't Hooft-Polyakov Monopoles on the Lattice

Arttu Rajantie

DAMTP and Churchill College University of Cambridge

Introduction

- 't Hooft-Polyakov monopoles
- Pointlike magnetic charges
- Georgi-Glashow model: SU(2)+adjoint Higgs
- Confinement in QCD and Yang-Mills
- Monopole condensation?
- Abelian projection?
- Predicted by all GUTs
- Produced in the early universe
- Greatly diluted by inflation
- Constantly searched, none found yet (or possibly one on Valentine's Day 1982 (Cabrera 1982))
- Theoretical interest
- SUSY models
- Dualities

Topological Solitons

- Localized, topologically stable field configurations
- Order parameter ϕ at spatial infinity $|\vec{r}| \rightarrow \infty$:
- Finite energy \Rightarrow Must approach vacuum

- Possibly different vacuum in different directions
- Defines a map from S^{d-1} to the vacuum manifold $\mathcal{M} \cong G / H$
- Solitons exist if $\pi_{n}(G / H) \neq 0$ for $n<d$
- $n=0$: Domain walls (kinks)
- $n=1$: Vortices (strings)
- $n=2$: Monopoles
- Winding number $N_{W} \in \pi_{n}(G / H)$
- Convenient theoretical probes of phase properties
- Dualities
- Confinement \leftrightarrow Monopole condensation? (t Hooft, Mandelstam)

Classical Kink

- $1+1 \mathrm{D}$ real scalar field

$$
\mathcal{L}=\frac{1}{2} \dot{\phi}^{2}-\frac{1}{2} \phi^{\prime 2}-\frac{\lambda}{4}\left(\phi^{2}-v^{2}\right)^{2}
$$

- Two vacua $\phi= \pm v \Rightarrow \pi_{0}=\mathbb{Z}_{2}$, winding number 0 or 1
- Kink: Choose $\phi(\pm \infty)= \pm v$
- Exact stationary solution: $\phi(x)=v \tanh \left(\lambda v^{2} / 2\right)^{1 / 2} x$ Energy $M_{\text {kink }}=\frac{2}{3} \sqrt{2 \lambda} v^{3}$

Georgi-Glashow model

- Continuum:

$$
\mathcal{L}=-\frac{1}{2} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}+\operatorname{Tr}\left[D_{\mu}, \Phi\right]\left[D^{\nu}, \Phi\right]-m^{2} \operatorname{Tr} \Phi^{2}-\lambda\left(\operatorname{Tr} \Phi^{2}\right)^{2}
$$

- $\operatorname{SU}(2)$ gauge field $A_{\mu}=A_{\mu}^{a} \sigma^{a} / 2$, where $a \in\{1,2,3\}$
- Adjoint Higgs field $\Phi=\Phi^{a} \sigma^{a} / 2$
- Euclidean lattice action (lattice spacing=1)

$$
\begin{aligned}
\mathcal{L}_{E}= & 2 \sum_{\mu}\left[\operatorname{Tr} \Phi(\vec{x})^{2}-\operatorname{Tr} \Phi(\vec{x}) U_{\mu}(\vec{x}) \Phi(\vec{x}+\hat{\mu}) U_{\mu}^{\dagger}(\vec{x})\right] \\
& +\frac{2}{g^{2}} \sum_{\mu<\nu}\left[2-\operatorname{Tr} U_{\mu \nu}(\vec{x})\right]+m^{2} \operatorname{Tr} \Phi^{2}+\lambda\left(\operatorname{Tr} \Phi^{2}\right)^{2}
\end{aligned}
$$

- Link variables $U_{\mu} \in \mathrm{SU}(2), U_{\mu} \sim \exp \left(i g A_{\mu}\right)$
- Plaquette $U_{\mu \nu}=U_{\mu}(x) U_{\nu}(x+\hat{\mu}) U_{\mu}^{\dagger}(x+\hat{\nu}) U_{\nu}^{\dagger}(x)$

't Hooft-Polyakov Monopole

- $m^{2}<0$: Symmetry breaking $\mathrm{SU}(2) \rightarrow \mathrm{U}(1)$
- Vacuum manifold $\left\{\operatorname{Tr} \Phi^{2}=v^{2}=\left|m^{2}\right| / \lambda\right\} \cong S^{2}$
- $\pi_{2}\left(S^{2}\right)=\mathbb{Z} \Rightarrow$ Monopoles ('t Hooft, Polyakov)

$$
\begin{aligned}
\Phi^{a}(\vec{r}) & =\frac{r_{a}}{g r^{2}} H(g v r) \\
A_{i}^{a}(\vec{r}) & =-\epsilon_{a i j} \frac{r_{j}}{g r^{2}}[1-K(g v r)]
\end{aligned}
$$

- Broken phase: $\mathrm{U}(1)$ symmetry \Rightarrow Electrodynamics
- Field strength $\mathcal{F}_{\mu \nu}=\operatorname{Tr} \hat{\Phi} F_{\mu \nu}+(2 i g)^{-1} \operatorname{Tr} \hat{\Phi}\left[D_{\mu}, \hat{\Phi}\right]\left[D_{\mu}, \hat{\Phi}\right]$
- Unitary gauge $\hat{\Phi}=\sigma_{3}$: Reduces to $\mathcal{F}_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$
- Magnetic field $\mathcal{B}_{i}=\frac{1}{2} \epsilon_{i j k} \mathcal{F}_{j k}$:
- If $\Phi \neq 0$, then $\vec{\nabla} \cdot \overrightarrow{\mathcal{B}}=0$
- For a smooth configuration $\vec{\nabla} \cdot \overrightarrow{\mathcal{B}}(\vec{x})=(4 \pi / g) \sum_{i} \pm \delta\left(\vec{x}-\vec{x}_{i}\right)$
\Rightarrow Magnetic monopoles with charge $\pm 4 \pi / g$

Magnetic Field on the Lattice

- Discretized version of $\mathcal{F}_{\mu \nu}$:
- Define projection $\Pi_{+}=\frac{1}{2}(1+\hat{\Phi}) \quad\left[=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right]$
- Projected link $u_{\mu}(x)=\Pi_{+}(x) U_{\mu}(x) \Pi_{+}(x+\hat{\mu})\left[\propto\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right]$
- $\mathrm{U}(1)$ field strength tensor

$$
\alpha_{\mu \nu}=(2 / g) \arg \operatorname{Tr} u_{\mu}(x) u_{\nu}(x+\hat{\mu}) u_{\mu}^{\dagger}(x+\hat{\nu}) u_{\nu}^{\dagger}(x)
$$

- Magnetic field $\hat{B}_{i}=\frac{1}{2} \epsilon_{i j k} \alpha_{j k}$
- Magnetic charge in a lattice cell
$\hat{\rho}_{M}=\sum_{i}\left[\hat{B}_{i}(x+\hat{\imath})-\hat{B}_{i}(x)\right] \in(4 \pi / g) \mathbb{Z}$
\Rightarrow Stable monopoles

Classical Monopole Mass

- Continuum result
$M=\left(4 \pi m_{W} / g^{2}\right) f\left(m_{H} / m_{W}\right)$
- $f(x) \approx 1+x / 2+\left(x^{2} / 2\right)(\ln x+\sqrt{2})$ (Kirkman\&Zachos 1981)
- Example: $\lambda=0.1, g=1 / \sqrt{5}$
- Finite size effects
- Coulomb force $\left|m^{2}\right| \gg 1 / L^{2}$: $\Delta E(L) \approx 11.0 / g^{2} L$
- Symmetry restoration

$$
\Delta E(L) \approx V(0) L^{3}=\left(\lambda v^{4} / 4\right) L^{3}
$$

- Infinite-volume extrapolation:

$$
f(x) \approx 1.10
$$

Perturbative Quantum Corrections

- Find lowest energy eigenvalue $E\left(N_{W}\right)$ with a given winding number N_{W}
- Soliton mass $M=E(1)-E(0)$
- Perturbative approach: (Dashen et al. 1974)
- Loop expansion around classical solution $\varphi_{0}(x)$
- Write $\varphi(t, x)=\varphi_{0}(x)+\delta(t, x)$
- Quantize $\delta(t, x)$: Field in a x-dependent potential
- Order δ^{2} : Harmonic potential $U(\delta)=\frac{1}{2} V^{\prime \prime}\left(\varphi_{0}(x)\right) \delta^{2}$
- Diagonalize:
$\left[-\vec{\nabla}^{2}+V^{\prime \prime}\left(\varphi_{0}(x)\right)\right] \delta_{k}(x)=\omega_{k}^{2} \delta_{k}(x)$
\Rightarrow Frequencies ω_{k}
- One-loop level: $\Delta E=\sum_{k}\left(\omega_{k}^{1}-\omega_{k}^{0}\right) / 2$
- Higher-order corrections: Difficult

One-loop Kink Mass

- Equation for ω_{k} :

$$
\left[-\frac{\partial^{2}}{\partial x^{2}}+\lambda v^{2}\left(3 \tanh ^{2} \sqrt{\lambda v^{2} / 2} x-1\right)\right] \delta_{k}(x)=\omega_{k}^{2} \delta_{k}(x)
$$

- Can be solved exactly:

$$
\omega_{0}^{2}=0, \omega_{1}^{2}=3 \lambda v^{2} / 2 \text { and a continuum } \omega_{q}^{2}=\left(q^{2} / 2+2\right) \lambda v^{2}
$$

- Caveats: Zero mode, measure for q, UV regularisation
- Result: (Dashen etal. 1974)

$$
M_{\mathrm{kink}} \approx \frac{2}{3} \sqrt{2 \lambda} v^{3}+\left(\frac{1}{2 \sqrt{6}}-\frac{3}{\sqrt{2} \pi}\right) \sqrt{\lambda} v
$$

Leading-log Monopole Mass

- Same principles, many extra complications
- Gauge fixing
- Two coupled fields
- Higher dimensionality
- Renormalisation issues
- Only leading log in the $m_{H} / m_{W} \rightarrow 0$ limit has been calculated (Kiselev\&Selivanov 1988)

$$
M=\frac{4 \pi m_{W}}{g^{2}}\left(1+\frac{g^{2}}{8 \pi^{2}} \ln \frac{m_{H}^{2}}{m_{W}^{2}}+O\left(g^{2}\right)\right)
$$

- Infrared divergence as $m_{H} / m_{W} \rightarrow 0$
- Related to Coleman-Weinberg effect: $m_{H} / m_{W} \gg g$ due to quantum fluctuations
- Difficult to test: Need small $m_{H} / m_{W} \rightarrow 0$
\Rightarrow Small $g \Rightarrow$ Small quantum correction

Non-perturbative Soliton Masses

- Soliton creation and annihilation operators ψ^{\dagger} and ψ (Kadanoff\&Ceva 1971)
- $\langle 0| \psi^{\dagger}\left(t_{1}\right) \psi\left(t_{2}\right)|0\rangle \propto e^{i M\left(t_{2}-t_{1}\right)}$
- Path integral formulation (integrate over φ with $N_{W}=0$)

$$
e^{-M\left(t_{2}-t_{1}\right)} \propto Z_{0}^{-1} \int_{0} D \varphi \psi^{\dagger}\left(t_{1}\right) \psi\left(t_{2}\right) e^{-S[\varphi]}
$$

- Easy to do in simple cases: Kinks, vortices
- Less straightforward for monopoles:
- Magnetic field $\Rightarrow \psi$ necessarily non-local
- Compact QED: Duality maps to an integer-valued gauge theory (Polley\&Wiese) \Rightarrow Becomes much simpler
- Non-Abelian theories: Several attempts (Frohlich\&Marchetti, Di Giacomo et al.)
- Idea: Add a classical monopole configuration between t and $t+\delta t$ (Dirac string with an endpoint, BPS monopole...)
- Boundary conditions problematic

Removing Start and Endpoints

- Take $t_{2} \rightarrow t_{1}+T$, where T is temporal size
- $\left\langle\psi^{\dagger}\left(t_{1}\right) \psi\left(t_{2}\right)\right\rangle \rightarrow Z_{1} / Z_{0}=\exp (-M T)$
$\Rightarrow M=-\ln \left(Z_{1} / Z_{0}\right) / T$
- Define Z_{1} using appropriate boundary conditions
- Monte Carlo: Cannot calculate Z_{1} or Z_{0} directly
- Only expectation values: Derivatives or differences

Mass Derivatives

- $M=-\left(\ln Z_{1} / Z_{0}\right) / T$, but cannot calculate Z_{1} or Z_{0} directly
- Calculate derivative with respect to some parameter λ :

$$
\frac{\partial M}{\partial \lambda}=\frac{1}{T}\left(\frac{1}{Z_{0}} \frac{\partial Z_{0}}{\partial \lambda}-\frac{1}{Z_{1}} \frac{\partial Z_{1}}{\partial \lambda}\right)
$$

- Express in terms of expectation values:

$$
\frac{1}{Z_{N_{W}}} \frac{\partial Z_{N_{W}}}{\partial \lambda}=-\frac{1}{Z_{N_{W}}} \int_{N_{W}} D \varphi\left(\frac{\partial S}{\partial \lambda}\right) e^{-S}=-\left\langle\frac{\partial S}{\partial \lambda}\right\rangle_{N_{W}}
$$

- Can be calculated with Monte Carlo simulations
- Integrate to obtain $M(\lambda)$
- Start in symmetric phase: No integration constant

Non-perturbative Kink Mass

- Comparison of one-loop, operator and twist results (Ciria\&Tarancon 1994)
- Twist: Simply antiperiodic b.c. $\phi(L)=-\phi(0)$

- Non-perturbative results agree with each other
- Twist has much smaller errors
- Also true for monopoles in compact QED (Vettorazzo\&de Forcrand 2004)
- Slightly above one-loop result

Fixed Boundary Conditions

- Fix the field to the classical solution at the boundary (Smit\&van der Sijs 1994, Cea\&Cosmai 2000)
- Boundary effects?

Twisted Boundary Conditions

- Most common choice: Periodic boundary conditions
- No boundary effects: Consequence of translation invariance
- Magnetic Gauss law $\vec{\nabla} \cdot \overrightarrow{\mathcal{B}}=\rho_{M} \Rightarrow$ Magnetic charge $Q_{M}=0$
- Translation invariance only requires periodicity up to symmetries
- C-periodic: (Kronfeld\&Wiese 1991)
$U_{\mu}(x+N \hat{\jmath})=U_{\mu}^{*}(x)=\sigma_{2} U_{\mu}(x) \sigma_{2}$
$\Phi(x+N \hat{\jmath})=\Phi^{*}(x)=-\sigma_{2} \Phi(x) \sigma_{2}$
- Charge conjugation: Avoid Gauss law problem
- Restricts Q_{M} to even values \Rightarrow Use this to define Z_{0}
- Twisted b.c.:

$$
U_{\mu}(x+N \hat{\jmath})=\sigma_{j} U_{\mu}(x) \sigma_{j}
$$

$$
\Phi(x+N \hat{\jmath})=-\sigma_{j} \Phi(x) \sigma_{j}
$$

- Locally gauge equivalent to C-periodic - but not globally!
- Always gives odd $Q_{M} \Rightarrow$ Use this to define Z_{1} (JHEP 2000)

Derivative of Monopole Mass

- Choose m^{2} as the integration variable
- Start at high enough $m^{2} \Rightarrow$ Symmetric phase
- Measure $\left\langle\operatorname{Tr} \Phi^{2}\right\rangle_{N_{W}}$ at many values of m^{2} using lattice Monte Carlo
- Integrate:

$$
M=L^{3} \int_{m_{0}^{2}}^{m^{2}} d m^{2}\left(\left\langle\operatorname{Tr} \Phi^{2}\right\rangle_{1}-\left\langle\operatorname{Tr} \Phi^{2}\right\rangle_{0}\right)
$$

- Better: Finite differences

$$
M=\frac{1}{T} \sum_{n}\left(\left\langle e^{\Delta m^{2} T L^{3} \operatorname{Tr} \Phi^{2}}\right\rangle_{1, m_{n}^{2}}-\left\langle e^{\Delta m^{2} T L^{3} \operatorname{Tr} \Phi^{2}}\right\rangle_{0, m_{n}^{2}}\right)
$$

Derivative of Monopole Mass: Results

Monopole Mass: Results

Direct Calculation

- Problems: - Must go through a phase transition
- Errors accumulate
- Direct way of calculating M at given m^{2}
- Gauge transformation \rightarrow C-periodic except

$$
\begin{aligned}
U_{3}(t, x, L, L-1) & =-U_{3}^{*}(t, x, 0, L-1) \\
U_{1}(t, L-1, y, L) & =-U_{1}^{*}(t, L-1, y, 0) \\
U_{1}(t, L-1, L, z) & =-U_{1}^{*}(t, L-1,0, z)
\end{aligned}
$$

Direct Calculation

- Problems: - Must go through a phase transition
- Errors accumulate
- Direct way of calculating M at given m^{2}
- Gauge transformation \rightarrow C-periodic except

$$
\begin{aligned}
& U_{3}(t, x, L, L-1)=-U_{3}^{*}(t, x, 0, L-1) \\
& U_{1}(t, L-1, y, L)=-U_{1}^{*}(t, L-1, y, 0) \\
& U_{1}(t, L-1, L, z)=-U_{1}^{*}(t, L-1,0, z)
\end{aligned}
$$

- Change of variables

$$
\begin{array}{lll}
U_{3}(t, x, L, L-1) & \rightarrow & -U_{3}(t, x, L, L-1) \\
U_{1}(t, L-1, y, L) & \rightarrow & -U_{1}(t, L-1, y, L) \\
U_{1}(t, L-1, L, z) & \rightarrow & -U_{1}(t, L-1, L, z)
\end{array}
$$

Direct Calculation

- Problems: - Must go through a phase transition
- Errors accumulate
- Direct way of calculating M at given m^{2}
- Gauge transformation
- Change of variables

$$
Z_{1}=\int_{\mathrm{C}-\mathrm{per}} D U_{\mu} D \Phi \exp (-S-\Delta S)=\langle\exp (-\Delta S)\rangle_{0} Z_{0}
$$

where

$$
\Delta S=\beta \sum_{t, x=0}^{L-1}\left[\operatorname{Tr} U_{23}\left(x, y_{0}, z_{0}\right)+\operatorname{Tr} U_{13}\left(x_{0}, y, z_{0}\right)+\operatorname{Tr} U_{12}\left(x_{0}, y_{0}, z\right)\right]
$$

- Three orthogonal 't Hooft lines crossing each other at $\left(x_{0}, y_{0}, z_{0}\right)$

Direct Calculation

- Problems: - Must go through a phase transition
- Errors accumulate
- Direct way of calculating M at given m^{2}
- Gauge transformation
- Change of variables

$$
Z_{1}=\int_{\mathrm{C}-\text { per }} D U_{\mu} D \Phi \exp (-S-\Delta S)=\langle\exp (-\Delta S)\rangle_{0} Z_{0}
$$

where

$$
\Delta S=\beta \sum_{t, x=0}^{L-1}\left[\operatorname{Tr} U_{23}\left(x, y_{0}, z_{0}\right)+\operatorname{Tr} U_{13}\left(x_{0}, y, z_{0}\right)+\operatorname{Tr} U_{12}\left(x_{0}, y_{0}, z\right)\right]
$$

- Three orthogonal 't Hooft lines crossing each other at $\left(x_{0}, y_{0}, z_{0}\right)$

Non-Integer Twists

- Difficult to calculate $\langle\exp (-\Delta S)\rangle$: Poor overlap
- Define for $\epsilon \in[0,1]$

$$
Z_{\epsilon}=\int_{\mathrm{C}-\text { per }} D U_{\mu} D \Phi \exp (-S-\epsilon \Delta S)
$$

- Unphysical for non-integer ϵ
- Still well-defined
- Differentiate with respect to ϵ

$$
\frac{d M}{d \epsilon}=-\langle\Delta S\rangle_{\epsilon}
$$

Non-Integer Twists

- From 3D simulation (PRD65(2002))

Renormalisation

- Comparison with classical results?
- m^{2}, λ, g bare couplings
- Must renormalise
- Scheme dependence
- Perturbative renormalisation
- Monopole mass only to the same order in perturbative expansion
- Non-perturbative approach:

- Measure three different quantities (say g, m_{H}, m_{W})
- Use them to fix the classical couplings
- For the moment, simply ignore logs and finite terms
- Shift m^{2} axis by a constant amount

Comparison with Classical Mass

- m^{2} shifted by 0.268
- Quantum masses generally lower (renormalisation?)

Effective Couplings

- Classical simulation \Rightarrow Finite size effect $\Delta E(L)=11.0 / g^{2} L$
- Fit quantum finite size effect to determine g_{R}
- Gives $g_{R} \approx 0.44(5)$ vs bare $g \approx 0.447$
- Masses m_{H} and m_{W} from correlation functions
- Difficult to measure m_{W}
- Expectations: As $m^{2} \rightarrow m_{c}^{2}$
- Triviality: $\lambda_{R} \rightarrow 0$
- Asymptotic freedom: g_{R} becomes large
- $m_{H} / m_{W}=\sqrt{\lambda_{R}} / g_{R} \rightarrow 0$

- $M / m_{W}=\left(4 \pi / g_{R}^{2}\right) f\left(m_{H} / m_{W}\right) \rightarrow 0$?
- Will $W^{ \pm}$decouple?
\Rightarrow Charged scalar + photon (+ neutral scalar)

Asymptotic Duality in 2+1D Abelian Higgs Model

- Near the critical point, $M_{\text {vort }} \propto\left(m_{c}^{2}-m^{2}\right)^{0.671 \pm 0.038}$
- Vortex becomes the lightest particle: $m_{\gamma}, m_{s} \propto\left(m_{c}^{2}-m^{2}\right)^{1 / 2}$
- Dual to complex scalar field theory?
- Numerical evidence: XY model critical exponent

Speculation: Asymptotic Duality in Georgi-Glashow Model?

Georgi-Glashow model	Abelian Higgs model
Higgs phase	Coulomb phase
electric/magnetic field	magnetic/electric field
magnetic monopole	charged scalar
massless photon	massless photon
Confining phase	Higgs phase
confinement	superconductivity
confining string	vortex line

- Puts the 't Hooft-Mandelstam dual superconductor idea on firm footing
- Same duality is known to exist in supersymmetric theories

Hints for Monopole Duality

- Phase diagram for $\lambda \rightarrow \infty$ (Greensite et al. 2004)

- Limit $\kappa \rightarrow \infty=$ compact QED
- Exactly dual to 4D frozen superconductor (Peskin 1978)
- Frozen superconductor $=\lambda, \kappa \rightarrow \infty$ limit of Abelian Higgs model
- Duality maps electric and magnetic field to each other
- Will duality survive near critical point even for finite λ, κ ?

Conclusions

- Monopole mass using twisted boundary conditions
- Well defined even on the lattice
- No cooling needed
- No reference to any specific field configs
- Integrating the derivative
- Derivative with respect to m^{2}
- Straightforward
- Growing errors
- Derivative with respect to non-integer twist ϵ
- Non-integer values unphysical
- Direct measurement of M at given couplings
- Comparison with classical result
- Significant correction in terms of bare couplings
- Renormalisation: Perturbative/Non-perturbative
- Critical behaviour: Duality?

