Rational Hybrid Monte Carlo Modern Challenges for Lattice Field Theory Michael Clark

- Motivation
- Current Algorithms
- Rational Hybrid Monte Carlo
- 2+1 ASQTAD Fermions
- 2+1 Domain Wall Fermions
- Conclusion

Introduction and Motivation

- Lattice QCD path integral

$$
\langle\Omega\rangle=\frac{1}{Z} \int[d U] e^{-S(U)}[\operatorname{det} \mathcal{M}(U)]^{\alpha} \Omega(U)
$$

where $\alpha=\frac{N_{f}}{4}\left(\frac{N_{f}}{2}\right)$ for staggered (Wilson) fermions, $\mathcal{M}=M^{\dagger} M$.
\Rightarrow arbitrary N_{f} with non-integer α

- non-integer $\alpha \Rightarrow$ non-local action, conventional HMC fails
- Both ASQTAD and DWF programs want to do $2+1$ physics
- Need non-local algorithms

The R Algorithm
Rewrite fermionic determinant:

$$
\operatorname{det} \mathcal{M}^{\alpha}=\exp \alpha \operatorname{tr} \operatorname{In} \mathcal{M}
$$

- Approximate trace by noisy estimator三 pseudo-fermions
- Use integrator $\left(O\left(\delta \tau^{2}\right)\right)$
- Non-reversible
- Jacobian $\neq 1$
\Rightarrow Cannot include Monte Carlo acceptance test
- R : HMD algorithm which is inexact \Rightarrow naïvely cheap, but extrapolation to zero stepsize (strictly) required

Polynomial Hybrid Monte Carlo
Write in pseudo-fermion notation

$$
\begin{aligned}
\operatorname{det} \mathcal{M}^{\alpha} & =\int \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-\bar{\psi} \mathcal{M}^{-\alpha} \psi} \\
& \approx \int \mathcal{D} \bar{\psi} \mathcal{D} \psi e^{-\bar{\psi} P(\mathcal{M}) \psi}
\end{aligned}
$$

where $P(\mathcal{M})$ is MiniMax polynomial approximation over spectral range.

- Pseudo-fermion heatbath easily realised since $P(\mathcal{M})=p^{\dagger}(\mathcal{M}) p(\mathcal{M})$
- Use standard MD leapfrog \Rightarrow exact

Polynomial Hybrid Monte Carlo

- Significant Error $\left|P(\mathcal{M})-\mathcal{M}^{-\alpha}\right|>C G$ residual
- Noisy acceptance test or appropriate reweighting (V^{2})
- High degree polynomial
- costly in memory (for non-analytic force)
- rounding errors
- ASQTAD force term very expensive
- Multi-boson algorithm has similar problems

Optimal rational approximations

- Very accurate
- Generated using Remez algorithm
- Real non-degenerate roots (poles are always +ve)

- Partial fractions - multimass solver

Rational Hybrid Monte Carlo

- Pseudo-fermionic action

$$
\begin{aligned}
& S_{\mathrm{pf}}=\phi^{\dagger} r^{2}(\mathcal{M}) \phi=\phi^{\dagger}\left(\alpha_{0}+\sum_{i=1}^{n} \frac{\alpha_{i}}{\mathcal{M}+\beta_{i}}\right)^{2} \phi \\
& \text { with } \\
& r(\mathcal{M})=\mathcal{M}^{-\alpha / 2}
\end{aligned}
$$

- Conventional Metropolis
- Proceed like HMC with $r^{2}(\mathcal{M})$ in place of $\mathcal{M}^{-\alpha}$

Rational Hybrid Monte Carlo

- Hybrid Molecular Dynamics Trajectory
- Momentum refreshment heatbath $\left(P(\pi) \propto e^{-\pi^{*} \pi / 2}\right)$.
- Pseudo-fermion heatbath $\left(\phi \propto r(\mathcal{M})^{-1} \xi\right.$, where $\left.P(\xi) \propto e^{-\xi^{*} \xi / 2}\right)$.
- MD trajectory with $\tau / \delta \tau$ steps.
- Metropolis Acceptance Test $P_{\mathrm{acc}}=\min \left(1, e^{-\delta H}\right)$

Rational Hybrid Monte Carlo

- MD trajectory
- Double inversion from $r^{2}(\mathcal{M})$
- MC must be exact, MD governed by acceptance
- Use low degree approx $\bar{r} \approx \mathcal{M}^{-\alpha} \approx r^{2}$
- Pseudo-fermion force

$$
S_{\mathrm{pf}}^{\prime}=-\sum_{i=1}^{\bar{n}} \bar{\alpha}_{i} \phi^{\dagger}\left(\mathcal{M}+\bar{\beta}_{i}\right)^{-1} \mathcal{M}^{\prime}\left(\mathcal{M}+\bar{\beta}_{i}\right)^{-1} \phi
$$

- CG cost per trajectory $\approx \mathrm{R}$ alg, $(2+\tau / \delta \tau) \approx(\tau / \delta \tau)$

2+1 ASQTAD Fermions

- Action has the form

$$
S_{f}=\bar{\psi}\left(\mathcal{M}_{\bar{m}}\right)^{-1 / 2} \psi+\bar{\chi}\left(\mathcal{M}_{m_{s}}\right)^{-1 / 4} \chi
$$

where $\bar{m}=\left(m_{u}+m_{d}\right) / 2$

- Use rational approximation for each

$$
S_{f}=\bar{\psi} r_{\bar{m}}^{2}(\mathcal{M}) \psi+\bar{\chi} r_{m_{s}}^{2}(\mathcal{M}) \chi
$$

- \mathcal{M} bounded explicitly by $m \Rightarrow$ approx easy
- Proceed as above with two fields?

2+1 ASQTAD Fermions

- ASQTAD force expensive
\Rightarrow Naïve RHMC has factor n more force computation than R
- Calculate force as matrix

$$
\sum_{i=1}^{n} U \ldots U X_{i} X_{i}^{\dagger} U \ldots U=U \ldots U \sum_{i=1}^{n} X_{i} X_{i}^{\dagger} U \ldots U
$$

$\Rightarrow 3 \times$ overhead, BUT

- For 2+1 can perform force calculation simultaneously
- No heatbath overhead
- 5\% cost difference between R and RHMC
$2+1$ ASQTAD Fermions
- $V=24^{3} 64, \beta=6.76, \bar{m}=0.0078, m_{s}=0.039$.
- MILC $\delta \tau=\frac{2}{3} \bar{m} \approx 0.005$
- Use $\left\{\frac{1}{2}, \frac{1}{4}\right\}$
$-\delta \tau=0.005,\langle A\rangle=70(6) \%$.
- Can we do better?

Multiple Pseudo-fermion fields

- Increased acceptance through multiple pseudo-fermions
(Hasenbusch trick)

$$
\begin{aligned}
\operatorname{det} \mathcal{M} & =\operatorname{det} \mathcal{M}^{\prime} \operatorname{det}\left(\mathcal{M} / \mathcal{M}^{\prime}\right) \\
& =\int \mathcal{D} \bar{\psi} \mathcal{D} \psi \mathcal{D} \bar{\psi}^{\prime} \mathcal{D} \psi^{\prime} \exp \left(-\bar{\psi} \mathcal{M}^{\prime} \mathcal{M}^{-1} \psi-\bar{\psi}^{\prime} \mathcal{M}^{\prime-1} \psi^{\prime}\right)
\end{aligned}
$$

- Improves stochastic estimator of fermionic force
- Alternative multiple pseudo-fermions - Nroots

$$
\begin{aligned}
\operatorname{det} \mathcal{M}^{\alpha} & =\left(\operatorname{det} \mathcal{M}^{\alpha / n}\right)^{n} \\
& =\prod_{k=1}^{n} \int \mathcal{D} \bar{\psi}_{k} \mathcal{D} \psi_{k} \exp \left(-\bar{\psi}_{k} \mathcal{M}^{-\alpha / n} \psi_{k}\right)
\end{aligned}
$$

- Test - 8^{4} lattice $N_{f}=4$ naive staggered quarks $\beta=5.7$, $m=0.01$.

2+1 ASQTAD Fermions

- $V=24^{3} 64, \beta=6.76, \bar{m}=0.0078, m_{s}=0.039$.
- MILC $\delta \tau=\frac{2}{3} \bar{m} \approx 0.005$
- Naive approach, use $\left\{\frac{1}{2}, \frac{1}{4}\right\}$

$$
-\delta \tau=0.005,\langle A\rangle=70(6) \%
$$

- Nroots acceleration, $\left\{\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{4}\right\}$,
$-\delta \tau=0.03,\langle A\rangle=78(4) \%$.
$-\delta \tau=0.05,\langle A\rangle=37(6) \%$.

2+1 Domain Wall Fermions

- Action now

$$
S_{f}=\bar{\psi} \mathcal{M}_{\bar{m}}^{D W} \psi+\bar{\chi}\left(\mathcal{M}^{D W}\right)^{1 / 2} \chi
$$

with

$$
\mathcal{M}_{m}^{D W}=M^{-1}(m)^{\dagger} M^{\dagger}(1) M(1) M^{-1}(m)
$$

- BUT cannot write $r\left(\mathcal{M}^{D W}\right)$ as shifted matrix
- Forced to write action as

$$
S_{f}=\bar{\psi} \mathcal{M}_{\bar{m}}^{D W} \psi+\bar{\phi}\left(\mathcal{M}_{1}\right)^{1 / 2} \phi+\bar{\chi}\left(\mathcal{M}_{m_{s}}\right)^{-1 / 2} \chi
$$

$\Rightarrow 2$ fermion fields to simulate 1 flavour contribution

- Additional cost small

2+1 Domain Wall Fermions

- Lower bound of matrix?
- Use speculative lower bound
- $V=16^{3} 32 \times 8, \beta=0.72, \mathrm{DBW} 2, m_{s}=0.04, \bar{m}=0.02,0.04$
- R algorithm $\delta \tau=0.01$
- RHMC $\delta \tau=0.02$, $\operatorname{Nroots}\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$
- $\left\langle A_{2+1}\right\rangle=68 \%,\left\langle A_{3}\right\rangle=72 \%$.

Lowest Eigen-value Behaviour

Highest Eigen-value Behaviour

-21- Santa Barbara 2005

Pseudo-Scalar ${ }^{2}$ vs dynamical, $m_{s}=0.04$

Pseudo-Scalar Correlator $(\mathrm{t}=14), \bar{m}=0.04, m_{s}=0.04$

M_{ρ} vs dynamical, $m_{s}=0.04$

Histogram of ρ correlator, $(t=1), \bar{m}=0.04, m_{s}=0.04$

-25- Santa Barbara 2005
$m_{\text {res }}$ vs dynamical, $m_{s}=0.04$

Conclusions and outlook

- Fast exact algorithm for non-local quantum field theories
- 2+1 ASQTAD
- Naive cost R \approx cost RHMC
- At least factor of 2 gain over R algorithm
- Further tuning required
- Awaiting stability.......
- 2+1 DWF
- RHMC verified for DWF
- Naive cost $R \approx$ cost RHMC
- Investigate noise in R
- Future work shall use RHMC exclusively

