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The magnetic moment of the muon

Interaction of particle with static magnetic field

V (~x) = −~µ · ~Bext

The magnetic moment ~µ is proportional to its spin (c = ~ = 1)

~µ = g
( e

2m

)
~S

The Landé g -factor is predicted from the free Dirac eq. to be

g = 2

for elementary fermions
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The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections

qp1 p2

+
qp1 p2

k

+ . . .

γµ → Γµ(q) =

(
γµ F1(q2) + i

[γµ, γν ] qν

2

F2(q2)

2m

)

which results from Lorentz and gauge invariance when the muon is
on-mass-shell.

F2(0) =
g − 2

2
≡ aµ (F1(0) = 1)

(the anomalous magnetic moment, or anomaly)
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The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by
expanding Γµ(q2) in QED coupling constant

α =
e2

4π
=

1

137
+ . . .

Corrections begin at O(α); Schwinger term = α
2π = 0.0011614 . . .

hadronic contributions ∼ 6× 10−5 smaller, dominate theory error.
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Experiment - Standard Model Theory = difference

SM Contribution Value±Error (×1011) Ref

QED (5 loops) 116584718.951± 0.080 [Aoyama et al., 2012]

HVP LO 6923± 42 [Davier et al., 2011]

6949± 43 [Hagiwara et al., 2011]

HVP NLO −98.4± 0.7 [Hagiwara et al., 2011]

[Kurz et al., 2014]

HVP NNLO 12.4± 0.1 [Kurz et al., 2014]

HLbL 105± 26 [Prades et al., 2009]

Weak (2 loops) 153.6± 1.0 [Gnendiger et al., 2013]

SM Tot (0.42 ppm) 116591802± 49 [Davier et al., 2011]

(0.43 ppm) 116591828± 50 [Hagiwara et al., 2011]

(0.51 ppm) 116591840± 59 [Aoyama et al., 2012]

Exp (0.54 ppm) 116592089± 63 [Bennett et al., 2006]

Diff (Exp−SM) 287± 80 [Davier et al., 2011]

261± 78 [Hagiwara et al., 2011]

249± 87 [Aoyama et al., 2012]
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New experiments+new theory=new physics

Fermilab E989, begins in early 2017, aims for 0.14 ppm

J-PARC E34, “late 2010’s”, aims for 0.1 ppm

Today aµ(Expt)-aµ(SM) ≈ 2.9− 3.6σ

If both central values stay the same,

E989 (∼ 4× smaller error) → ∼ 5σ
E989+new HLBL theory (models+lattice, 10%) → ∼ 6σ
E989+new HLBL +new HVP (50% reduction) → ∼ 8σ

Big discrepancy! (New Physics ∼ 2× Electroweak)

Lattice calculations important to trust theory errors
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Hadronic vacuum polarization (HVP)

+

Using lattice QCD and continuum, ∞-volume QED
[Blum, 2003, Lautrup et al., 1971]

aHVP
µ =

(α
π

)2
∫ ∞

0
dq2 f (q2) Π̂(q2)

f (q2) is known, Π̂(q2) is subtracted HVP, Π̂(q2) = Π(q2)− Π(0)

Πµν(q) =

∫
d4x e iqx〈jµ(x)jν(0)〉 jµ(x) =

∑

i

Qi ψ̄(x)γµψ(x)

= Π(q2)(qµqν − q2δµν)
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Lattice setup (K. Wilson, 1974)

Compute correlation functions (e.g. 〈jµ(x)jν(y)〉, jµ = ψ̄γµψ)
in Feynman path integral formalism

4(5)D hypercubic lattice regularization, non-zero lattice
spacing a and finite volume, V = L3T

Handle fermion integrals analytically. Propagators inverse of
large sparse matrix, lattice Dirac operator /D + mq (domain
wall, staggered, Wilson, ...)

Treat path integrals over gauge fields stochastically, using
Monte Carlo techniques: generate ensemble of gauge field
configurations {U} with weight detM(U) exp−Sg , 〈· · · 〉
simple average over ensemble

Work entirely in Euclidean space time, analytically continue
back to Minkowski at the end (usually trivial)
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HVP from lattice QCD calculation
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T1, 56c, 50 configs
T1, 64c, 49 configs

Asqtad Hadronic Vacuum Polarization
1 light flavor (2+1 flavor QCD, a=0.06 fm)

2+1f Imp. staggered

MILC ensembles

a = 0.06 fm, (3.84 fm)3 box

220 ≤ mπ ≤ 315 MeV

mπL ∼ 4.3− 4.5

Aubin, Blum, Golterman, and Peris (MILC gauge ensembles)
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Fits

Need smooth parametrization of lattice HVP

Integral dominated by low momentum, mµ/2 <∼ 2π/L

Fit HVP, plug into integral. Use polynomials [Blum, 2003],
VMD [Gockeler et al., 2004], chiral perturbation
theory+VMD [Aubin and Blum, 2007]

Integral (= aµ) sensitive to model dependence because of low
Q uncertainties [Aubin and Blum, 2007, Aubin et al., 2012, Golterman et al., 2013]

VMD does not work [Golterman et al., 2013]

Use Padé approximants, model independent, based on
Stieltjes functions (nice convergence properties) [Aubin et al., 2012]

Π(Q2) = Π(0)− Q2

(
a0 +

N∑

n=1

an
bn + Q2

)
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Fits circa 2012 [Aubin and Blum, 2007, Aubin et al., 2012]

HVP Integrand
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FIG. 2: [1, 1] PA fits of Tables 3 (correlated, solid curve) and 4 (uncorrelated, dashed curve)

compared with data. Solid points have been included in the correlated fit while both solid and open

points have been included in the uncorrelated fit.

results of Table 3 as our optimal results (for more on this point, see the discussion around
Table 5 below). Uncorrelated fits are shown in Table 4, where, in line with Sec. IVA, fits
were carried out on the interval 0 < Q2 ≤ 1 GeV2.

It is again not surprising that the correlated fits become less good if one fits over a larger
range in Q2. As before, it is clear from the tables that, given the quality of the data, it is
very hard to fit a second pole. The value of aHLO,Q2≤1

µ is again completely insensitive to the

location of the second pole.10

We show the [1, 1] fits of Tables 3 and 4 in Fig. 2. As in Fig. 1 one notes the sensitivity

of the fit near Q2 = 0; this explains the different values for aHLO,Q2≤1
µ shown in the tables.

From the [1, 1] PA fit of Table 3 we take what we would expect to be our best result for
this data set:

aHLO,Q2≤1
µ = 572(41) × 10−10 . (4.3)

In Fig. 3 we show correlated and uncorrelated [1, 1] PA fits, now taking the range 0 < Q2 ≤
0.53 GeV2 as our fitting range also for the uncorrelated fit. We note that the uncorrelated
fit appears to do better than the uncorrelated [1, 1] PA fit shown in Fig. 2 at the lowest
Q2 value, but much less well than the correlated fit for Q2 > 0.53 GeV2. Accordingly,
uncorrelated fits are quite sensitive to the fitting range. For instance, the central value of
aHLO,Q2≤1

µ from the uncorrelated fit shown in Fig. 3 is 42% larger than from a similar fit on
the range 0 < Q2 ≤ 1 GeV2 (shown in Table 4). A correlated fit on the latter range gives a
central value which is only 3% larger than the value in Eq. (4.3), i.e., it is within the error

10 We even considered [2, 3] and [3, 3] fits, with the conclusion being the same.

11

0.05 0.10 0.15 0.20

-0.005

0.005

Integrand	  of	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  compared	  with	  data	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (MILC,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  

⇒	  	  	  	  need	  more	  data	  at	  low	  	  	  	  	  	  	  	  with	  smaller	  errors!	  	  	  	  In	  progress…	  	  Q2

aHLO
µ /(4↵2)

a = 0.06 fm , m⇡ = 220 MeV2+1f Imp. staggered (MILC), 220 MeV pion, (3.84 fm)3

1,1 Padé

Dominated by q ∼ mµ/2 (large box needed for access)

Fit uncertainty ↔ large uncertainty in aµ (10-20%)

Need improved statistical errors and larger box for small q
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Moments method [Chakraborty et al., 2014] (HPQCD)

Alternative to fits: compute time moments of two-point
correlation function. Coefficients of Taylor exp. about q2 = 0

∑

t

∑

~x

t2n〈j i (~x , t)j i (0)〉 = (−1)n
∂2n

∂q2n
Π̂(q2)

∣∣∣∣
q2=0

(∂/∂q → finite difference in FV → FVE)

Use moments to construct Padé approximants for Π̂,

Higher moments → more statistical noise. OK since Padé’s
converge rapidly, integral dominated by low Q2

5

TABLE II: Columns 2-5 give the Taylor coefficients Πj (Eq. 6), in units of 1/GeV2j , for each of the lattice data sets in Table I.
The errors given include statistics and the (correlated) uncertainty from setting the lattice spacing using w0, which dominates.
Estimates of the connected contribution from s-quarks to aµ,HVP are given for each of the [1, 0], [1, 1], [2, 1] and [2, 2] Padé
approximants in columns 6-9; results are multiplied by 1010.

Set Π1 Π2 Π3 Π4 [1, 0]× 1010 [1, 1]× 1010 [2, 1]× 1010 [2, 2]× 1010

1 0.06598(76) −0.0516(11) 0.0450(15) −0.0403(19) 58.11(67) 53.80(59) 53.95(59) 53.90(59)
2 0.06648(75) −0.0523(11) 0.0458(15) −0.0408(18) 58.55(66) 54.19(58) 54.33(59) 54.29(59)
3 0.06618(75) −0.0523(11) 0.0466(15) −0.0425(20) 58.28(66) 53.93(58) 54.09(58) 54.04(58)
4 0.06614(74) −0.0523(11) 0.0467(15) −0.0427(19) 58.25(65) 53.90(57) 54.06(58) 54.01(57)
5 0.06626(74) −0.0527(11) 0.0473(15) −0.0438(19) 58.36(65) 53.99(57) 54.15(57) 54.10(57)
6 0.06829(77) −0.0557(12) 0.0514(17) −0.0490(22) 60.14(67) 55.55(59) 55.73(59) 55.67(59)
7 0.06619(74) −0.0524(11) 0.0468(15) −0.0430(19) 58.29(65) 53.93(57) 54.10(57) 54.05(57)
8 0.06625(74) −0.0526(11) 0.0470(15) −0.0429(19) 58.34(65) 53.98(57) 54.14(57) 54.09(57)
9 0.06616(77) −0.0531(12) 0.0483(17) −0.0450(22) 58.27(68) 53.87(59) 54.04(60) 53.99(59)
10 0.06630(72) −0.0534(11) 0.0487(16) −0.0458(20) 58.39(64) 53.98(56) 54.15(56) 54.10(56)

TABLE III: Error budgets for connected contributions to the
muon anomaly aµ from vacuum polarization of s and c quarks.

asµ acµ
Uncertainty in lattice spacing (w0, r1): 1.0% 0.6%

Uncertainty in ZV : 0.4% 2.5%
Monte Carlo statistics: 0.1% 0.1%
a2 → 0 extrapolation: 0.1% 0.4%

QED corrections: 0.1% 0.3%
Quark mass tuning: 0.0% 0.4%

Finite lattice volume: < 0.1% 0.0%
Padé approximants: < 0.1% 0.0%

Total: 1.1% 2.7%

mistuning of the sea and valence light-quark bare masses:

δxsea ≡
∑

q=u,d,s

msea
q −mphys

q

mphys
s

(10)

δxs ≡
mval
s −mphys

s

mphys
s

. (11)

For our lattices with physical u/d sea masses δxsea is very
small. a2 errors from staggered ‘taste-changing’ effects
will remain and they are handled by ca2 . The four fit
parameters are a2

µ, ca2 , csea and cval; we use the following
(broad) Gaussian priors for each:

asµ = 0± 100× 10−10

ca2 = 0(1) csea = 0(1) cval = 0(1). (12)

Our final result for the connected contribution for
s quarks to g − 2 is:

asµ = 53.41(59)× 10−10. (13)

The fit to [2, 2] Padé results from all 10 of our configu-
ration sets is excellent, with a χ2 per degree of freedom
of 0.22 (p-value of 0.99). In Fig. 4 we compare our fit
with the data from configurations with ms/m` equal 5
and with the physical mass ratio.
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a2 (fm2)
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a
s µ
×

10
1
0

FIG. 4: Lattice QCD results for the connected contribution to
the muon anomaly aµ from vacuum polarization of s quarks.
Results are for three lattice spacings, and two light-quark
masses: mlat

` = ms/5 (lower, blue points), and mlat
` = mphys

`

(upper, red points). The dashed lines are the corresponding
values from the fit function, with the best-fit parameter val-
ues: ca2 = 0.29(13), csea = −0.020(6) and cval = −0.61(4).
The gray band shows our final result, 53.41(59)×10−10, with

mlat
` = mphys

` , after extrapolation to a = 0.

TABLE IV: Contributions to aµ from s and c quark vacuum
polarization. Only connected parts of the vacuum polariza-
tion are included. Results, multiplied by 1010, are shown for
each of the Padé approximants.

Quark [1, 0]× 1010 [1, 1]× 1010 [2, 1]× 1010 [2, 2]× 1010

s 57.63(67) 53.28(58) 53.46(59) 53.41(59)
c 14.58(39) 14.41(39) 14.42(39) 14.42(39)

The error budget for our result is given in Table III.
The dominant error, by far, comes from the uncertainty
in the physical value of the Wilson flow parameter w0,
which we use to set the lattice spacings. We estimate the
uncertainty from QED corrections to the vacuum polar-

all systematics controlled

astrange
µ = 53.41(59)× 10−10

[Chakraborty et al., 2014] (HPQCD)

Next, apply to light quark HVP
(same difficulty as q → 0 or
t →∞)
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Finite volume HVP [Aubin et al., 2015] see also [Bernecker and Meyer, 2011]

FV effects important for low q, cutoff effects small

Finite volume Πµν transforms under 5 Irreps (1, 1, 2, 3, 3)d:
A1, A2, E , T1, T2 for L 6= T

Πµµ(0) 6= 0 in FV because Euclidean O(4) symmetry is
broken. Terms not constrained by WI, exponentially small

Πµν(q) is discontinuous at q = 0, more singular in FV @ low q

Suggests we should subtract Πµµ(0)

Π(q2) depends on irrep

full SO(4) symmetry restored as L,T →∞

Tom Blum (UCONN / RBRC) Progress on computing the muon anomalous magnetic moment from lattice QCD(+QED)
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Finite volume effects

Zero mom subtraction Πνν(0) seen to reduce FV effect
[Malak et al., 2015] (BMWc)

FV corrections to aHV P,LO
µ Rehan Malak

Q2(GeV 2)
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Figure 1: (Left panel) Πud(Q2) vs Q2 for Mπ ∼ 292MeV, as obtained using the usual and 2nd derivative
(Eq. (2.5)) methods in four volumes and with all other lattice parameters fixed. The data points are the
values obtained from the current-current correlation function and its Fourier derivatives. The curves are the
corresponding fits. (Right panel) aHVP,LO

µ,ud (Q2 ≤ 1GeV2) vs 1/Mπ L obtained from the polarization functions
in the left panel.

While results from the three methods converge in the large-volume limit, in smaller volumes
the finite-size corrections are significant in some cases. In the smallest volume, with L = 2.5fm
or LMπ = 3.7, the finite-volume correction on aHVP,LO

µ,ud (Q2 ≤ 1GeV2), obtained using the 2nd
derivative method, is ∼ 35%. It is even larger for the usual method without subtraction: around
200%. In the 2nd derivative case, it is reduced to below 10% by the time L >∼ 5fm. Only results
obtained from the usual method with subtraction do the finite-volume effects remain small for all
volumes considered.

An interesting feature of the 2nd derivative method is that it features significantly smaller
statistical errors on aHVP,LO

µ (Q2 ≤ 1GeV2) than the usual method without subtraction. This remain
true to a much smaller extent for the usual method with subtraction. In the former case, it is
mainly due to the fact that the 2nd derivative method eliminates the noisy Πud

µν(0), as does usual
method with subtraction. The additional statistical improvement compared to the usual method with
subtraction results from the fact that the 2nd derivative method allows the extraction of Π(Q2 = 0).
This constrains the statistical fluctuations of the fitted Π(Q2) vs Q2 in the very important low-Q2

region. And though we do not investigate this issue here, this additional constraint will also reduce
systematic errors by replacing the usual extrapolation by an interpolation.

We now turn to the strange-quark contribution to aHVP,LO
µ and perform the same study of

finite-volume effects as for the light contribution. The corresponding results for Πs(Q2) vs Q2

and aHVP,LO
µ,s (Q2 ≤ 1GeV2) vs 1/MπL are shown in Fig. 2. For both quantities, the same general

features, as were observed for the light contribution, are seen here. In particular, the results obtained
from the usual method with subtraction show no volume dependence for the lattices considered.
On the other hand, significant finite-volume effects are still observed for the two other methods
in smaller volumes, but these disappear as one goes to larger lattices. They are, nevertheless,
much smaller than in the light case. For the strange contribution, the finite-volume correction,
in the smallest volume with L = 2.5fm or LMπ = 3.7, is now ∼ 25% on aHVP,LO

µ (Q2 ≤ 1GeV2)

obtained using the derivative method and ∼ 20% when it is obtained using the usual approach

5

2.5 ≤ L ≤ 8.3 fm, 5 ≤ T ≤ 10 fm,
a = 0.104 fm, mπ = 292 MeV, 3.7 ≤ mπL ≤ 12.3

100% error for “small” box, 40% even for mπL = 4.9
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FV effects: M. Golterman’s talk at Lattice 2015 [Aubin et al., 2015]

FVE small, but visible, so fit HVP for each irrep separately
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Asqtad Hadronic Vacuum Polarization
1 light flavor (2+1 flavor QCD, a=0.06 fm)

Red	  	  	  	  	  	  	  A1	  subtracted	  
Blue	  	  	  	  	  	  A1

44	  unsubtracted	  	  	  	  

Comparison	  using	  AMA	  laEce	  data	  of	  different	  irreps	  	  	  (Aubin	  et	  al.	  ’15)	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (AMA:	  	  Blum,	  Izubuchi	  and	  Shintani,	  ’13)	  
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Statistical errors < 0.4% ! All mode averaging [Izubuchi et al., 2013]
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Finite volume effects [Aubin et al., 2015]

Use FV SU2 chiral perturbation theory to compute differences
between irreps, and same irreps with and without subtraction

Πµν =
4

L3T

∑

p

sin (p + q/2)µ sin (p + q/2)ν
(2
∑

k(1− cos p)k + m2
π)(2

∑
k(1− cos p + q/2)k + m2

π)

−δµν
2

L3T

∑

p

cos pµ
2
∑

k(1− cos p)k + m2
π

0.00 0.05 0.10 0.15 0.20

-0.014

-0.012

-0.010

-0.008

0.00 0.05 0.10 0.15 0.20

-0.011

-0.010

-0.009

-0.008

Red	  	  	  	  	  	  	  A1	  subtracted	  
Blue	  	  	  	  	  	  A1

44	  unsubtracted	  
Black	  	  	  	  A1	  infinite	  volume	  	  	  	  

Comparison	  using	  NLO	  ChPT	  of	  different	  irreps	  –	  straddle	  infinite-‐volume	  

! (aQ)2

A1 irrep has lowest Q2, largest FVE, O(∼ 40%)!, mπL = 4.2

FVE O(few%) of full HVP, mπL = 4.2
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Finite volume effects [Aubin et al., 2015]

Compare lattice and NLO χPT (both in FV)

0.0 0.2 0.4 0.6 0.8 1.0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.2 0.3 0.4 0.5

-0.0005

0.0005

0.0010

Difference of A1 (subtracted) and A44
1 irreps

Differences are <∼ 0.5% of total HVP @ mπL = 4.2 after zero
mom subtraction

χPT does a reasonable job describing lattice calculation

Reasonable assumption: FV effects dominated my pions
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Finite volume errors [Aubin et al., 2015]

2+1f Imp. staggered (MILC), 220 MeV pion, (3.84 fm)3

A1 sub, aµ = 8.4± 0.4× 10−8 8.4± 0.5× 10−8 (conf. pol.)

A44
1 , aµ = 9.2± 0.3× 10−8 9.6± 0.4× 10−8 (conf. pol.)

Difference 9− 13% due to FVE

χPT: irreps straddle ∞ volume result, so FV error <∼ 5− 7%
in this case?
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Fits and the aµ integrand [Aubin et al., 2012, Aubin et al., 2015]

Why is aµ so sensitive to FVE?

0.05 0.10 0.15 0.20

-0.005

0.005

Integrand	  of	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  compared	  with	  data	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (MILC,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  

⇒	  	  	  	  need	  more	  data	  at	  low	  	  	  	  	  	  	  	  with	  smaller	  errors!	  	  	  	  In	  progress…	  	  Q2

aHLO
µ /(4↵2)

a = 0.06 fm , m⇡ = 220 MeV

0.00 0.05 0.10 0.15 0.20
0.000

0.002

0.004

0.006

0.008

0.010

0.012

old statistics (2012) new statistics (AMA)

dominated by q ∼ mµ/2 (large box needed to access)
better, but still larger box needed
moment method has similar problem, e.g., t2 moment:

Π(0) =

T/2−1∑

n=−T/2,n 6=0

4(−1)nΠ(n∆) (∆ ≡ 2π

L
, pbc)

Solid understanding of low Q2 region emerging
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Strange: Matt Spraggs’s talk at Lattice 2015 [RBC/UKQCD 2015]

Strange contribution to HVP, 2+1 flavor Möbius DWF,
physical quark mass ensemble

14/20

HVP
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Strange: Matt Spraggs’s talk at Lattice 2015 [RBC/UKQCD 2015]

Analysis strategy to parametrize Π(q2)

Use fits, moments, continuous FT (sin cardinal constr)

Padé approximants, conformal polynomials

various q2 cuts (high and low)

17/20

Results: Fits

18/20

Results: Moments

Fits Moments
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Strange: Matt Spraggs’s talk at Lattice 2015 [RBC/UKQCD 2015]

Histogram of results from various strategies. Results insensitive

26/20

Results: aµ
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Strange: Matt Spraggs’s talk at Lattice 2015 [RBC/UKQCD 2015]

Extrapolations

Strange quark mistuning: ∼ 1% 48I, ∼ 5% 64I

Partially quenched strange mass extrapolation

continuum limit

asµ = asµ,0 + αa2 + β
ms −mphys

s

mphys
s + mres
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Strange: Matt Spraggs’s talk at Lattice 2015
(Kobe)[RBC/UKQCD 2015]

Strange contribution, 2+1 f Möbius DWF, continuum limit

24/20

Extrapolations

Moments, P0.5GeV
2 , low cut = 0.5 GeV2, high cut = 4.5 GeV2

Physical masses

a = 0.114 and 0.09 fm

(5.5 fm)3 boxes
RBC/UKQCD

results independent of analysis method (fits or moments)

remarkable agreement with HPQCD 2+1+1 staggered
fermion result 53.41 (59) (1% level) [Chakraborty et al., 2014]
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Disconnected diagrams

Zero contribution in the SU3 flavor limit

10% of connected in χPT [Della Morte and Juttner, 2010]

Computed by several groups so far
[Feng et al., 2011, Gulpers et al., 2014, Burger et al., 2015]

Compute light-strange to cancel noise (Mainz Group)

The leading disconnected contribution to the anomalous magnetic moment of the muon Vera Gülpers

For convenience, we consider the disconnected correlator G`s
disc(t) for light and strange quarks

combined, since one can write the disconnected Wick contractions as

G`s
disc(x0) =−

∫
d3x
〈

j`sk (x) j`sk (0)
〉

disc

=−
∫

d3x
〈
( j`k(x)− js

k(x))( j`k(0)− js
k(0))

〉
disc

,
(2.3)

i.e. we only need differences of light and strange quark loops. Thus, we expect that stochastic
noise can be canceled when light and strange quark loops are calculated using the same stochastic
sources. Figure 2 shows our results for the disconnected correlator for light quarks only in red and
for combined light and strange quarks in green for the E5 ensemble (cf. table 1). As expected,
we find that the stochastic error for the combined light and strange disconnected correlator is sig-
nificantly smaller than the error on the light quark correlator alone. Although we can reduce the

G
d
is
c
(t

)

t/a

light
light and strange

−4e − 04

−3e − 04

−2e − 04

−1e − 04
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Figure 2: The disconnected vector correlator for light quarks (red) and combined light and strange quarks
(green). Note, that the scales on both plots are different.

statistical error significantly when light and strange loops are calculated with the same stochastic
sources, we find that the disconnected correlator G`s

disc(x0) is still consistent with zero within our
current accuracy.

We can add the disconnected correlator to the connected one to obtain the total vector correla-
tor. Figure 3 shows the connected (red) and the total vector correlator (yellow) for the E5 ensemble.
Results for light quarks as well as light and strange quarks combined are shown on the left- and the
right-hand side, respectively. The horizontal line in both plots shows the level of the statistical error
on the disconnected contribution, i.e. it indicates the point from which on our total vector correla-
tor is dominated by the noise of the disconnected contribution. This point sets in for significantly
larger euclidean times in the case of the combined light and strange quark correlator.

Although we do not find a non-vanishing signal for the disconnected correlator, we can still
use our results to give a limit for the maximum possible contribution to the hadronic vacuum
polarization from quark-disconnected diagrams. Here, we will solely consider the case of combined
light and strange quarks, for which the statistical error is significantly smaller.

3

Zero within ∼ 3% statistical errors for heavier quarks
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Outline I

1 Introduction
Nature - Standard Model

2 HVP
Doing the integral: fits, moments, sums, ...
finite volume effects
strange
disconnected diagrams

3 HLbL
non-perturbative QED
Perturbative QED in configuration space
next steps

4 Summary/Outlook

5 References
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Hadronic light-by-light (HLbL) scattering

+ + · · ·

Models: (105± 26)× 10−11
[Prades et al., 2009, Benayoun et al., 2014]

(116± 40)× 10−11
[Jegerlehner and Nyffeler, 2009]

systematic errors difficult to quantify
Dispersive approach difficult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with pQED+QCD [Jin et al., 2015]

New HLbL scattering calculation by Mainz group [Green et al., 2015]
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Non-perturbative QED method [Blum et al., 2015]

Subtraction Method 12/32

• Evalutate the quark and muon propagators in the background quenched QED fields. Thus
generate all kinds of diagrams.

〈 quark 〉

QCD+quenched QEDA

−
〈

quark

〉

QCD+quenched QEDB〈 〉

quenched QEDA

= 3×

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, ν
y, σ x, ρ

Figure 7. PoS LAT2005 (2006) 353. hep-lat/0509016. One typical diagram remains after subtraction
is shown on the left, 5 others are not shown.

• After subtraction, the lowest order signal remains is O(e6) which is exact LbL diagram.

• Solved the 3-loop problem. Now we only need to compute point source propagators in
the backgrounds of QED fields.

• Lower order noise problem. The signal after subtraction is O(e6). But even after charge
conjugation average on the muon line, the noise is still O(e4).

• Unwanted higher order effects. In practice, one normally choose e = 1.

• “Disconnect diagram” problem. Noise will likely increase in larger volume.

5 10 15 20 25 30
tsep

-0.1

0

0.1

0.2

0.3

0.4

F 2((
2π

/L
)2 )

QED (mloop=mµ=0.1, 243)

QED, (mloop=mµ=0.1, 163)

QED pert. theory, F2(0)
QCD+QED (mπ=330 MeV)
hadronic models, F2(0)

quark-connected part of HLbL

a−1 = 1.7848 GeV, (2.7 fm)3

mπ = 330 MeV, mµ = 190 MeV

Consistent with model
expectations (J. Bijnens)

Agreement with models accidental

O(α2) noise, O(α4) corrections
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HLbL: pQED, L. Jin’s talk, Lattice 2015 [Jin et al., 2015]

sum over two electromagnetic vertices dramatically simplifies the calculation. Here L and T

are the spatial and temporal extents of the lattice volume. Since the two vertices appear on

the same closed quark loop, the amplitude being evaluated will fall exponentially as x and

y are separated beyond ≈ 1 fm, a fact that can be exploited when choosing the distribution

according to which x and y are generated.

xsrc xsnky
′
, σ

′
z
′
, κ

′ x
′
, ρ

′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky
′
, σ

′
x
′
, ρ

′ z
′
, κ

′

xop, ν

z, κ

y, σ x, ρ

Figure 2. Hadronic light-by-light diagrams. There are 4 other possible permutations.

As is shown in Appendix A, the short distance properties of these HLbL graphs require

that at least one of the currents which couple to the internal quark line must be a conserved

lattice current if the resulting amplitude is to have a simple continuum limit with no need to

subtract a contact term. The conservation of the external current implies that this amplitude

vanishes in the limit that q → 0, the limit needed to evaluate gµ − 2. The third algorithmic

improvement (Sec. II C) that we explore is making a choice of graphs so that this vanishing

behavior in the q → 0 limit occurs for each QCD gauge configuration. If this approach is

adopted then both the signal and the noise will vanish in this limit.

The fourth algorithmic development (Sec. IID) resolves the difficulty of evaluating the

limit q2 → 0 for an amplitude which is proportional to q in finite volume. In such a case the

amplitude would normally be evaluated at the smallest, non-zero lattice momentum 2π/L

and the limit q2 → 0 achieved only in the limit of infinite volume. Here we introduce a

position-space origin related to the choice of x and y and show that a simple first moment of

the finite-volume, current matrix element between zero-momentum initial and final muons

will yield the q2 = 0 anomalous magnetic moment:

(gµ − 2)cHLbL
e

4mµ

σ⃗s′s =
1

2

∫
d3r
{
r⃗ ×

⟨
µs′
∣∣ J⃗(r⃗)

∣∣µs

⟩
cHLbL

}
. (1)

Here σ⃗ is a vector formed from the three Pauli matrices, s and s′ are the initial and final spin

indices, the label cHLbL indicates that only the quark-connected, HLbL amplitude is being

6

+

sum over two electromagnetic vertices dramatically simplifies the calculation. Here L and T

are the spatial and temporal extents of the lattice volume. Since the two vertices appear on

the same closed quark loop, the amplitude being evaluated will fall exponentially as x and

y are separated beyond ≈ 1 fm, a fact that can be exploited when choosing the distribution

according to which x and y are generated.
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Figure 2. Hadronic light-by-light diagrams. There are 4 other possible permutations.

As is shown in Appendix A, the short distance properties of these HLbL graphs require

that at least one of the currents which couple to the internal quark line must be a conserved

lattice current if the resulting amplitude is to have a simple continuum limit with no need to

subtract a contact term. The conservation of the external current implies that this amplitude

vanishes in the limit that q → 0, the limit needed to evaluate gµ − 2. The third algorithmic

improvement (Sec. II C) that we explore is making a choice of graphs so that this vanishing

behavior in the q → 0 limit occurs for each QCD gauge configuration. If this approach is

adopted then both the signal and the noise will vanish in this limit.

The fourth algorithmic development (Sec. IID) resolves the difficulty of evaluating the

limit q2 → 0 for an amplitude which is proportional to q in finite volume. In such a case the

amplitude would normally be evaluated at the smallest, non-zero lattice momentum 2π/L

and the limit q2 → 0 achieved only in the limit of infinite volume. Here we introduce a

position-space origin related to the choice of x and y and show that a simple first moment of

the finite-volume, current matrix element between zero-momentum initial and final muons

will yield the q2 = 0 anomalous magnetic moment:

(gµ − 2)cHLbL
e

4mµ

σ⃗s′s =
1

2

∫
d3r
{
r⃗ ×

⟨
µs′
∣∣ J⃗(r⃗)

∣∣µs

⟩
cHLbL

}
. (1)

Here σ⃗ is a vector formed from the three Pauli matrices, s and s′ are the initial and final spin

indices, the label cHLbL indicates that only the quark-connected, HLbL amplitude is being

6

+ 4 more

Compute quark loop non-perturbatively

Photons, muon on lattice, but use (exact) tree-level
propagators

Work in configuration space

Do QED (two) loop integrals stochastically

Key insight: quark loop exponentially suppressed with x and y
separation. Concentrate on “short distance” (π Compton λ)

Chiral (DW) fermions at finite lattice spacing: UV properties
like in continuum, modified by O(a2)
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HLbL: pQED [Jin et al., 2015]

sum over two electromagnetic vertices dramatically simplifies the calculation. Here L and T

are the spatial and temporal extents of the lattice volume. Since the two vertices appear on

the same closed quark loop, the amplitude being evaluated will fall exponentially as x and

y are separated beyond ≈ 1 fm, a fact that can be exploited when choosing the distribution

according to which x and y are generated.
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Figure 2. Hadronic light-by-light diagrams. There are 4 other possible permutations.

As is shown in Appendix A, the short distance properties of these HLbL graphs require

that at least one of the currents which couple to the internal quark line must be a conserved

lattice current if the resulting amplitude is to have a simple continuum limit with no need to

subtract a contact term. The conservation of the external current implies that this amplitude

vanishes in the limit that q → 0, the limit needed to evaluate gµ − 2. The third algorithmic

improvement (Sec. II C) that we explore is making a choice of graphs so that this vanishing

behavior in the q → 0 limit occurs for each QCD gauge configuration. If this approach is

adopted then both the signal and the noise will vanish in this limit.

The fourth algorithmic development (Sec. IID) resolves the difficulty of evaluating the

limit q2 → 0 for an amplitude which is proportional to q in finite volume. In such a case the

amplitude would normally be evaluated at the smallest, non-zero lattice momentum 2π/L

and the limit q2 → 0 achieved only in the limit of infinite volume. Here we introduce a

position-space origin related to the choice of x and y and show that a simple first moment of

the finite-volume, current matrix element between zero-momentum initial and final muons

will yield the q2 = 0 anomalous magnetic moment:

(gµ − 2)cHLbL
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{
r⃗ ×

⟨
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∣∣ J⃗(r⃗)
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. (1)

Here σ⃗ is a vector formed from the three Pauli matrices, s and s′ are the initial and final spin

indices, the label cHLbL indicates that only the quark-connected, HLbL amplitude is being
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sum over two electromagnetic vertices dramatically simplifies the calculation. Here L and T

are the spatial and temporal extents of the lattice volume. Since the two vertices appear on

the same closed quark loop, the amplitude being evaluated will fall exponentially as x and

y are separated beyond ≈ 1 fm, a fact that can be exploited when choosing the distribution

according to which x and y are generated.
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As is shown in Appendix A, the short distance properties of these HLbL graphs require

that at least one of the currents which couple to the internal quark line must be a conserved

lattice current if the resulting amplitude is to have a simple continuum limit with no need to

subtract a contact term. The conservation of the external current implies that this amplitude

vanishes in the limit that q → 0, the limit needed to evaluate gµ − 2. The third algorithmic

improvement (Sec. II C) that we explore is making a choice of graphs so that this vanishing

behavior in the q → 0 limit occurs for each QCD gauge configuration. If this approach is

adopted then both the signal and the noise will vanish in this limit.

The fourth algorithmic development (Sec. IID) resolves the difficulty of evaluating the

limit q2 → 0 for an amplitude which is proportional to q in finite volume. In such a case the

amplitude would normally be evaluated at the smallest, non-zero lattice momentum 2π/L

and the limit q2 → 0 achieved only in the limit of infinite volume. Here we introduce a

position-space origin related to the choice of x and y and show that a simple first moment of

the finite-volume, current matrix element between zero-momentum initial and final muons

will yield the q2 = 0 anomalous magnetic moment:

(gµ − 2)cHLbL
e

4mµ

σ⃗s′s =
1

2

∫
d3r
{
r⃗ ×

⟨
µs′
∣∣ J⃗(r⃗)

∣∣µs

⟩
cHLbL

}
. (1)

Here σ⃗ is a vector formed from the three Pauli matrices, s and s′ are the initial and final spin

indices, the label cHLbL indicates that only the quark-connected, HLbL amplitude is being

6

+ 4 more

Fν(x , y , z , xop, xsnk, xsrc) =

−(−ie)3
∑

q=u,d,s

(ieq)4
〈
tr
[
γνSq (xop, x) γρSq(x , z)γκSq(z , y)γσSq (y , xop)

]〉
QCD

·
∑

x′,y ′,z′

Gρρ′(x , x
′)Gσσ′(y , y

′)Gκκ′(z , z
′)

·
[
Sµ (xsnk, x

′) γρ′Sµ(x ′, z ′)γκ′Sµ(z ′, y ′)γσ′Sµ (y ′, xsrc)

+Sµ (xsnk, z
′) γκ′Sµ(z ′, x ′)γρ′Sµ(x ′, y ′)γσ′Sµ (y ′, xsrc)

+4 other permutations
]
.
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HLbL: pQED, point source method [Jin et al., 2015]

sum over two electromagnetic vertices dramatically simplifies the calculation. Here L and T

are the spatial and temporal extents of the lattice volume. Since the two vertices appear on

the same closed quark loop, the amplitude being evaluated will fall exponentially as x and

y are separated beyond ≈ 1 fm, a fact that can be exploited when choosing the distribution

according to which x and y are generated.
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Figure 2. Hadronic light-by-light diagrams. There are 4 other possible permutations.

As is shown in Appendix A, the short distance properties of these HLbL graphs require

that at least one of the currents which couple to the internal quark line must be a conserved

lattice current if the resulting amplitude is to have a simple continuum limit with no need to

subtract a contact term. The conservation of the external current implies that this amplitude

vanishes in the limit that q → 0, the limit needed to evaluate gµ − 2. The third algorithmic

improvement (Sec. II C) that we explore is making a choice of graphs so that this vanishing

behavior in the q → 0 limit occurs for each QCD gauge configuration. If this approach is

adopted then both the signal and the noise will vanish in this limit.

The fourth algorithmic development (Sec. II D) resolves the difficulty of evaluating the

limit q2 → 0 for an amplitude which is proportional to q in finite volume. In such a case the

amplitude would normally be evaluated at the smallest, non-zero lattice momentum 2π/L

and the limit q2 → 0 achieved only in the limit of infinite volume. Here we introduce a

position-space origin related to the choice of x and y and show that a simple first moment of

the finite-volume, current matrix element between zero-momentum initial and final muons

will yield the q2 = 0 anomalous magnetic moment:

(gµ − 2)cHLbL
e

4mµ

σ⃗s′s =
1

2

∫
d3r
{
r⃗ ×

⟨
µs′
∣∣ J⃗(r⃗)

∣∣µs

⟩
cHLbL

}
. (1)

Here σ⃗ is a vector formed from the three Pauli matrices, s and s′ are the initial and final spin

indices, the label cHLbL indicates that only the quark-connected, HLbL amplitude is being

6

FT muon src, snk Fν(~q, x , y , z , xop) =

lim
tsrc→−∞
tsnk→∞

eEq/2(tsnk−tsrc)
∑

~xsnk,~xsrc

e−i
~q
2 ·(~xsnk+~xsrc)e i~q·~xop

Fν(x , y , z , xop, xsnk, xsrc)

with mom. transfer ~q = 2π~z/L, and use
translational invariance to shift origin:

Mν (~q) =
∑
x,y,z

Fν (~q,
x − y

2
,−

x − y

2
, z − w, xop − w)

=
∑
r


∑

z′,x′op

Fν (~q, r,−r, z′, x′op)


=

( /q+ + mµ

2Eq/2

)(
F1(q2)γν +

F2(q2)

2m

i

2
[γν , γβ ](qβ )

)( /q− + mµ

2Eq/2

)

w =
x + y

2
, r =

x − y

2
, z′ = z − w and x′op = xop − w

Sum over r and w stochastically, do x′op and z′ sums exactly
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HLbL: pQED, point source method [Jin et al., 2015]

sum over two electromagnetic vertices dramatically simplifies the calculation. Here L and T

are the spatial and temporal extents of the lattice volume. Since the two vertices appear on

the same closed quark loop, the amplitude being evaluated will fall exponentially as x and

y are separated beyond ≈ 1 fm, a fact that can be exploited when choosing the distribution

according to which x and y are generated.
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Figure 2. Hadronic light-by-light diagrams. There are 4 other possible permutations.

As is shown in Appendix A, the short distance properties of these HLbL graphs require

that at least one of the currents which couple to the internal quark line must be a conserved

lattice current if the resulting amplitude is to have a simple continuum limit with no need to

subtract a contact term. The conservation of the external current implies that this amplitude

vanishes in the limit that q → 0, the limit needed to evaluate gµ − 2. The third algorithmic

improvement (Sec. II C) that we explore is making a choice of graphs so that this vanishing

behavior in the q → 0 limit occurs for each QCD gauge configuration. If this approach is

adopted then both the signal and the noise will vanish in this limit.

The fourth algorithmic development (Sec. II D) resolves the difficulty of evaluating the

limit q2 → 0 for an amplitude which is proportional to q in finite volume. In such a case the

amplitude would normally be evaluated at the smallest, non-zero lattice momentum 2π/L

and the limit q2 → 0 achieved only in the limit of infinite volume. Here we introduce a

position-space origin related to the choice of x and y and show that a simple first moment of

the finite-volume, current matrix element between zero-momentum initial and final muons

will yield the q2 = 0 anomalous magnetic moment:

(gµ − 2)cHLbL
e

4mµ

σ⃗s′s =
1

2

∫
d3r
{
r⃗ ×

⟨
µs′
∣∣ J⃗(r⃗)

∣∣µs

⟩
cHLbL

}
. (1)

Here σ⃗ is a vector formed from the three Pauli matrices, s and s′ are the initial and final spin

indices, the label cHLbL indicates that only the quark-connected, HLbL amplitude is being

6

G (x , x ′)ρρ′ =
∑

k

1

(2 sin k/2)2
e ik(x−x′)

QEDL [Hayakawa and Uno, 2008]

Muon propagators FV (analytic),
tree-level DWF with Ls =∞
Randomly choose w

Compute 2 point source props in QCD
at x , y , connect sink points at x ′op and
z ′, do the latter sums exactly

tsrc, tsnk = w0 ± T/2 for each w

Do sums over r , w (x , y)
stochastically, average over QCD
configurations then yields Mν(~q)
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HLbL: pQED, point source method [Jin et al., 2015]

Use importance sampling to do sum over r efficiently
(sample |r | <∼ 1 fm most frequently). Empirical choice:

p(|xi − w |) ∝
{

1 (|xi − w | < R)
1/|xi − w |3.5 (|xi − w | > R)

,

The distribution of the relative distance |r | between any two
points drawn from this set is:

P(r) =
∑

x

p(|x − r |)p(|x |)
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P
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R = 4, so do all points with r = 3
or less in this case
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HLbL: point source method results [Jin et al., 2015]Point Source Photon Method 20/32

Label size mπ L mπ/GeV #qcdtraj tsep
F2 ±Err
(α/π)3

Cost
BG/Q rack days

16I 163 × 32 3.87 0.423 16 16 0.1235± 0.0026 0.63
24I 243 × 64 5.81 0.423 17 32 0.2186± 0.0083 3.0
24IL 243 × 64 4.57 0.333 18 32 0.1570± 0.0069 3.2
32ID 323 × 64 4.00 0.171 47 32 0.0693± 0.0218 10

Table 2. Central values and errors. a−1 = 1.747GeV except for 32ID where a−1 = 1.371GeV.
Muon mass and pion mass ratio is fixed at physical value. For comparison, at physical point, model
estimation is 0.08± 0.02.
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Figure 13. 323 × 64 lattice, with a−1 = 1.371GeV, mπ = 171MeV, mµ = 134MeV.
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HLbL: Current conservation [Jin et al., 2015]

At least one (lattice) conserved current to have convergent
amplitude in continuum limit. Have chosen Jµ(xop)

Mµ ∼ F1(q)γµ + iγµγνqνF2(q)/2m relies on WI

To maintain constant signal-to-noise as q → 0, WI (conserved
current) must be exact for each config and choice of x , y , z

∂µ〈jµ(xop)ψ̄(x)γρψ(x) · · · 〉 = iδ(xop − x)〈ψ̄(x)γνψ(x) · · · 〉
−iδ(xop − x)〈ψ̄(x)γνψ(x) · · · 〉+ · · ·

〈jµ(xop)ψ̄(x)γρψ(x)ψ̄(z)γνψ(z)ψ̄(y)γσψ(y)〉 =

sulting amplitude will have the form given in Eq. (3) up to finite lattice spacing corrections.

However, for the method described in the previous section, the vertices x, xop, y and z

appear in a specific order on the quark loop. We have not computed all three possible

insertions for the external photon. Consequently, the individual samples will not yield a

conserved current. The Ward identity necessary for the external current to have a vanishing

divergence will be obeyed only after the stochastic average over x and y, which makes the

three internal photon vertices on the quark line indistinguishable. As a result, the noise will

not vanish when q = 0.

To make the contribution of each configuration (and hence the statistical noise) vanish

as q → 0, we must compute the three diagrams in Fig. 5 so that the required Ward identity

is obeyed configuration by configuration [19].

xsrc xsnky
′
, σ

′
z
′
, κ

′ x
′
, ρ

′

xop, ν

z, κ

y, σ x, ρ

xsrc xsnky
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z, κ

y, σ x, ρ
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Figure 5. Diagrams showing the three different possible insertions of the external photon when

the vertices x and y are fixed. They are equal to each other after stochastic average. Note,

the five other possible permutations of the connections between the three internal photons and

the muon line are not shown. The left-hand diagram represents the single amplitude that would

be computed following the method of Sec. II A. The center diagram requires the computation of

sequential propagators at xop for each polarizations of the external photon. Finally the right-hand

diagram also requires sequential propagators at xop, but with the external photon momentum in

the opposite direction, since γ5-hermiticity must be used to reverse the direction of the propagators,

which reverses the momentum of the external photon as well.

These additional diagrams are also computationally accessible. In addition to the point-

source propagators from the sites x and y, we must compute sequential propagators as

discussed in Sec. IIA for each possible polarization and momentum of the external current.

We normally compute three polarization directions x, y, and t (which are perpendicular to

16
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HLbL: Current conservation [Jin et al., 2015]

sulting amplitude will have the form given in Eq. (3) up to finite lattice spacing corrections.

However, for the method described in the previous section, the vertices x, xop, y and z

appear in a specific order on the quark loop. We have not computed all three possible

insertions for the external photon. Consequently, the individual samples will not yield a

conserved current. The Ward identity necessary for the external current to have a vanishing

divergence will be obeyed only after the stochastic average over x and y, which makes the

three internal photon vertices on the quark line indistinguishable. As a result, the noise will

not vanish when q = 0.

To make the contribution of each configuration (and hence the statistical noise) vanish

as q → 0, we must compute the three diagrams in Fig. 5 so that the required Ward identity

is obeyed configuration by configuration [19].
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Figure 5. Diagrams showing the three different possible insertions of the external photon when

the vertices x and y are fixed. They are equal to each other after stochastic average. Note,

the five other possible permutations of the connections between the three internal photons and

the muon line are not shown. The left-hand diagram represents the single amplitude that would

be computed following the method of Sec. II A. The center diagram requires the computation of

sequential propagators at xop for each polarizations of the external photon. Finally the right-hand

diagram also requires sequential propagators at xop, but with the external photon momentum in

the opposite direction, since γ5-hermiticity must be used to reverse the direction of the propagators,

which reverses the momentum of the external photon as well.

These additional diagrams are also computationally accessible. In addition to the point-

source propagators from the sites x and y, we must compute sequential propagators as

discussed in Sec. IIA for each possible polarization and momentum of the external current.

We normally compute three polarization directions x, y, and t (which are perpendicular to

16

Compute all 3 diagrams so WI exact on each configuration

signal and error vanish as q → 0. Error on F2(q2) ∼ constant

new diagrams require (6) sequential source props

One more trick: restrict sum over z ,
∑

x ,y ,z

Fµ(q; x , y ; z , xop) =
∑

x , y , z
|x − y | < min(|x − z |, |y − z |)

3Fµ(q; x , y ; z , xop)

Skews distribution towards small r where noise is smaller,
signal larger
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HLbL: Moment method for F2(0) in FV [Jin et al., 2015]

Can do calculation directly at zero momentum for large L

Mµ(q) =
∑

r

∑

z,xop

Fµ(~q;− r

2
,+

r

2
; z , xop)

=
∑

xop

exp (iq · xop)F ′µ(q, xop)

≈
∑

xop

(1 + iq · xop)F ′µ(q, xop)

≈
∑

xop

iq · xopF ′µ(q, xop)

The “1” term vanishes in ∞ volume, exponentially small in FV
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HLbL: Moment method for F2(0) in FV [Jin et al., 2015]

Sandwich amplitude between positive energy Dirac eigenstates
ū(q+)s′ , u(q−)s , take q → 0 limit,

ū(0)s′Mµ(q)u(0)s = ū(0)s′
∑

xop

iq · xopF ′µ(q = 0, xop)u(0)s

= ū(0)s′

[
i
F2(q2)

4m
[γµ, γν ]qν

]
u(0)s

where q± = (E~q/2,±~q/2).

get F2(0) directly from
∑

xop
xopF ′µ(0, xop)

For µ = i , · · · ,
F2(0)

2m
us′ ~Σ us =

1

2

∑

r ,z,xop

~xop × ius′ ~F ′
( r

2
,− r

2
, z , xop

)
us

Can use local (not conserved) current for all four currents
since xop = 0 kills contact terms
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A word on excited state contamination [Jin et al., 2015]

Usual method:

(hadronic) external states “interpolated” far from operator
insertion point xop

excited states exp. suppressed relative to ground state

Our method:

Sum over xop

Includes points where top = tsrc or tsnk or is nearby

Origin of quark loop x + y in middle of tsrc and tsnk, so these
are exponentially suppressed.

usual choice: tsnk − tsrc = T/2, but check for contamination
with shorter separations
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Exact photon method with all improvements [Jin et al., 2015]

171MeV Pion 323� 64 Lattice 31/35
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Figure 23. 323 � 64 lattice, with a¡1 = 1.371GeV, m� = 171MeV, m� = 134MeV.

� We use AMA technique to speed up the computations, above plots show the result from
the sloppy solves. The corrections are then added to obtain the following result.

Label size m� L m�/GeV #qcdtraj tsep
F2 �Err
(�/�)3

Cost
BG/Q rack days

32ID 323 � 64 4.00 0.171 12 32 0.1027� 0.0060 7.0

Table 3. Central values and errors. a¡1 = 1.371GeV. Muon mass and pion mass ratio is �xed at
physical value. One BG/Q rack is composed of 1024� 16 cores. For comparison, at physical point,
model estimation is 0.08� 0.02.

171 MeV Pion, mπL >∼ 4

AMA used for quark propagators
(1000 low modes, sloppy CG: 100 iters)
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Exact photon method with all improvements [Jin et al., 2015]

Method (F2(q
2)± Err)/(α/π)3 #confs #prop-per-conf

√
Var/(α/π)3

Exact-Photon 0.0693± 0.0218 47 58 + 8× 16 2.04

Conserved 0.1022± 0.0137 13 (58 + 8× 16)× 7 1.78

Moment* 0.0994± 0.0029 23 (217 + 512)× 2× 4 1.08

Moment-AMA-corrrection 0.0060± 0.0043 23 (10 + 48)× 2× 4 0.44

Moment 0.1054± 0.0054 23

Method rmax short-distance long-distance long-dis-pair-error

Exact-Photon 3 −0.0152± 0.0017 0.0845± 0.0218 0.0186

Conserved 3 0.0637± 0.0034 0.0385± 0.0114 0.0093

Moment* 5 0.0791± 0.0018 0.0203± 0.0026 0.0028

Moment-AMA-corrrection 2 0.0024± 0.0006 0.0036± 0.0044 0.0045

Table VIII. We use the 32ID lattice and set mµ = 134MeV, the seperation between the muon source

and sink tsep = 32.
√

Var = Err × √#confs×#prop-per-conf. We compute the short distance

part up to rmax. The conventions for #prop-per-conf are similar as before. For the “moment”

method, for each point we compute 1 point source propagator and 3 sequential propagators for

three spatial magnetic moment directions. The “conserved” method is using the same distribution

used in the “exact-photon” method described before. The “moment*” method is evaluated using

sloppy CG with fixed iteration number 100. Since the
√

Var is computed based on the number of

propagators computed, the
√

Var reduction in “moment*” method suggest that we get speed up

from improvement on method in addition to speed up in CG. With the AMA [???] technique, we

correct the systematic error caused by sloppy CG by evaluate the difference between exact solve

(10−8) and sloppy solve. the results is shown as method “moment-AMA-correction”. Although

we limit the sloppy CG to be only 100 iterations compare with exact solve which usually take

1300 iterations, the correction is pretty small. However, the variance of the correction is rather

large, suggest the the 100 number may not be optimum. We also list the individual short-distance

and long-distance contributions. “long-dis-pair-error” list the error for the long-distance part but

assuming all the long-distance pairs are completely independent. In these methods, we always

use local current for internal photons, but in “exact-photon” and “conserved” method, we use

conserved current for the external photon, while in “moment” methods, we use local current for

the external photon.

34
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Continuum and ∞ volume limits in QED [Jin et al., 2015]

Finite Volume E�ects in Muon Leptonic Light by Light 29/35

� Study of �nite volume e�ect inmuon leptonic light by light contribution to muon g ¡2.
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Figure 21. Pure QED computation. Muon leptonic light by light contribution to muon g ¡ 2.

� O(1/L2) �nite volume e�ect, because the photons are emitted from a conserved loop.

Using all improvements

QED systematics large but under good control

Limits quite consistent with PT result
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Dramatic improvement [Jin et al., 2015]

Including all improvements, statistical errors reduced by 10×

Zero External Momentum Transfer Improvement 29/32
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Figure 20. Phys.Rev.Lett. 114 (2015) 1, 012001. arXiv:1407.2923. Compare with latest method and
result.

• 243 × 64 lattice with a−1 = 1.747GeV and mπ = 333MeV. mµ = 175MeV.

• For comparison, at physical point, model estimation is 0.08 ± 0.02. The agreement is
accidental, the lattice value has a strong dependence on mµ.

quark-connected part of HLbL, q = 2π/L

a−1 = 1.7848 GeV, (2.7 fm)3

mπ = 330 MeV, mµ = 190 MeV

Strong check on method(s)
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Next calculation

ALCC award on MIRA at ANL ALCF,

Applying improved point source method to physical light
quark mass 2+1f Möbius DWF ensemble (RBC/UKQCD)

(5.5 fm)3 QCD box, a = 0.114 fm (a−1 = 1.7848 GeV)

Use AMA with 1000-2000 low-modes, ∼ 4500 sloppy props
per configuration

Same size QED and QCD boxes to start, but different size
boxes under investigation

Parasitic studies: HVP, mass splittings, ...
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M. Hayakawa’s talk at Lattice 2015 [Jin et al., 2015]
NOT Yet Disconnected Diagrams 10/32

xsrc xsnky′, σ′ x′, ρ′ z′, ν′

xop, µ

z, νy, σ x, ρ

xsrc xsnkz′, ν′ y′, σ′ x′, ρ′

xop, µ

z, ν y, σ x, ρ

xsrc xsnkz′, ν′ y′, σ′ x′, ρ′

xop, µ

z, ν y,σ x, ρ

xsrc xsnky′, σ′ z′, ν′ x′, ρ′

xop, µ

z, νy, σ x, ρ

xsrc xsnky′, σ′ x′, ρ′ z′, ν′

xop, µ

z, ν
y, σ x, ρ

xsrc xsnkz′, ν′
y′, σ′ x′, ρ′

xop, µ

z, ν y,σ x, ρ

Figure 6. All possible disconnected diagrams. Permutations of the three internal photons are not
shown.

• We will not discuss disconnected diagrams in this talk.

• The gluons exchange between and with quark loops are not drawn. Common practice in
lattice QCD.

• Possible strategies for the calculation of all disconnected diagrams are being developed
and we hope to begin numerical experiments this year.

SU(3) Flavor (only 1 survives), Zweig suppressed

Requires explicit HVP subtraction when any quark loop with
two photons is not connected to others by gluons

Use dynamical QED+QCD or only valence quarks
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Solving QED FV effects

Integrand exponentially suppressed with distance between any
pair of points on the quark loop. FV effect is small.

Amplitude not suppressed with distance between points on
muon line and loop. FV effect is large.

Put QED in larger, perhaps ∞, box, QCD unchanged

use ∞ volume photon on finite box

Can compute average QCD loop and do muon line once,
offline, so free to experiment with size of QED box
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Summary/Outlook

HVP

Very high statistical precision required
Progress in understanding systematics, FV, fits, moments, ...
Strange contribution done very well X
physical quark mass, large volume calculations in progress
Disconnected challenging, maybe small

HLBL

First calculations for connected part very promising–
calculation with controlled errors clearly within reach of lattice
methods.
5% stat. errors already for near physical pions
FV effects large but controllable. ∞ volume limit consistent
with PT. Put QCD and QED in different boxes
Applying improved point source method to physical quark
mass 2+1f Möbius DWF ensemble RBC/UKQCD

Disconnected part challenging, new ideas under investigation
Lattice important to compare (SM) with experiment
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