\right\} \\
= & q^{a_{1}+b_{1}+a_{2}+b_{2}} S_{[3]}^{*}+q^{-\left(a_{1}+b_{1}+a_{2}+b_{2}\right)} S_{[111]}^{*}+ \\
& \operatorname{tr}\left\{\left(\mathcal{R}_{1}^{[21]}\right)^{a_{1}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[21]}\right)^{b_{1}}\left(\mathcal{R}_{1}^{[21]}\right)^{a_{2}}\left(U_{[21]} \mathcal{R}_{1}^{[21]} U_{[21]}\right)^{b_{2}}\right\} S_{[21]}^{*}
\end{aligned}
$$

where S_{Q}^{*} are the quantum dimensions of the representation Q.

- quantum \mathcal{R}_{1} is diagonalisable and there is a unitary transformation U_{Q} to obtain $\mathcal{R}_{2}=U_{Q} \mathcal{R}_{1} U_{Q}$.
- U_{Q} is non-trivial when paths to obtain Q from $R^{\otimes 3}$ is two or more.
- Highest weight method is one method which enables determining these U matrices.
- The procedure is straightforward for $m=4$ or more strands but will involve new unitary matrices.

Highest Weight Method(HWM)

- Co-multiplication Δ and the action of the lowering \& raising operators in the $S U_{q}(N)$ context are defined as follows:

$$
\begin{array}{cr}
\Delta\left(T_{i}^{+}\right)=\mathbb{I} \otimes T_{i}^{+}+T_{i}^{+} \otimes q^{-2 H_{i}} \\
\Delta\left(T_{i}^{-}\right)=q^{2 H_{i}} \otimes T_{i}^{-}+T_{i}^{-} \otimes \mathbb{I} . \\
T_{i}^{-} V_{i}=V_{i-1} ; & T_{i}^{+} V_{i-1}=V_{i} . \\
H_{i} V_{i}=+\frac{1}{2} V_{i} ; & H_{i} V_{i-1}=-\frac{1}{2} V_{i-1} .
\end{array}
$$

Highest Weight Method(HWM)

- Co-multiplication Δ and the action of the lowering \& raising operators in the $S U_{q}(N)$ context are defined as follows:

$$
\begin{array}{cr}
\Delta\left(T_{i}^{+}\right)=\mathbb{I} \otimes T_{i}^{+}+T_{i}^{+} \otimes q^{-2 H_{i}} \\
\Delta\left(T_{i}^{-}\right)=q^{2 H_{i}} \otimes T_{i}^{-}+T_{i}^{-} \otimes \mathbb{I} . \\
T_{i}^{-} V_{i}=V_{i-1} ; & T_{i}^{+} V_{i-1}=V_{i} . \\
H_{i} V_{i}=+\frac{1}{2} V_{i} ; & H_{i} V_{i-1}=-\frac{1}{2} V_{i-1} .
\end{array}
$$

where V_{i} is an i-th vector of the fundamental representation, and T_{i}^{+}, T_{i}^{-}and $q^{H_{i}}$ are generators of $S U_{q}(N)$.

HWM contd

Action of raising operators $\mathrm{T}_{\mathrm{i}}^{+}$on representation of $\mathrm{SU}_{\mathrm{q}}(\mathrm{N})$

More Examples:

$$
\begin{aligned}
& \underset{[2]}{\square} \longrightarrow \underset{\substack{\text { Highest weightrvector } \\
\Delta\left(\mathrm{T}_{+}^{+}\right)}}{\longrightarrow}(1 / \mathrm{q}+\mathrm{q})(1,1)
\end{aligned}
$$

HWM contd

HWM contd

$$
\begin{aligned}
& \underbrace{(([R] \otimes[R]) \otimes[R])}_{\text {right sector }} \\
& {[3,0]} \\
& {[1,1,1]} \\
& U_{[2,1]}=\left(\begin{array}{cc}
\frac{1}{[2]} & \frac{\sqrt{[3]}}{[2]} \\
\frac{\sqrt{[3]}}{[2]} & -\frac{1}{[2]}
\end{array}\right)
\end{aligned}
$$

HWM contd

HWM contd

Eigen value hypothesis approach

- 1. The diagonal elements of quantum \mathcal{R}_{i} are governed by the characteristic equation: $\prod_{Q}\left(\mathcal{R}_{i}-\lambda_{j}\right)=0$.

Eigen value hypothesis approach

- 1. The diagonal elements of quantum \mathcal{R}_{i} are governed by the characteristic equation: $\prod_{Q}\left(\mathcal{R}_{i}-\lambda_{j}\right)=0$.
- Here $j \in R \otimes R$ and the braiding eigenvalue $\lambda_{j}=\epsilon_{j} q^{\varkappa_{j}}$ where

Eigen value hypothesis approach

- 1. The diagonal elements of quantum \mathcal{R}_{i} are governed by the characteristic equation: $\prod_{Q}\left(\mathcal{R}_{i}-\lambda_{j}\right)=0$.
- Here $j \in R \otimes R$ and the braiding eigenvalue $\lambda_{j}=\epsilon_{j} q^{\varkappa_{j}}$ where $\varkappa_{j}=1 / 2 \sum_{i} j_{i}\left(j_{i}+1-2 i\right)$ associated with the Young diagram j.

Eigen value hypothesis approach

- 1. The diagonal elements of quantum \mathcal{R}_{i} are governed by the characteristic equation: $\prod_{Q}\left(\mathcal{R}_{i}-\lambda_{j}\right)=0$.
- Here $j \in R \otimes R$ and the braiding eigenvalue $\lambda_{j}=\epsilon_{j} q^{\varkappa_{j}}$ where $\varkappa_{j}=1 / 2 \sum_{i} j_{i}\left(j_{i}+1-2 i\right)$ associated with the Young diagram j. Note that the sign factors $\epsilon_{j}= \pm 1$ depend on whether j lies in the symmetric $(+1)$ or antisymmetric (-1) representation in the tensor product $R \otimes R$.

Eigen value hypothesis approach

- 1. The diagonal elements of quantum \mathcal{R}_{i} are governed by the characteristic equation: $\prod_{Q}\left(\mathcal{R}_{i}-\lambda_{j}\right)=0$.
- Here $j \in R \otimes R$ and the braiding eigenvalue $\lambda_{j}=\epsilon_{j} q^{\varkappa_{j}}$ where $\varkappa_{j}=1 / 2 \sum_{i} j_{i}\left(j_{i}+1-2 i\right)$ associated with the Young diagram j. Note that the sign factors $\epsilon_{j}= \pm 1$ depend on whether j lies in the symmetric $(+1)$ or antisymmetric (-1) representation in the tensor product $R \otimes R$.
- 2. Further, we are familiar with the Yang-Baxter equation to be obeyed by quantum $\mathcal{R}_{i}: \mathcal{R}_{i} \mathcal{R}_{i+1} \mathcal{R}_{i}=\mathcal{R}_{i+1} \mathcal{R}_{i} \mathcal{R}_{i+1}$.

Eigen value hypothesis approach

- 1. The diagonal elements of quantum \mathcal{R}_{i} are governed by the characteristic equation: $\prod_{Q}\left(\mathcal{R}_{i}-\lambda_{j}\right)=0$.
- Here $j \in R \otimes R$ and the braiding eigenvalue $\lambda_{j}=\epsilon_{j} q^{\varkappa_{j}}$ where $\varkappa_{j}=1 / 2 \sum_{i} j_{i}\left(j_{i}+1-2 i\right)$ associated with the Young diagram j. Note that the sign factors $\epsilon_{j}= \pm 1$ depend on whether j lies in the symmetric $(+1)$ or antisymmetric (-1) representation in the tensor product $R \otimes R$.
- 2. Further, we are familiar with the Yang-Baxter equation to be obeyed by quantum $\mathcal{R}_{i}: \mathcal{R}_{i} \mathcal{R}_{i+1} \mathcal{R}_{i}=\mathcal{R}_{i+1} \mathcal{R}_{i} \mathcal{R}_{i+1}$.
- 3. Also the commutativity relation applicable when we have more than 3 -strand braids: $\mathcal{R}_{i} \mathcal{R}_{j}=\mathcal{R}_{j} \mathcal{R}_{i}, \quad i \neq j \pm 1$.

Eigen value hypothesis approach

- 1. The diagonal elements of quantum \mathcal{R}_{i} are governed by the characteristic equation: $\prod_{Q}\left(\mathcal{R}_{i}-\lambda_{j}\right)=0$.
- Here $j \in R \otimes R$ and the braiding eigenvalue $\lambda_{j}=\epsilon_{j} q^{\varkappa_{j}}$ where $\varkappa_{j}=1 / 2 \sum_{i} j_{i}\left(j_{i}+1-2 i\right)$ associated with the Young diagram j. Note that the sign factors $\epsilon_{j}= \pm 1$ depend on whether j lies in the symmetric $(+1)$ or antisymmetric (-1) representation in the tensor product $R \otimes R$.
- 2. Further, we are familiar with the Yang-Baxter equation to be obeyed by quantum $\mathcal{R}_{i}: \mathcal{R}_{i} \mathcal{R}_{i+1} \mathcal{R}_{i}=\mathcal{R}_{i+1} \mathcal{R}_{i} \mathcal{R}_{i+1}$.
- 3. Also the commutativity relation applicable when we have more than 3 -strand braids: $\mathcal{R}_{i} \mathcal{R}_{j}=\mathcal{R}_{j} \mathcal{R}_{i}, \quad i \neq j \pm 1$.
- Using the three properties, eigenvalue hypothesis claims that the U, V matrix elements can be determined in terms of the eigenvalues λ_{j} 's.

Eigen value hypothesis contd

- For 2 strand braids, we have only one \mathcal{R} obeying characteristic equation.
- For 3 strand braids, we have \mathcal{R}_{1} and \mathcal{R}_{2} which are related by a unitary matrix U :

$$
\mathcal{R}_{2}=U \mathcal{R}_{1} U^{\dagger}
$$

Characteristic equation and Yang-Baxter equation enables the form of U matrix elements as functions of λ_{j} 's.

- For 4 strand braids, $\mathcal{R}_{1}, \mathcal{R}_{2}$ and \mathcal{R}_{3} related by two unitary matrices U and V. The relation between \mathcal{R}_{3} and \mathcal{R}_{1} is

$$
\mathcal{R}_{3}=U V U \mathcal{R}_{1} U^{\dagger} V^{\dagger} U^{\dagger}
$$

- The matrix elements U and V for matrices upto order 6×6 were deduced from the three properties obeyed by quantum \mathcal{R}_{i} matrices (recent paper-1711.10952
- The procedure appears straightforward for higher strand braids (need to explore!)

HOMFLY-PT Calculation

HOMFLY-PT polynomial for knots from 3-strand braid with braiding sequence $\left(a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2} \ldots\right)$

$$
\mathcal{H}_{[2]}^{a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, \ldots \ldots}=\sum S_{Q} \cdot \operatorname{Tr}\left(\prod_{i} R_{1 Q}^{a_{i}} U_{Q} R_{1 Q}^{b_{i}} V_{Q} U_{Q} R_{1 Q}^{c_{i}} U_{Q}^{\dagger} V_{Q}^{\dagger} U_{Q}^{\dagger}\right)
$$

where S_{Q} is the quantum dimension of representation $Q \in R^{\otimes 4}$ and a_{i}, b_{i}, c_{i} are the power of braiding operators

HOMFLY-PT Calculation

HOMFLY-PT polynomial for knots from 3-strand braid with braiding sequence $\left(a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2} \ldots\right)$

$$
\mathcal{H}_{[2]}^{a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, \ldots \ldots}=\sum S_{Q} \cdot \operatorname{Tr}\left(\prod_{i} R_{1 Q}^{a_{i}} U_{Q} R_{1 Q}^{b_{i}} V_{Q} U_{Q} R_{1 Q}^{c_{i}} U_{Q}^{\dagger} V_{Q}^{\dagger} U_{Q}^{\dagger}\right)
$$

where S_{Q} is the quantum dimension of representation $Q \in R^{\otimes 4}$ and a_{i}, b_{i}, c_{i} are the power of braiding operators

HOMFLY-PT Calculation

HOMFLY-PT polynomial for knots from 3-strand braid with braiding sequence ($a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2} \ldots$)

$$
\mathcal{H}_{[2]}^{a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, \ldots \ldots}=\sum S_{Q} \cdot \operatorname{Tr}\left(\prod_{i} R_{1 Q}^{a_{i}} U_{Q} R_{1 Q}^{b_{i}} V_{Q} U_{Q} R_{1 Q}^{c_{i}} U_{Q}^{\dagger} V_{Q}^{\dagger} U_{Q}^{\dagger}\right)
$$

where S_{Q} is the quantum dimension of representation $Q \in R^{\otimes 4}$ and a_{i}, b_{i}, c_{i} are the power of braiding operators

All non-arborescent knots upto 10 crossing are calculated for representation [2] after validating U and V by both the methods

HOMFLY-PT Calculation

HOMFLY-PT polynomial for knots from 3-strand braid with braiding sequence ($a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2} \ldots$)

$$
\mathcal{H}_{[2]}^{a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, \ldots . .}=\sum S_{Q} \cdot \operatorname{Tr}\left(\prod_{i} R_{1 Q}^{a_{i}} U_{Q} R_{1 Q}^{b_{i}} V_{Q} U_{Q} R_{1 Q}^{c_{i}} U_{Q}^{\dagger} V_{Q}^{\dagger} U_{Q}^{\dagger}\right)
$$

where S_{Q} is the quantum dimension of representation $Q \in R^{\otimes 4}$ and a_{i}, b_{i}, c_{i} are the power of braiding operators

All non-arborescent knots upto 10 crossing are calculated for representation [2] after validating U and V by both the methods (S. Dhara, A. Mironov, A. Morozov, An.Morozov, PR, VKS, A.Sleptsov, arXiv:1711.10952)

Hybrid approach

- By combining methods applicable to arborescent and non-arborescent knots, colored HOMFLY-PT is obtainable for some non-arborescent knots drawn below:

List of the non-arborescent knots										
Knot	n_{1}	n_{2}	n_{3}	n_{4}	n_{5}	n_{6}	n_{7}	m_{1}	m_{6}	m_{7}
9_{34}	-2	1	3	1	-1	0	1	2	2	-2
939	2	-1	-1	1	-1	0	1	2	2	+2
941	0	1	1	-1	-3	2	1	2	2	+2
947	0	-1	3	1	-1	0	1	2	2	+2
949	0	1	1	-1	-3	0	-1	2	2	-2

(A. Mironov, A. Morozov arXiv:1506.00339),(Mironov, A. Morozov, An.Morozov, PR, VKS, A.Sleptsov_ arXiv:1601.04199)

An example using hybrid method

The explicit invariant will be

$$
\begin{aligned}
d_{[1]} H_{[1]}^{\left(n_{1}, \ldots, n_{7} \mid m_{1}, m_{6}, m_{7}\right)}= & d_{[3]} \cdot K_{[2]}^{n_{1}, m_{1}} \cdot\left(\prod_{i=2}^{5} P_{[2]}^{\left(n_{i}\right)}\right) K_{[2]}^{n_{6}, m_{6}} \bar{K}_{[2]}^{\left(m_{7}, n_{7}\right)}+ \\
& d_{[111]} \cdot K_{[11]}^{\left(m_{1}, n_{1}\right)} \cdot\left(\prod_{i=2}^{5} P_{[11]}^{\left(n_{i}\right)}\right) K_{[11]}^{n_{6}, m_{6}} \bar{K}_{[11]}^{\left(m_{7}, n_{7}\right)} \\
& +d_{[21]} \cdot \operatorname{Tr}_{2 \times 2}\left\{M_{2 \times 2}\right\}
\end{aligned}
$$

where,
$P_{X}^{(n)}=\frac{\left(\bar{S} \bar{T}^{n} S\right)_{0, X}}{S_{0, X}}, K_{X}^{n, m}=\frac{\left(S T^{m} S^{\dagger} \bar{T}^{n} S\right)_{0, X}}{S_{0, X}}, \bar{K}_{X}^{\left(m_{7}, n_{7}\right)}=\frac{\left(\bar{S} \bar{T}^{m_{7}} \bar{S} \bar{T}^{n_{7}} S\right)_{0, X}}{S_{0, X}}$

Example contd

$$
\begin{gathered}
M_{2 \times 2}=\left(\begin{array}{cc}
K_{[2]}^{n_{1}, m_{1}} & 0 \\
0 & K_{[11]}^{n_{1}, m_{1}}
\end{array}\right)\binom{5}{\prod_{i=2} L_{2 \times 2}^{i}}\left(\begin{array}{cc}
K_{[2]}^{n_{6}, m_{6}} & 0 \\
0 & K_{[11]}^{n_{6}, m_{6}}
\end{array}\right) \\
\left(\begin{array}{cc}
\frac{1}{[2]} & \frac{\sqrt{[3]}}{[2]} \\
\frac{\sqrt{[3]}}{[2]} & -\frac{1}{[2]}
\end{array}\right)\left(\begin{array}{cc}
\bar{K}_{[2]}^{\left(m_{7}, n_{7}\right)} & 0 \\
0 & \bar{K}_{[11]}^{\left(m_{7}, n_{7}\right)}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{[2]} & \frac{\sqrt{[3]}}{[2]} \\
\frac{\sqrt{[3]}}{[2]} & -\frac{1}{[2]}
\end{array}\right)
\end{gathered}
$$

where

$$
L_{2 \times 2}^{i}=\left(\begin{array}{cc}
P_{[2]}^{\left(n_{i}\right)} & 0 \\
0 & P_{[11]}^{\left(n_{i}\right)}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{[2]} & \frac{\sqrt{[3]}}{[2]} \\
\frac{\sqrt{[3]}}{[2]} & -\frac{1}{[2]}
\end{array}\right)
$$

Summary

- [r]-colored HOMFLY-PT of all arborescent knots are computable.

Summary

- [r]-colored HOMFLY-PT of all arborescent knots are computable.
- colored HOMFLY-PT of knots obtained from three-strand braids for mixed representation upto 4-boxes are computable.

Summary

- [r]-colored HOMFLY-PT of all arborescent knots are computable.
- colored HOMFLY-PT of knots obtained from three-strand braids for mixed representation upto 4-boxes are computable.
- [2] -colored HOMFLY-PT of all non-arborescent knots from 4-strand braids recently achieved.

Summary

- [r]-colored HOMFLY-PT of all arborescent knots are computable.
- colored HOMFLY-PT of knots obtained from three-strand braids for mixed representation upto 4-boxes are computable.
- [2] -colored HOMFLY-PT of all non-arborescent knots from 4-strand braids recently achieved.
- [r]-colored HOMFLY-PT of non-arborescent knots - though method is straightforward, the computation appears tedious.

Summary

- [r]-colored HOMFLY-PT of all arborescent knots are computable.
- colored HOMFLY-PT of knots obtained from three-strand braids for mixed representation upto 4-boxes are computable.
- [2] -colored HOMFLY-PT of all non-arborescent knots from 4-strand braids recently achieved.
- [r]-colored HOMFLY-PT of non-arborescent knots - though method is straightforward, the computation appears tedious.
- All our results are updated from time to time in the knotebook.org website. This includes integrality checks conjectured within topological string context.

Open problems

Open problems

- [r,r] colored HOMFLY-PT for arborescent knots with $r \leq 6$, has indicated the form of the two duality matrices. Work in progress to find a closed form expression for these duality matrices

Open problems

- [r,r] colored HOMFLY-PT for arborescent knots with $r \leq 6$, has indicated the form of the two duality matrices. Work in progress to find a closed form expression for these duality matrices
- With several methods of tackling the polynomial form of knot invariants, we believe we will eventually succeed in determining a Kirillov-Reshitikhin type closed form for $S U(N)$ quantum Wigner 6 j .

Open problems

- [r,r] colored HOMFLY-PT for arborescent knots with $r \leq 6$, has indicated the form of the two duality matrices. Work in progress to find a closed form expression for these duality matrices
- With several methods of tackling the polynomial form of knot invariants, we believe we will eventually succeed in determining a Kirillov-Reshitikhin type closed form for $S U(N)$ quantum Wigner 6 j .
- May be vertex model approach to obtain Wigner 3j (

Open problems

- [r,r] colored HOMFLY-PT for arborescent knots with $r \leq 6$, has indicated the form of the two duality matrices. Work in progress to find a closed form expression for these duality matrices
- With several methods of tackling the polynomial form of knot invariants, we believe we will eventually succeed in determining a Kirillov-Reshitikhin type closed form for $S U(N)$ quantum Wigner 6 j .
- May be vertex model approach to obtain Wigner 3 j (work in progress with Kaul and Saswati Dhara)

Open problems

- [r,r] colored HOMFLY-PT for arborescent knots with $r \leq 6$, has indicated the form of the two duality matrices. Work in progress to find a closed form expression for these duality matrices
- With several methods of tackling the polynomial form of knot invariants, we believe we will eventually succeed in determining a Kirillov-Reshitikhin type closed form for $S U(N)$ quantum Wigner 6 j .
- May be vertex model approach to obtain Wigner 3j (work in progress with Kaul and Saswati Dhara)
- Extension of our methods to links and multi-colored link invariants.

Open problems

- [r,r] colored HOMFLY-PT for arborescent knots with $r \leq 6$, has indicated the form of the two duality matrices. Work in progress to find a closed form expression for these duality matrices
- With several methods of tackling the polynomial form of knot invariants, we believe we will eventually succeed in determining a Kirillov-Reshitikhin type closed form for $S U(N)$ quantum Wigner 6 j .
- May be vertex model approach to obtain Wigner 3j (work in progress with Kaul and Saswati Dhara)
- Extension of our methods to links and multi-colored link invariants.
- Entanglement entropy, entanglement negativity, volume of link complements-

Open problems

- [r,r] colored HOMFLY-PT for arborescent knots with $r \leq 6$, has indicated the form of the two duality matrices. Work in progress to find a closed form expression for these duality matrices
- With several methods of tackling the polynomial form of knot invariants, we believe we will eventually succeed in determining a Kirillov-Reshitikhin type closed form for $S U(N)$ quantum Wigner 6 j .
- May be vertex model approach to obtain Wigner 3j (work in progress with Kaul and Saswati Dhara)
- Extension of our methods to links and multi-colored link invariants.
- Entanglement entropy, entanglement negativity, volume of link complements- recent works arXiv:1711:06474, 1801.01131

Open problems

- [r,r] colored HOMFLY-PT for arborescent knots with $r \leq 6$, has indicated the form of the two duality matrices. Work in progress to find a closed form expression for these duality matrices
- With several methods of tackling the polynomial form of knot invariants, we believe we will eventually succeed in determining a Kirillov-Reshitikhin type closed form for $S U(N)$ quantum Wigner 6 j .
- May be vertex model approach to obtain Wigner 3j (work in progress with Kaul and Saswati Dhara)
- Extension of our methods to links and multi-colored link invariants.
- Entanglement entropy, entanglement negativity, volume of link complements- recent works arXiv:1711:06474, 1801.01131
- Probably all knot invariants (including universal invariant) must be rewritable in q-Pocchhamer form to attempt Piotr's knot-quiver correspondence.

Thank You

