Topological invariants of framed knots in nematics

Simon Čopar
University of Ljubljana, Slovenia

June 28, 2012

Supervisor: prof. Slobodan Žumer
Coworkers: T. Porenta, D. Seč, M. Ravnik
Collaborations: U. Tkalec, V. S. R. Jampani, prof. I. Muševič

Nematics and disclination lines

- Nematic liquid crystals: director member of $\mathbb{R} P^{2}$.
- π_{1} differentiates only between defect and nondefect.
- In $2 D$, defects are \mathbb{Z} : it seems to work in $3 D$.
- In the company of colloidal particles, mostly closed $-1 / 2$ defect loops.
- Is the topological classification of a restricted system different?

Nematics and disclination lines

- Nematic liquid crystals: director member of $\mathbb{R} P^{2}$.
- π_{1} differentiates only between defect and nondefect.
- In $2 D$, defects are \mathbb{Z} : it seems to work in $3 D$.
- In the company of colloidal particles, mostly closed $-1 / 2$ defect loops.
- Is the topological classification of a restricted system different?

Nematics and disclination lines

- Nematic liquid crystals: director member of $\mathbb{R} P^{2}$.
- π_{1} differentiates only between defect and nondefect.
- In $2 D$, defects are \mathbb{Z} : it seems to work in $3 D$.
- In the company of colloidal particles, mostly closed $-1 / 2$ defect loops.
- Is the topological classification of a restricted system different?

Tetrahedral rotations

- Surface texture fits in all orientations
- The mismatch of symmetry $\left(T / D_{2 d}\right)$ gives 3 orientations
- Only topological match required: real structures can be deformed

S. Čopar and S. Žumer, Phys. Rev. Lett. 106, 177801 (2011)

Self-linking number

- Călugăreanu theorem: $S I=T w+W r$
- Twist does not change under rewiring!
- Disclination symmetry $\mapsto 1 / 3$ quantization of $S /$
- Inversion symmetry \mapsto everything is zero
- Why zero twist? Colloidal confinement!

$$
\begin{aligned}
& L k, S I, W r=\oint \mathrm{d} \vec{r}_{1} \times \mathrm{d} \vec{r}_{2} \frac{\vec{r}_{1}-\vec{r}_{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|^{3}} \\
& T w=\frac{1}{2 \pi} \oint \vec{t}(s) \cdot\left(\vec{u}(s) \times \partial_{s} \vec{u}(s)\right) \mathrm{d} s
\end{aligned}
$$

Single-loop topology

- Torus homotopy
- π_{1} of small circle: $-1 / 2$ cross section
- π_{1} of large circle: depends on the $S /$
- No linking: $S I=\cdots,-\frac{2}{3}, 0, \frac{2}{3}, \frac{4}{3}, \cdots$
- Linking: $S I=\cdots,-1,-\frac{1}{3}, \frac{1}{3}, 1, \cdots$
- More precisely: SI encapsulates cyclic \mathbb{Z}_{4} topological index

K. Janich, Acta Appl. Math. 8, 65-74 (1987)
G. Alexander, B. Chen, E. Matsumoto, R. Kamien, Rev. Mod. Phys. 84, 497 (2012)

Rewiring and charge conservation

- Oriented rewiring changes self-linking number for $\pm \frac{2}{3}$.
- Rewiring changes the number of loops by ± 1.
- Rewiring is local: π_{2} charge is conserved.
- Many loops: linking numbers also count!

$$
\frac{3}{2}\left(\sum_{i} S I\left(A_{i}\right)+2 \sum_{i>j} L k\left(A_{i}, A_{j}\right)\right)+n=q \bmod 2
$$

Compare with:

$$
\sum q_{i}=\frac{1}{2}\left(\nu_{i}-\sum_{i \neq j} L k\left(A_{i}, A_{j}\right)\right)=q \bmod 2
$$

K. Janich, Acta Appl. Math. 8, 65-74 (1987)

S. Čopar and S. Žumer, Phys. Rev. Lett. 106, 177801 (2011)

Linking matrix

Gauss integral is bilinear \mapsto linking invariants of an union of loops are components of a matrix.

$$
L_{i j}= \begin{cases}S I\left(A_{i}\right) & i=j \\ \operatorname{Lk}\left(A_{i}, A_{j}\right) & \text { true }\end{cases}
$$

Conservation law states the topological charge of a set of loops is simply a matrix element:

$$
u_{i}\left(\frac{3}{2} L_{i j}+\delta_{i j}\right) u_{j}=q \quad \bmod 2
$$

$u_{i} \in(-1,0,1)$ encodes orientations of loops (± 1) or lack of interest for a particular loop (0).
Linking number is orientation-sensitive, trace $S I=L_{i i}$ is a good link invariant.

$-\frac{1}{2}$ disclinations vs. general disclinations

$-1 / 2$ disclinations

- Fixed 3-fold profile
- Ribbons with well defined SI
- Full integer classification
- Tetrahedral rewiring
- Most nematic and chiral nematic colloids
general nematic disclinations
- Any profile
- No reference for the framing
- Only \mathbb{Z}_{4} : linked/unlinked, even/odd charge
- No simple geometric rewiring formalism
- Special frustration, highly chiral phases

Obtaining knots

- Every rewiring is allowed \mapsto every knot is possible
- Topological constraints are satisfied by the self-linking number
- Full topological information of a framed knot: knot or link type + linking matrix
- A particular colloidal grid: still all knots possible or not?

trefoil (+)

trefoil (-)

74

Obtaining knots

- Every rewiring is allowed \mapsto every knot is possible
- Topological constraints are satisfied by the self-linking number
- Full topological information of a framed knot: knot or link type + linking matrix
- A particular colloidal grid: still all knots possible or not?

$L_{10} n_{104}$

hopf +2 loops

Borromean rings

Classification scheme

Conservation law:

$$
\frac{3}{2} \underbrace{\sum_{i} S I\left(A_{i}\right)}_{S I}+\underbrace{\frac{3}{2} \sum_{i>j} L k\left(A_{i}, A_{j}\right)}_{\text {even/odd link }}+n=q \quad \bmod 2
$$

Plot knots into $(S I, n)$ diagram.

U. Tkalec, M. Ravnik, S. Čopar, S. Žumer, I. Muševič, Science 333, 62 (2011)

Kauffman (unoriented) tangles:

The Jones polynomial

- Writhe calculation: numerical integration
- Lk: counting crossings or numerical integration
- Knot classification?

Orient links \Rightarrow obtain integer writhe \Rightarrow summation formula for Kauffman bracket \Rightarrow recover Jones polynomial \Rightarrow table lookup \Rightarrow hope the Jones polynomial gives the right answer

$$
X(K)=(-A)^{-3 w(K)} \sum A^{a-b}\left(-A^{2}-A^{-2}\right)^{n-1}
$$

Extending the theory

- Four-point junction as an object
- $+1 / 2$ rewiring formalism
- Generalization to other (non-three fold) director field profiles
- Higher order nontetrahedral building blocks
- Any suggestions?

Thank you!

