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TESTING QFE*

Rich Brower LATTICE 15 JULY 17, 2015
with G. Fleming, A. Gasbarro,  T. Raben,  C-I Tan, E. Weinberg 

* QFE:Quantum Finite Element Method 
Can it be made into a general approach for Lattice 

Field Theory on curved manifolds?



OUTLINE

1.WHY? Radial Quantization of CFT

2.HOW?: QFEM for Scalars + Fermions* 

3.TEST? : Exact c=1/2 Ising CFT**

*see Spherical FEM in Andy’s talk
** see  QFEM counter terms in George’s talk Text



Radial Quantization: Early History
! S. Fubini, A. Hanson and R. Jackiw PRD 7, 1732 (1972)
      
     Abstract: A field theory is quantized covariantly on 

Lorentz-invariant surfaces. Dilatations replace time 
translations as dynamical equations of motion. .... The 
Virasoro algebra of the dual resonance model is 
derived in a wide class of 2-dimensional Euclidean field 
theories.

! J. Cardy J. Math. Gen 18 757 (1985).

      Abstract: The relationship between the correlation 
length and critical exponents in finite width strips in two 
dimensions is generalised to cylindrical geometries of 
arbitrary dimensionality d. For d > 2 these correspond 
however, to curved spaces. The result is verified for the 
spherical model



Evolution:

Can drop
 Weyl factor!



SCALING VS FULL CONFORMAL SYMMETRY

• General Field Theory with Scale invariance and Poincare Invariance

• O(d) ==>  O(d,1)           (Isometries of AdS space)



EXACT CFT: POWER LAW 



BACK TO THE BOOTSTRAP!    (CFTS : NO LOCAL LAGRANGIAN)  

CFT Bootstrap: OPE & factorization  completely fixed the theory

Only “tree” diagrams!


“partial waves” exp: sum 
over conformal blocks

Exact  2 and 3  
 correlators  

(i.e. Data: spectra +  couplings to conformal blocks) 



INEQUALITIES FROM BOOTSTRAP*

• “Solving the 3D Ising Model with the Conformal Bootstrap” (El-Showk, Paulos, Poland, 
Rychkov, Simmons-Duffin and Vichi) arXiv:1203.6064v1v [hep-th] (2012)

Stronger assumptions!



RADIAL QUANTIZATION: NATURAL FOR CFT

Conformal (near conformal) theories are interesting for 
– BSM composite Higgs
– AdS/CFT weak-strong duality 
– Model building & Critical Phenomena in general

Potential advantage:   Scales increases  
exponentially in lattice size L!

1 < t < aL =) 1 < ⌧ = log(r) < L



I.  CLASSICAL FEM for PDEs on smooth surface.

Alexander Hrennikoff (1941) Richard Courant  (1943)*

Discrete Exterior Calculus (de Rahm Complex,  Whitney, etc, etc.), 

Topology/Chirality ‘tHooft, Leuscher et al for QCD!

II. QUANTUM FEILDS  on random Lattices.

Regge Calculus T. Regge, Nuovo Cimento 19 (1961) 558. *

Random Lattices: N. H. Christ, R. Friedberg, and T. D. Lee, Nucl. Phys. 
B 202, 89 (1982).*  Fermion Fields on a Random Lattice: R. 
Friedberg, T.D.Lee and Hai-Cang Ren Prog. of Th. Physics 86 (1986).

QFEM barrows from two traditions.

*ALL EXACTLY  THE SAME FOR LINEAR ELEMENTS FOR FREE SCALAR FIELD



GOOGLE:  3,410,000 RESULTS  
Finite Element Method: What is it? 

RCB, M. Cheng and G.T. Fleming,  
“Improved Lattice Radial Quantization”   PoS LATTICE2013 (2013) 335





FREE SCALAR FIELD WITH LINEAR ELEMENTS 



BARYCENTRIC CO-ORDINATES ON SIMPLEX 
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 REGGE CALCULUS FORMULATION 

H. Hamber, S. Liu, Feynman rules for simplicial gravity, NP B475 (1996)
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Singular Curvature at Vertex!

The l’s  fix metric and  the local co-ordinates 
(diffeomorphism) and the angles the intrinsic curvature.



Discretization of !2

• Start with icosahedron, isometries form 
maximal discrete subgroup Ih of SO(3). 

• Tesselate triangular faces and project 
to surface of inscribing sphere. 

• Delaunay triangulation gives nearest 
neighbors links of length ℓij. 

• Voronoï cells give areas of each site ωi. 

• WARNING: Procedure does not 
generalize easily to !d.



PROBLEM: CURVED MANIFOLDS CAN NOT 
HAVE UNFORM LATTICES: (E.G. 2-SPHERE)

l = 0 (A),1 (T1) , 2 (H) are  irreducible 120 Icosahedral 
subgroup of O(3)

Projection Dilates Triangles



TEST CFT:  PHI 4TH  
WILSON-FISHER FIXED POINT IN 3D.

approximate spherical
triangles onto

local tangent plane

x

y



EVEN “EASIER” 2D ISING/PHI 4TH  ON THE 
RIEMANN SPHERE! 

projection

Conformal Projection + Weyl Rescaling to the Sphere



EXACT SOLUTION TO CFT
Exact Two point function

 4 pt function

Critical Binder Commulant

Dual to Free Fermion:  2D string theory on any manifold etc 



FEM FIXES THE HUGE SPECTRAL DEFECTS 
OF THE LAPLACIAN ON THE SPHERE 

For s = 8 first  (l+1)*(l +1) = 64 eigenvalues

l, m l, m

BEFORE (K = 1) AFTER (FEM K’s)



SPECTRUM OF  FE LAPLACIAN ON 
A SPHERE

s = 128
s =8 

s =8 

Fit

s = 128



BINDER CUMMULANT NEVER 

0.5673



 UV DIVERGENCE BREAKS ROTATIONS

one configuration average of config.



0.5673

BINDER CUMMULANT  

Fits: Uc = 0.5661(2) vs 0.567336
        nu = 0.978(25) vs 1

Txt



(i) Pauli-Villars* 1949  

(ii) Subtract x-dependent mass Counter term

(iii) Better simplex distribution (Exact density) 

NEED TO IMPROVE QUANTUM LAGRANGIAN 
 3 POSSIBLE SOLUTIONS?  

(*Richard Feynman, Ernst Stueckelberg)

http://en.wikipedia.org/wiki/Richard_Feynman
http://en.wikipedia.org/wiki/Ernst_Stueckelberg
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Using Binder Cumulants
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In infinite volume 

U2n=0 in disordered phase 
U2n=1 in ordered phase 

0<U2n<1 on critical surface

• U2n,cr are universal quantities. 

• Deng and Blöte (2003): U4,cr=0.851001 

• Higher critical cumulants computable 
using conformal 2n-point functions: 
Luther and Peschel (1975)  
Dotsenko and Fateev (1984)



Approaching Critical Surface (1)
• We fix #=1 and tune $2 to look for 

critical surface. 

• If we can find critical surface, expand 
using known critical exponents: %=1, 
&=2. 

• No guarantee that critical surface 
exists: frustration.

U2n(µ
2,�, s) = U2n,cr + a2n(�) [µ

2 � µ2
cr(�)] (1/s)

�1/⌫ + b2n(�) (1/s)
!

$2

#

U4,cr = 0.851001

µ2
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Approaching Critical Surface (2)

• Numerical calculation of CT is expensive 
but only needs to be done once for each 
s and is trivially parallel. 

• Counterterm cures frustration. 

• All cumulants critical at same $2
cr. 

• Simultaneous fit for certain data selection: 
$2

cr=1.8224055(5), U4,cr=0.8505(1) 
'2/dof=1.026, dof=1701 

• Universal predictions: 
U6,cr=0.7724(4), U8,cr=0.7072(6) 
U10,cr=0.6483(8), U12,cr=0.5944(8)
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U4,cr = 0.851001

Now: 0.8508(2)
for s < 800
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Very fast cluster algorithm: 
 Brower,Tamayo  ‘Embedded Dynamcis for phi 4th Theory” PRL 1989.  Wolff 

single cluster + plus Improved Estimators etc 



Conformal 2-pt functions on !2 



BINDER CUMMULANT 

s <= 267
.02 %

still some finite
size effects



QFEM DIRAC  EQUATION: MUCH HARDER  
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(2) Need to avoid simplex curvature singularities at  sites.
(3) Spinors rotations (Lorentz group) is double of O(D).

Verbein & Spin connection* 
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* Must satisfy the tetrad postulate!

as ✓ ! 2⇡



2D Solution to Lattice Dirac on  simplicial lattice    

SQFEM = Kij ̄i[~tij · ~�]⌦ij j

+Kij |tj |( ̄i �  ̄j⌦
†
ij)( i � ⌦ij j)
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The spin connection is gauge field whose curl gives the 
local curvature or deficit angle of the 2D simplex
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1

11



Construction Procedure for  Discrete Spin 
connection

(1) Assume Elements with Spherical Triangles (i,jk) (see Andy’s 
talk) or boundaries give by geodesics on  an 2D manifold 
     (Angles at each vertex add to 2 pi exactly)
(2) Rotate spinor at (i)  to have axes 1 on tangent vectors to 
(j) and parallel transport to j rotate back ==>  ⌦ij

(3) Calculate  discrete “curl” around the triangle 

(4) Fix                                so  ⌦ij ! ±⌦ij

⌦ij⌦jk⌦ki = ei(2⇡��4)�3/2

�4 ⇠ Aijk/4⇡R



THIS IS ALWAYS POSSABLE IF A SPIN CONNECTION EXISTS

i 
j 

 k

Sphere:  or any manifold with this topology has a unique lattice spin connection 
            upto gauge Lorentz transformation on spinors

Torus:  There are 4 solutions: (periodic/anti-periodic):  Non-contractible loops

Proof: Use Euler’s Theorem. 
         This is completely general for any smooth orientable Reimann surfaces



2D DIRAC SPECTRA ON TORUS 

Torus: Square Lattice Torus: Triangular Lattice

9 pts (orange) 16 pts (red) 25 pts(green) 100 pts (yellow) 



2D DIRAC SPECTRA ON SPHERE
s = 16

Exact is integer spacing  for j = 1/2, 3/2, 5/2 ...
Exact degeneracy 2j + 1: No zero mode in chiral limit!.

s = 8 vs s = 16

E = j + 1/2



CONVERGENCE RATE

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 5 10 15 20

E
i
g
e
n
v
a
l
u
e

s

mean eigenvalue

exact

a+ b
(s�c)2 3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0 0.02 0.04 0.06 0.08 0.1

E
i
g
e
n
v
a
l
u
e

1
s2

mean eigenvalue

7.013(11)

exact

a+ b
(s�c)2



COMMENTS:  
QFE IS NOT JUST FEM+REGGE

• Quantum Field Theory requires  renormalized QFEM counter 
terms (position dependent) (George’s talk on 2D)  

• FEM introduces a co-ordinate system breaking 
diffeomorphism invariance: recovered in continuum 

• Our Dirac weights are NOT linear FEM element but they can 
be constructed by 3 linear elements meeting at the 
circumcenter. 

• Dirac lattice action can be generalized to 3 and 4 
dimensions.   

• Gauge fields can be done a la Christ et al or ‘tHooft et al?



Q & AL EXTRAS



SPECTRUM OF QFE DIRAC ON 
SPHERE
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WEYL VS CONFORMAL DIFFEOMORPHISMS
• Weyl (change the manifold)

• Diffeomorphism (change the co-ordinates)

• Conformal Diffeomorphism (largest subgroup)

• Primary field: 

x ! ⇠ = f(x)

gµ⌫(x) ! ⌦(x)gµ⌫(x)

ds2 = gµ⌫(⇠)d⇠
µd⇠⌫

ds

2 = b

2(x)gµ⌫(x)dx
µ
dx

⌫

�(⇠) = b

��(x)�(x)

Theorem: |⇠1 � ⇠2|2 = b(x1)|x1 � x2|2b(x2)



SIMPLICIAL LATTICE INDUCES 
A DIFFEOMORPHISM

• We have found the counter term of the FEM Lagrangian

• Our sequence of simplicies induce a  (conformal?) deffeomorphism

• BUT now need to find correct for primary operator.

• This is now being implement (Stay tuned)

• CT for 3D are being computed and will be tested

�(x) ! �(x) = b(x)��
�(x)



• Step #2:  Regge Gravity: diffeomorphisms 

dzdz̄ = |f 0
(w)|2dwdw̄ =) Qlog(|w|2) = Q log(|z|2/

p
g(z))

 Proof  of one loop  QFEM Counter Term:

47
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• Step #1:  FEM: Cea’s lemma (no Gauss’ law)

Try:



LOCAL VS FEM MASS TERM
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FEM HAVE “SPECTRAL 
FIDELITY”

• Taylor expansion on hypercubic  lattice:

• Taylor series for FEM does not work!

• FEM theorems: error & spectra < cut-off  converges  O(a^2) if  
triangles are “shape regular” and “uniformly” refined.



CENTERS OF A TRIANGLE



K-SIMPLICIES


