Standard-model prediction for direct CP violation in $K \rightarrow \pi \pi \operatorname{decay}$

> KITP: Lattice Gauge Theory for the LHC and Beyond

> > August 19, 2015

Norman H. Christ Columbia University RBC and UKQCD Collaborations

Outline

- Physics of CP violation and $K \rightarrow \pi \pi \operatorname{decay}$
- Calculating $K \rightarrow \pi \pi$ using lattice QCD: $\Delta I = 3/2 \& 1/2$
- Calculation of ε'
- Outlook

UKQCD Collaboration

- Edinburgh
 - Peter Boyle
 - Luigi Del Debbio
 - Julien Frison
 - Jamie Hudspith
 - Richard Kenway
 - Ava Khamseh
 - Brian Pendleton
 - Karthee Sivalingam
 - Oliver Witzel
 - Azusa Yamaguchi
- Plymouth
 - Nicolas Garron
- York (Toronto)
 - Renwick Hudspith

- Southampton
 - Jonathan Flynn
 - Tadeusz Janowski
 - Andreas Juttner
 - Andrew Lawson
 - Edwin Lizarazo
 - Antonin Portelli
 - Chris Sachrajda
 - Francesco Sanfilippo
 - Matthew Spraggs
 - Tobias Tsang
- CERN
 - Marina Marinkovic

RBC Collaboration

• BNL

- Chulwoo Jung
- Taku Izubuchi (RBRC)
- Christoph Lehner
- Meifeng Lin
- Amarjit Soni
- RBRC
 - Chris Kelly
 - Tomomi Ishikawa
 - Taichi Kawanai
 - Shigemi Ohta (KEK)
 - Sergey Syritsyn

- Columbia
 - Ziyuan Bai
 - Xu Feng
 - Norman Christ
 - Luchang Jin
 - Robert Mawhinney
 - Greg McGlynn
 - David Murphy
 - Daiqian Zhang
- Connecticut – Tom Blum

CP violation and

$K \rightarrow \pi \pi decay$

$K \rightarrow \pi \pi$ and CP violation

• Final $\pi\pi$ states can have I = 0 or 2.

$$\langle \pi \pi (I=2) | H_w | K^0 \rangle = A_2 e^{i\delta_2} \qquad \Delta I = 3/2 \\ \langle \pi \pi (I=0) | H_w | K^0 \rangle = A_0 e^{i\delta_0} \qquad \Delta I = 1/2$$

- CP symmetry requires A_0 and A_2 be real.
- Direct CP violation in this decay is characterized by:

$$\epsilon' = \frac{i e^{\delta_2 - \delta_0}}{\sqrt{2}} \left| \frac{A_2}{A_0} \right| \left(\frac{\operatorname{Im} A_2}{\operatorname{Re} A_2} - \frac{\operatorname{Im} A_0}{\operatorname{Re} A_0} \right) \quad \begin{array}{c} \text{Direct CP} \\ \text{violation} \end{array}$$

$K^0 - \overline{K^0}$ mixing

- $\Delta S=1$ weak decays allow K^0 and K^0 to decay to the same $\pi \pi$ state.
- Resulting mixing described by Wigner-Weisskopf:

$$i\frac{d}{dt}\left(\frac{K^{0}}{\overline{K}^{0}}\right) = \left\{ \left(\begin{array}{cc} M_{00} & M_{0\overline{0}} \\ M_{\overline{0}0} & M_{\overline{0}\overline{0}} \end{array}\right) - \frac{i}{2} \left(\begin{array}{cc} \Gamma_{00} & \Gamma_{0\overline{0}} \\ \Gamma_{\overline{0}0} & \Gamma_{\overline{0}\overline{0}} \end{array}\right) \right\} \left(\begin{array}{c} K^{0} \\ \overline{K}^{0} \end{array}\right)$$

• Decaying states are mixtures of K^0 and K^0

$$|K_{S}\rangle = \frac{K_{+} + \overline{\epsilon}K_{-}}{\sqrt{1 + |\overline{\epsilon}|^{2}}} \qquad \overline{\epsilon} = \frac{i}{2} \left\{ \frac{\operatorname{Im} M_{0\overline{0}} - \frac{i}{2} \operatorname{Im} \Gamma_{0\overline{0}}}{\operatorname{Re} M_{0\overline{0}} - \frac{i}{2} \operatorname{Re} \Gamma_{0\overline{0}}} \right\}$$
$$|K_{L}\rangle = \frac{K_{-} + \overline{\epsilon}K_{+}}{\sqrt{1 + |\overline{\epsilon}|^{2}}} \qquad \operatorname{Indirect CP}_{violation}$$
KITP -- August 19, 2015

CP violation

• CP violating, experimental amplitudes:

$$\eta_{+-} \equiv \frac{\langle \pi^+ \pi^- | H_w | K_L \rangle}{\langle \pi^+ \pi^- | H_w | K_S \rangle} = \epsilon + \epsilon'$$

$$\eta_{00} \equiv \frac{\langle \pi^0 \pi^0 | H_w | K_L \rangle}{\langle \pi^0 \pi^0 | H_w | K_S \rangle} = \epsilon - 2\epsilon'$$

• Where:
$$\epsilon = \overline{\epsilon} + i \frac{\mathrm{Im}A_0}{\mathrm{Re}A_0}$$

Indirect: $|\varepsilon| = (2.228 \pm 0.011) \times 10^{-3}$ Direct: $\text{Re}(\varepsilon'/\varepsilon) = (1.66 \pm 0.23) \times 10^{-3}$

$K \rightarrow \pi \pi$ decay from lattice QCD

Low Energy Effective Theory

• Represent weak interactions by local four-quark Lagrangian

$$\mathcal{H}^{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \left\{ \sum_{i=1}^{10} \left[z_i(\mu) + \tau y_i(\mu) \right] Q_i \right\}$$

•
$$\tau = -\frac{V_{td}V_{ts}^*}{V_{ud}V_{us}^*} = (1.543 + 0.635i) \times 10^{-3}$$

- $V_{qq'}$ CKM matrix elements
- z_i and y_i Wilson Coefficients
- Q_i four-quark operators

KITP -- August 19, 2015

Four quark operators

Current-current operators

 $Q_1 \equiv (\bar{s}_{\alpha} d_{\alpha})_{V-A} (\bar{u}_{\beta} u_{\beta})_{V-A}$ $Q_2 \equiv (\bar{s}_{\alpha} d_{\beta})_{V-A} (\bar{u}_{\beta} u_{\alpha})_{V-A}$

QCD Penguins

d w s

$$Q_{3} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V-A}$$

$$Q_{4} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V-A}$$

$$Q_{5} \equiv (\bar{s}_{\alpha}d_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V+A}$$

$$Q_{6} \equiv (\bar{s}_{\alpha}d_{\beta})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\alpha})_{V+A}$$

q = u.d.s

Penguins $Q_7 \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\alpha})_{V-A} \sum e_q (\bar{q}_{\beta} q_{\beta})_{V+A}$ q = u, d, s $Q_8 \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\beta})_{V-A} \sum e_q (\bar{q}_{\beta} q_{\alpha})_{V+A}$ a = u.d.s $Q_9 \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\alpha})_{V-A} \sum e_q (\bar{q}_{\beta} q_{\beta})_{V-A}$ a = u.d.s $Q_{10} \equiv \frac{3}{2} (\bar{s}_{\alpha} d_{\beta})_{V-A} \sum e_q (\bar{q}_{\beta} q_{\alpha})_{V-A}$ a = u.d.s

Physical $\pi \pi$ states – Lellouch-Luscher

- Euclidean e^{-Ht} projects onto $|\pi\pi(\vec{p}=0)>$
- Use finite-volume quantization.
- Adjust volume so 1st or 2nd excited state has correct *p*.

• Requires extracting signal from non-leading large *t* behavior:

$$G(t) \sim c_0 e^{-E_0 t} + c_1 e^{-E_1 t}$$

• Correctly include π - π interactions, including normalization.

$\Delta I = 3/2$

$\Delta I = 3/2 \quad K \rightarrow \pi \pi$

- Three operators contribute $O^{(27,1)}$, $O^{(8,8)}$ and $O^{(8,8)m}$.
- Use isospin to relate to $K^+ \rightarrow \pi^+ \pi^+$.
- Use anti-periodic boundary conditions for *d* quark.
 (Changhoan Kim, hep-lat/0210003).
- Achieve essentially physical kinematics for 32³ x 64 DSDR ensemble (146 configurations)
 - $-m_{\pi} = 142.9(1.1) \text{ MeV}$
 - $m_K = 511.3(3.9) \text{ MeV}$
 - $E_{\pi\pi} = 492(5.5) \text{ MeV}$

KITP -- August 19, 2015

Computational Set-up (Lightman and Goode)

- Use anti-periodic boundary conditions for *d* quark in two directions (average over three choices).
- Fix $\pi \pi$ source at t = 0, vary location of O_W and kaon source.

KITP -- August 19, 2015

$< \pi \pi | O | K >$ from 146 configurations

KITP -- August 19, 2015

Operator Normalization (Rome-Southampton)

- Effective weak Hamiltonian H_W contains four-quark operators normalized in the $\overline{\text{MS}}$ scheme.
- Impose non-perturbative RI scheme on lattice operators:
 - Evaluate Landau-gauge, off-shell Green's functions:

 $\left(\Gamma(p_1, p_2, p_3, p_4)_j\right)_{abcd}^{\alpha\beta\gamma\delta} = \prod_{i=1}^4 \left(\int d^4 x_i e^{ip_i \cdot x_i}\right) \left\langle \overline{q}_a^{\alpha}(x_1) \overline{q}_b^{\beta}(x_2) O_j q_c^{\delta}(x_3) q_d^{\gamma}(x_4) \right\rangle$

- Impose normalization conditions: $tr\{P_i\Gamma_j\} = F_{ij}$
- Use continuum perturbation theory to convert RI to MS KITP -- August 19, 2015

Relate lattice and continuum operators

- Normalize off-shell, gaugefixed 4-quark Greens functions.
- Calculation is performed on 1/a=1.37 GeV lattice.
- Converting to perturbative $\overline{\text{MS}}$ scheme is unreliable at scale $\mu \sim 1/a$!
- Carry out sequence of NP RI matching steps:

$$Z_{(\cancel{q},\cancel{q})}^{\overline{\text{MS}},(\text{latt})}(\mu) = \begin{pmatrix} 0.424(4)(4) & 0 & 0\\ 0 & 0.472(6)(8) & -0.020(5)(21)\\ 0 & -0.067(23)(30) & 0.572(28)(20) \end{pmatrix}$$

KITP -- August 19, 2015

$\Delta I = 3/2 - Continuum Results$

(Tadeusz Janowski)

- Use two new large ensembles to remove a^2 error (m_{π} =135 MeV, L=5.4 fm)
 - $48^3 \times 96$, 1/a=1.73 GeV
 - 64³ x 128, 1/*a*=2.28 GeV
- Continuum results:
 - $\operatorname{Re}(A_2) = 1.50(0.04_{\text{stat}}) (0.14_{\text{syst}}) \times 10^{-8} \text{ GeV}$
 - $\operatorname{Im}(A_2) = -6.99(0.20)_{\text{stat}} (0.84)_{\text{syst}} \times 10^{-13} \text{ GeV}$
- Experiment: $\operatorname{Re}(A_2) = 1.479(4) \ 10^{-8} \text{ GeV}$
- $E_{\pi\pi} \rightarrow \delta_2 = -11.6(2.5)(1.2)^{\circ}$
- Phys.Rev. **D91**, 074502 (2015)

$\Delta I = 1/2$

$\Delta I = 1/2 \quad K \rightarrow \pi \pi$

• Made much more difficult by disconnected diagrams:

• Many more diagrams (48) than $\Delta I = 3/2$:

$\Delta I = 1/2 \quad K \rightarrow \pi \pi$ at threshold (Qi Liu)

- Initial threshold decay calculation successful
 - Re (A_0) : 25% statistical errors
 - Im (A_0) : 50% statistical errors

KITP -- August 19, 2015

Explain $\Delta I = 1/2$ rule (Q Liu)

• Two current-current diagrams dominate:

• Where

$$A_{0,2}(t_{\pi}, t_{\text{op}}, t_{K}) \approx i \frac{1}{\sqrt{3}} \{2 \cdot (1 - 2)\}$$
$$A_{2,2}(t_{\pi}, t_{\text{op}}, t_{K}) = i \sqrt{\frac{2}{3}} \{(1 + 2)\}$$

- Factorization: (2) = 1/3 (1)
- Actual calculation: 2 = -0.7 (1)

$\Delta I = 1/2$ rule – Emerging explanation

- 50 year puzzle resolved!
- Is this an explanation or the absence of one?

$\Delta I = \frac{1}{2} \quad K \rightarrow \pi \pi - \text{suppress vacuum}$ (Qi Liu & Daiqian Zhang)

- Separate two pion operators.
- Use all-2-all propagators (Trinity/KEK)
 - Sum over localized sources further suppress vacuum coupling
 - See 5x improvement in statistics for I = 0, $\pi - \pi$ scattering

$$\begin{aligned} \langle q(x)\overline{q}(y)\rangle &= \langle x|\frac{1}{D_{\text{DWF}}}|y\rangle \\ &= \sum_{n=1}^{N_{\text{modes}}} \phi_n(x)\frac{1}{\lambda_n}\phi_n(y)^{\dagger} \\ &+ \sum_{k=1}^{N_{\text{noise}}} \langle x|\frac{1}{D}\left(I - P_{n \le N_{\text{modes}}}\right)|\eta_k\rangle\eta_k(y)^{\dagger} \\ &= \sum_{l=1}^{N_{\text{modes}}+N_{\text{noise}}} w_l(x)u_l(y)^{\dagger} \end{aligned}$$

$\Delta I = \frac{1}{2} K \rightarrow \pi \pi - \text{above threshold}$ (Chris Kelly & Daiqian Zhang)

- Use **G-parity** BC to obtain $p_{\pi} = 205$ MeV (Changhoan Kim, hep-lat/0210003)
 - $G = C e^{i\pi I_y}$
 - Non-trivial:

$$\left(\begin{array}{c} u\\ d\end{array}\right) \rightarrow \left(\begin{array}{c} \overline{d}\\ -\overline{u}\end{array}\right)$$

- Extra I = 1/2, s' quark adds $e^{-m_K L}$ error.
- Tests: f_K and B_K correct within errors.

KITP -- August 19, 2015

$\Delta I = \frac{1}{2} K \rightarrow \pi \pi - G$ -parity

quark: 1 twists

quark: 2 twists

• Allowed momenta with G-parity links *x* and *y*

- Diagonal structure results
- Breaks cubic symmetry

Calculation of A_0 and ε'

Overview of calculation

- Use $32^3 \times 64$ ensemble
 - 1/a = 1.3784(68) GeV, L = 4.53 fm.
 - G-parity boundary condition in 3 directions
 - Usual u d iso-doublet
 - Unusual s s' with rooted determinant.
 - 216 configurations separated by 4 time units
 - 300 time units discarded for equilibration
 - 900 low modes for all-to-all propagators
 - Solve for $\pi\pi$ and kaon sources on each of 64 time slices
- Computer resources
 - 6 hours/trajectory BG/Q $\frac{1}{2}$ rack
 - 20 hours/trajectory BG/Q $\frac{1}{2}$ rack
 - One year to generate configurations, one year for measurements.

Overview of calculation

• Achieve essentially physical kinematics:

$$-M_{\pi} = 143.1(2.0)$$

 $- M_K = 490.6(2.2) \text{ MeV}$

$$- E_{\pi\pi} = 498(11) \text{ MeV}$$

- $m_{res} = 0.001842(7)$ (90% of physical light quark mass)

Overview of results

- Determine the complex $\Delta I = 1/2$ amplitude A_0
 - $\operatorname{Re}(A_0) = (4.66 \pm 1.00_{\text{stat}} \pm 1.26_{\text{sys}}) \times 10^{-7} \text{ GeV}$
 - Expt: $(3.3201 \pm 0.0018) \times 10^{-7} \text{ GeV}$
 - $\operatorname{Im}(A_0) = (-1.90 \pm 1.23_{\text{stat}} \pm 1.08_{\text{sys}}) \times 10^{-11} \text{ GeV}$
- Calculate $\operatorname{Re}(\varepsilon'/\varepsilon)$:
- $\operatorname{Re}(\varepsilon'/\varepsilon) = (1.38 \pm 5.15_{\text{stat}} \pm 4.59_{\text{sys}}) \times 10^{-4}$
 - Expt.: $(16.6 \pm 2.3) \times 10^{-4}$
 - [2.1 σ difference]

Overview of systematic errors

Description	Error
Operator renormalization	15%
Wilson coefficients	12%
Finite lattice spacing	12%
Lellouch-Luscher factor	11%
Finite volume	7%
Parametric errors	5%
Excited states	5%
Unphysical kinematics	3%
Total	27%

$I = 0, \pi \pi - \pi \pi$ correlator

- Determine normalization of $\pi\pi$ interpolating operator.
- Determine energy of finite volume, *I*=0, $\pi\pi$ state: $E_{\pi\pi}$ = 498(11) MeV.
- Determine $I = 0 \pi \pi$ phase shift: $\delta_0 = 23.8(4.9)(2.2)^\circ$.

- $E_{\pi\pi}$ from a correlated 1-state fit, $6 \le t \le 25$, $\chi^2/dof=1.56(68)$
- Consistent result obtained from 2-state fit, $3 \le t \le 25$.
- Leading-term amplitude changes by 5% between these two fits.

$\Delta I = \frac{1}{2} K \rightarrow \pi \pi$ matrix elements

- Vary time separation between H_W and $\pi\pi$ operator.
- Show data for all $K H_W$ separations $t_Q t_K \ge 6$ and $t_{\pi\pi} t_K = 10, 12, 14, 16$ and 18.
- Fit correlators with $t_{\pi\pi} t_Q \ge 4$
- Obtain consistent results for $t_{\pi\pi} t_Q \ge 3$ or 5

 Q_6

KITP -- August 19, 2015

Test of rotational symmetry

- Normalization of $O_{\pi\pi}$ requires cubic symmetry.
- Extracting matrix elements for the ratio assumes the same A_1 state enters numerator and denominator.

 $\langle \pi \pi | Q_i | K \rangle = \frac{\langle O_{\pi\pi}(t_{\pi\pi}) Q_i(t_Q) K(t_K) \rangle}{\langle O_{\pi\pi}(t_{\pi\pi}) O_{\pi\pi}(t_Q) \rangle \langle K(t_Q) K(t_K) \rangle^{1/2}} e^{E_{\pi\pi}(t_{\pi\pi} - t_Q)/2} e^{m_K(t_Q - t_K)/2}$

• Choose as symmetrical a pion wave function as possible: $\pi \pi \pi \pi$... $\pi \pi \pi \pi$... $\pi \pi \pi \pi$

$$(-\frac{\pi}{L}, \frac{\pi}{L}, \frac{\pi}{L}) = (\frac{\pi}{2L}, \frac{\pi}{2L}, \frac{\pi}{2L}) + (\frac{-3\pi}{2L}, \frac{\pi}{2L}, \frac{\pi}{2L})$$
$$= (\frac{-\pi}{2L}, \frac{-\pi}{2L}, \frac{-\pi}{2L}) + (\frac{-\pi}{2L}, \frac{3\pi}{2L}, \frac{3\pi}{2L})$$

	p = (+,+,+)	p=(-,+,+)	p=(+,-,+)	p=(+,+,-)
E_{π}	0.19852(85)	0.19823(82)	0.19839(72)	0.19866(88)
Z_{π}	6.167(69)e+06	6.081(63)e+06	6.183(50)e+06	6.170(61)e+06

Lattice matrix elements

	Conventional		
		10 operators	Chiral basis
	i	$\mathcal{M}_{ ext{lat}}^{(i)} ext{ (GeV)}^{\scriptscriptstyle 3}$	$\mathcal{M}_{\mathrm{lat}}^{\prime \ (i)} \ (\mathrm{GeV})^3$
Chiral basis	1	-0.247(62)	-0.147(242) -(27,1)
	2	0.266(72)	-0.218(54)
$Q'_1 = 3Q_1 + 2Q_2 - Q_3$	3	-0.064(183)	0.295(59)
O' = (2O + O)/5	4	0.444(189)	- (8.1)
$Q_2 = (2Q_1 - 2Q_2 + Q_3)/3$	5	-0.601(146)	-0.601(146)
$Q'_3 = (3Q_1 - 3Q_2 + Q_3)/5$	6	-1.188(287)	-1.188(287)
	7	1.33(8)	1.33(8)
	8	4.65(14)	4.65(15)
	9	-0.345(97)	
	10	0.176(100)	

RI/SMOM normalization of chiral operators

- For (8,1) operators must include disconnected diagrams.
- Use $p_1 = 2\pi (4,4,0,0)/L$ and $p_2 = 2\pi (0,4,4,0)/L$
- $p_1^2 = p_2^2 = (p_1 p_2)^2 = 1.531 \text{ GeV}^2$
- Use 100 configurations

KITP -- August 19, 2015

RI/SMOM normalization of chiral operators

• For (8,1) operators must include disconnected diagrams.

Physical matrix elements

i	$\mathcal{M}_{\mathrm{SMOM}}^{\prime \ (i)} \ (\mathrm{GeV})^3$	$\mathcal{M}^{(i)}_{\overline{\mathrm{MS}}} (\mathrm{GeV})^3$
1	-0.0675(1109)(128)	-0.151(29)(36)
2	-0.156(27)(30)	0.169(42)(41)
3	0.212(52)(40)	-0.0492(652)(118)
4		0.271(93)(65)
5	-0.193(62)(37)	-0.191(48)(46)
6	-0.366(103)(70)	-0.379(97)(91)
7	0.225(37)(43)	0.219(37)(53)
8	1.65(5)(31)	1.72(6)(41)
9		-0.202(54)(49)
10		0.118(42)(28)

Contributions to A_0

Systematic errors

Description	Error
Operator renormalization	15%
Wilson coefficients	12%
Finite lattice spacing	12%
Lellouch-Luscher factor	11%
Finite volume	7%
Parametric errors	5%
Excited states	5%
Unphysical kinematics	3%
Total	27%

Calculate $\operatorname{Re}(\varepsilon'/\varepsilon)$

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_{2}-\delta_{0})}}{\sqrt{2}\varepsilon} \left[\frac{\operatorname{Im}A_{2}}{\operatorname{Re}A_{2}} - \frac{\operatorname{Im}A_{0}}{\operatorname{Re}A_{0}}\right]\right\}$$
$$= (1.38 \pm 5.15_{\text{stat}} \pm 4.59_{\text{sys}}) \times 10^{-4}$$
$$\operatorname{Expt:} = (16.6 \pm 2.3) \times 10^{-4} \quad [2.1 \ \sigma \, \text{difference}]$$

- Im(A_0), Im(A_2), δ_0 and δ_2 from lattice QCD
- $\operatorname{Re}(A_2)$ and $\operatorname{Re}(A_0)$ from measured decay rates
- $|\varepsilon| = 2.228(0.011) \times 10^{-3}$ from experiment
- $\arg(\varepsilon) = \arctan(2\Delta M_K / \Gamma_S) = 42.52^{\circ}$ (Bell-Steinberger relation)

Testing Correctness

- RHMC: G-parity and "doubled lattice" evolutions agree
- Results for f_K and B_K agree with earlier DSDR values
- Calculation of matrix elements done by two people with independent code.
- G-parity code applied to $\Delta I = 3/2$ amplitudes and results agreed with earlier method.
- G-parity and standard RBC/UKQCD code agreed for a free field calculation with large mass and large volume to remove effects of boundary (with anti-periodic time boundary to ensure that loop graphs are non-zero).

Outlook

- Present calculation of $Im(A_0)$ and ε' can be improved with added statistics:
 - Reduce statistical error 2 x
 - Use step-scaling to reduce NPR error
 - $(1.38 \pm 5.15_{\text{stat}} \pm 4.59_{\text{sys}}) \times 10^{-4}$ becomes $(1.38 \pm 2.58_{\text{stat}} \pm 3.93_{\text{sys}}) \times 10^{-4}$ [2.9 σ difference]
- Accurate NPR and theoretical control of rescattering effects allow many critical kaon quantities to be computed:
 - $K \rightarrow \pi \pi$, $\Delta I = 3/2$ and 1/2, ε'
 - $-m_{KL}-m_{KS}$
 - Long-distance parts of ε and $K^0 \rightarrow \pi^0 l \bar{l}$, $K^+ \rightarrow \pi^+ \nu \bar{\nu}$