Exclusive decays of heavy baryons

 William Detmold

Work in collaboration with Christoph Lehner, David Lin, Stefan Meinel Matt Wingate

FCNC decays: $\Lambda_{\mathrm{b}} \rightarrow \Lambda \mu^{+} \mu^{-}$

[Detmold, Lin, Meinel, \& Wingate Phys. Rev. D 87, 074502 (20 I 3)]

$\left|V_{\mathrm{cb}} V_{\mathrm{cb}}\right|: \Lambda_{\mathrm{b}} \rightarrow \mathrm{p} \mu^{-} \overline{\mathrm{v}}$ and $\Lambda_{\mathrm{b}} \rightarrow \Lambda_{\mathrm{c}} \mu^{-} \bar{v}$

[Detmold, Lin, Meinel, \& Wingate PRD 88 (2013) 0145 I2]
[Detmold, Lehner,Meinel PRD 92 (2015) 034503]

FCNC decays: $\Lambda_{\mathrm{b}} \rightarrow \Lambda \mu^{+} \mu^{-}$

[Detmold, Lin, Meinel, \& Wingate Phys. Rev. D 87, 074502 (2013)]

- Flavour changing neutral currents are absent in the SM at tree level
- First occur at loop level and are generally GIM suppressed
- Small size allows sensitivity to possible BSM contributions which may be of similar size
- Well studied in $B \rightarrow K$ decays and also more recently in studies of $B \rightarrow K^{*}$
- Somewhat interesting hints for deviations from SM
- Baryon decay modes $\Lambda_{\mathrm{b}} \rightarrow \Lambda \gamma, \Lambda_{\mathrm{b}} \rightarrow$ I $^{+} I^{\text {- depend on }}$ polarisation of Λ_{b} and Λ so many angular observables possible
- In principle different sensitivities to BSM physics [Mannel \& Recksiegel 1997]
- Final state undergoes further weak decay $\Lambda \rightarrow p$ which is self-analysing

$$
\frac{d N}{d \Omega}[\Lambda \rightarrow p \pi] \sim\left(1+a \vec{s}_{\Lambda} \cdot \vec{p}_{p}\right), \quad a=0.64(1)
$$

- At LHC, Λ_{b} is produced almost unpolarised [Aaij 1302.5578]
- First observation of baryonic decay at CDF [2012]
- LHCb Run I results published recently [LHCb JHEP 06 (2015) I 15$]$
- At hadronic scales the relevant interactions are described by the effective Hamiltonian

$$
\mathcal{H}_{\mathrm{eff}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i=1, \ldots, 10, S, P}\left(C_{i} O_{i}+C_{i}^{\prime} O_{i}^{\prime}\right)
$$

where the relevant $b \rightarrow s$ operators are

$$
\begin{array}{ll}
O_{7}=\frac{e}{16 \pi^{2}} m_{b} \bar{s} \sigma^{\mu \nu} P_{R} b F_{\mu \nu}^{(\text {e.m. }),}, & O_{7}^{\prime}=\frac{e}{16 \pi^{2}} m_{b} \bar{s} \sigma^{\mu \nu} P_{L} b F_{\mu \nu}^{(\text {e.m. })}, \\
O_{9}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma^{\mu} P_{L} b \bar{l} \gamma_{\mu} l, & O_{9}^{\prime}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma^{\mu} P_{R} b \bar{l} \gamma_{\mu} l, \\
O_{10}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma^{\mu} P_{L} b \bar{l} \gamma_{\mu} \gamma_{5} l, & O_{10}^{\prime}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma^{\mu} P_{R} b \bar{l} \gamma_{\mu} \gamma_{5} l, \\
O_{S}=\frac{e^{2}}{16 \pi^{2}} m_{b} \bar{s} P_{R} b \bar{l} l, & O_{S}^{\prime}=\frac{e^{2}}{16 \pi^{2}} m_{b} \bar{s} P_{L} b \bar{l} l, \\
O_{P}=\frac{e^{2}}{16 \pi^{2}} m_{b} \bar{s} P_{R} b \bar{l} \gamma_{5} l, & O_{P}^{\prime}=\frac{e^{2}}{16 \pi^{2}} m_{b} \bar{s} P_{L} b \bar{l} \gamma_{5} l,
\end{array}
$$

$C_{i} C_{i}^{\prime}$ are Wilson coefficients containing short distance physics

- Decay amplitude determined by matrix elements of $H_{\text {eff }}$

$$
\mathcal{M}=-\left\langle\Lambda\left(p^{\prime}, s^{\prime}\right) \ell^{+}\left(p_{+}, s_{+}\right) \ell^{-}\left(p_{-}, s_{-}\right)\right| \mathcal{H}_{\mathrm{eff}}\left|\Lambda_{b}(p, s)\right\rangle
$$

- Hadronic part determined by $\Lambda_{\mathrm{b}} \rightarrow \Lambda$ form factors
- In general, 10 form factors contribute
- In static limit ($\mathrm{m}_{\mathrm{b}} \rightarrow \infty$), only two $\mathrm{FFs}_{\mathrm{s}}\left(\mathrm{F}_{1,2}\right)$ survive
$\left\langle\Lambda\left(p^{\prime}, s^{\prime}\right)\right| \bar{\Gamma} \Gamma Q\left|\Lambda_{Q}(v, 0, s)\right\rangle=\bar{u}\left(p^{\prime}, s^{\prime}\right)\left[F_{1}\left(p^{\prime} \cdot v\right)+v F_{2}\left(p^{\prime} \cdot v\right)\right] \Gamma \mathcal{U}(v, s)$
where $v=4$-velocity of Λ_{b} and the FFs are independent of the choice of Dirac matrix Γ and we will use the basis

$$
F_{ \pm}=F_{1} \pm F_{2}
$$

- Calculating FFs requires lattice QCD
- Gluon configurations from RBC/UKQCD collaborations [Aoki et al. 201 I]
- Two lattice spacings with a single large volume
- Light and strange quarks: domain wall fermions with multiple quark masses (some partially quenched)
- b quarks: HQET static action [Eichten-Hill] with HYP-smearing

Set	$N_{s}^{3} \times N_{t} \times N_{5}$	$a m_{5}$	$a m_{s}^{\text {(sea) }}$	$a m_{u, d}^{\text {(sea) }}$	$a(\mathrm{fm})$	$a m_{s}^{\text {(val) }}$	$a m_{u, d}^{\text {(val) }}$	$m_{\pi}^{\text {(vv) }}(\mathrm{MeV})$	$m_{\eta_{s}}^{\text {(vv) }}(\mathrm{MeV})$	$N_{\text {meas }}$
C14	$24^{3} \times 64 \times 16$	1.8	0.04	0.005	$0.1119(17)$	0.04	0.001	$245(4)$	$761(12)$	2705
C24	$24^{3} \times 64 \times 16$	1.8	0.04	0.005	$0.1119(17)$	0.04	0.002	$270(4)$	$761(12)$	2683
C54	$24^{3} \times 64 \times 16$	1.8	0.04	0.005	$0.1119(17)$	0.04	0.005	$336(5)$	$761(12)$	2780
C53	$24^{3} \times 64 \times 16$	1.8	0.04	0.005	$0.1119(17)$	0.03	0.005	$336(5)$	$665(10)$	1192
F23	$32^{3} \times 64 \times 16$	1.8	0.03	0.004	$0.0849(12)$	0.03	0.002	$227(3)$	$747(10)$	1918
F43	$32^{3} \times 64 \times 16$	1.8	0.03	0.004	$0.0849(12)$	0.03	0.004	$295(4)$	$747(10)$	1919
F63	$32^{3} \times 64 \times 16$	1.8	0.03	0.006	$0.0848(17)$	0.03	0.006	$352(7)$	$749(14)$	2785

- Matrix elements extracted from ratios of two and three- point correlation functions
- Two-point functions for Λ_{b} and Λ are standard
- Forward and backward three-point functions

- Matrix elements extracted from ratios of two and three- point correlation functions
- Two-point functions for Λ_{b} and Λ are standard
- Forward and backward three-point functions

$$
\begin{gathered}
C_{\delta \alpha}^{(3)}\left(\Gamma, \mathbf{p}^{\prime}, t, t^{\prime}\right)=\sum_{\mathbf{y}} e^{-i \mathbf{p}^{\prime} \cdot(\mathbf{x}-\mathbf{y})}\left\langle\Lambda_{\delta}\left(x_{0}, \mathbf{x}\right) J_{\Gamma}^{(\mathrm{HQET}) \dagger}\left(x_{0}-t+t^{\prime}, \mathbf{y}\right) \bar{\Lambda}_{Q \alpha}\left(x_{0}-t, \mathbf{y}\right)\right\rangle \\
C_{\alpha \delta}^{(3, \mathrm{bw})}\left(\Gamma, \mathbf{p}^{\prime}, t, t-t^{\prime}\right)=\sum_{\mathbf{y}} e^{-i \mathbf{p}^{\prime} \cdot(\mathbf{y}-\mathbf{x})}\left\langle\Lambda_{Q \alpha}\left(x_{0}+t, \mathbf{y}\right) J_{\Gamma}^{(\mathrm{HQET})}\left(x_{0}+t^{\prime}, \mathbf{y}\right) \bar{\Lambda}_{\delta}\left(x_{0}, \mathbf{x}\right)\right\rangle
\end{gathered}
$$

- NB: some technicalities in matching QCD current to HQET
- Spectral decomposition (ellipsis ~ excited states):
$C_{\delta \alpha}^{(3)}\left(\Gamma, \mathbf{p}^{\prime}, t, t^{\prime}\right)=Z_{\Lambda_{Q}} \frac{1}{2 E_{\Lambda}} \frac{1}{2} e^{-E_{\Lambda}\left(t-t^{\prime}\right)} e^{-E_{\Lambda} Q^{t^{\prime}}}\left[\left(Z_{\Lambda}^{(1)}+Z_{\Lambda}^{(2)} \gamma^{0}\right)\left(m_{\Lambda}+\not p^{\prime}\right)\left(F_{1}+\gamma^{0} F_{2}\right) \Gamma\left(1+\gamma^{0}\right)\right]_{\delta \alpha}+\ldots$
- Form ratios of correlators to cancel energy and time dependence for ground-state contribution

$$
\mathcal{R}\left(\Gamma, \mathbf{p}^{\prime}, t, t^{\prime}\right)=\frac{4 \operatorname{Tr}\left[C^{(3)}\left(\Gamma, \mathbf{p}^{\prime}, t, t^{\prime}\right) C^{(3, \mathrm{bw})}\left(\Gamma, \mathbf{p}^{\prime}, t, t-t^{\prime}\right)\right]}{\operatorname{Tr}\left[C^{(2, \Lambda, \mathrm{av})}\left(\mathbf{p}^{\prime}, t\right)\right] \operatorname{Tr}\left[C^{\left(2, \Lambda_{Q}, \mathrm{av}\right)}(t)\right]}
$$

- Combine for different Dirac structures

$$
\begin{aligned}
& \mathcal{R}_{+}\left(\mathbf{p}^{\prime}, t, t^{\prime}\right)=\frac{1}{4}\left[\mathcal{R}\left(1, \mathbf{p}^{\prime}, t, t^{\prime}\right)+\mathcal{R}\left(\gamma^{2} \gamma^{3}, \mathbf{p}^{\prime}, t, t^{\prime}\right)+\mathcal{R}\left(\gamma^{3} \gamma^{1}, \mathbf{p}^{\prime}, t, t^{\prime}\right)+\mathcal{R}\left(\gamma^{1} \gamma^{2}, \mathbf{p}^{\prime}, t, t^{\prime}\right)\right] \\
& \mathcal{R}_{-}\left(\mathbf{p}^{\prime}, t, t^{\prime}\right)=\frac{1}{4}\left[\mathcal{R}\left(\gamma^{1}, \mathbf{p}^{\prime}, t, t^{\prime}\right)+\mathcal{R}\left(\gamma^{2}, \mathbf{p}^{\prime}, t, t^{\prime}\right)+\mathcal{R}\left(\gamma^{3}, \mathbf{p}^{\prime}, t, t^{\prime}\right)+\mathcal{R}\left(\gamma_{5}, \mathbf{p}^{\prime}, t, t^{\prime}\right)\right]
\end{aligned}
$$

- Determine form factors (up to exponential contamination)

$$
\begin{aligned}
& R_{+}\left(\left|\mathbf{p}^{\prime}\right|^{2}, t\right)=\sqrt{\frac{E_{\Lambda}}{E_{\Lambda}+m_{\Lambda}} \mathcal{R}_{+}\left(\left|\mathbf{p}^{\prime}\right|^{2}, t, t / 2\right)} \xrightarrow{t \rightarrow \infty} F_{+}(v \cdot p)+\ldots \\
& R_{-}\left(\left|\mathbf{p}^{\prime}\right|^{2}, t\right)=\sqrt{\frac{E_{\Lambda}}{E_{\Lambda}-m_{\Lambda}} \mathcal{R}_{-}\left(\left|\mathbf{p}^{\prime}\right|^{2}, t, t / 2\right)} \xrightarrow{t \rightarrow \infty} F_{-}(v \cdot p)+\ldots
\end{aligned}
$$

- Ratios are relatively insensitive to operator insertion time
- Take midpoint to reduce excited state

- Strongly dependent on source-sink separation
- Extrapolate to infinite source-sink separation to extract ground state matrix elements
- Allow for single exponential contamination

$$
R_{ \pm}^{i, n}(t)=F_{ \pm}^{i, n}+A_{ \pm}^{i, n} \exp \left[-\delta^{i, n} t\right]
$$

- Constrain energy gap to be positive and to be similar between the fits to the different ensembles
- Systematic fitting uncertainty assessed by adding a second exponential contamination and by dropping data at short t

Source sink separation

- Form factors extracted at non-zero lattice spacing, unphysical quark masses and for a limited range of momenta
- Coupled extrapolations performed using the form

$$
\begin{gathered}
F_{ \pm}^{i, n}=\frac{N_{ \pm}}{\left(X_{ \pm}^{i}+E_{\Lambda}^{i n}-m_{\Lambda}^{i}\right)^{2}} \cdot\left[1+d_{ \pm}\left(a^{i} E_{\Lambda}^{i, n}\right)^{2}\right] \\
\text { with } X_{ \pm}^{i}=X_{ \pm}+c_{l, \pm} \cdot\left[\left(m_{\pi}^{i}\right)^{2}-\left(m_{\pi}^{\text {phys }}\right)^{2}\right]+c_{s, \pm} \cdot\left[\left(m_{\eta_{s}}^{i}\right)^{2}-\left(m_{\eta_{s}}^{\text {phys }}\right)^{2}\right]
\end{gathered}
$$

- Simple modified dipole form
- Necessarily phenomenological (momenta of Λ beyond range of applicability of $\chi \mathrm{PT}$)
- Lattice spacing and light and strange quark mass dependence through c's and d's

Form factors

- Fit has $\chi^{2} /$ dof <1 and fitted lattice spacing and quark mass parameters consistent with zero

- Main sources of systematic uncertainty in FFs are
- Higher order effects in renormalisation of currents $\sim 6 \%$
- Finite volume $\sim 3 \%$
- Chiral extrapolation ~5\%
- Residual discretisation effects $\sim 4 \%$

- Extrapolation functional form
- Dipole vs monopole vs ...
- Agree in data region Uncertainty hard to quantify

Differential branching fraction

- Taking SMWilson coefficients from the literature we can compute the SM decay rate

$$
\begin{aligned}
& \frac{\mathrm{d} \Gamma}{\mathrm{~d} q^{2}}= \frac{\alpha_{\mathrm{em}}^{2} G_{F}^{2}\left|V_{t b} V_{t s}^{*}\right|^{2}}{6144} \pi^{5} q^{4} m_{\Lambda_{b}}^{5} \\
& 1-\frac{4 m_{l}^{2}}{q^{2}} \sqrt{\left(\left(m_{\Lambda_{b}}-m_{\Lambda}\right)^{2}-q^{2}\right)\left(\left(m_{\Lambda_{b}}+m_{\Lambda}\right)^{2}-q^{2}\right)} \\
& \times {\left[q^{2}\left|C_{10, \mathrm{eff}}\right|^{2} \mathcal{A}_{10,10}+16 c_{\sigma}^{2} m_{b}^{2}\left(q^{2}+2 m_{l}^{2}\right)\left|C_{7, \mathrm{eff}}\right|^{2} \mathcal{A}_{7,7}+q^{2}\left(q^{2}+2 m_{l}^{2}\right)\left|C_{9, \mathrm{eff}}\left(q^{2}\right)\right|^{2} \mathcal{A}_{9,9}\right.} \\
&\left.+8 q^{2} c_{\sigma} m_{b}\left(q^{2}+2 m_{l}^{2}\right) m_{\Lambda_{b}} \Re\left[C_{7, \mathrm{eff}} C_{9, \mathrm{eff}}\left(q^{2}\right)\right] \mathcal{A}_{7,9}\right], \\
& \mathcal{A}_{10,10}= {\left[\left(2 c_{\gamma}^{2}+2 c_{\gamma} c_{v}+c_{v}^{2}\right)\left(2 m_{l}^{2}+q^{2}\right)\left(m_{\Lambda_{b}}^{4}-2 m_{\Lambda_{b}}^{2} m_{\Lambda}^{2}+\left(q^{2}-m_{\Lambda}^{2}\right)^{2}\right)\right.} \\
&\left.+2 m_{\Lambda_{b}}^{2} q^{2}\left(4 c_{\gamma}^{2}\left(q^{2}-4 m_{l}^{2}\right)-\left(2 c_{\gamma} c_{v}+c_{v}^{2}\right)\left(q^{2}-10 m_{l}^{2}\right)\right)\right] \mathcal{F}+4 c_{\gamma}\left(c_{\gamma}+c_{v}\right)\left(2 m_{l}^{2}+q^{2}\right) \mathcal{G} F_{+} F_{-}, \\
& \mathcal{A}_{7,7}=\left(m_{\Lambda_{b}}^{4}+m_{\Lambda_{b}}^{2}\left(q^{2}-2 m_{\Lambda}^{2}\right)+\left(q^{2}-m_{\Lambda}^{2}\right)^{2}\right) \mathcal{F}+2 \mathcal{G} F_{+} F_{-}, \\
& \mathcal{A}_{9,9}= {\left[\left(2 c_{\gamma}^{2}+2 c_{\gamma} c_{v}+c_{v}^{2}\right)\left(m_{\Lambda_{b}}^{4}+\left(q^{2}-m_{\Lambda}^{2}\right)^{2}\right)-2 m_{\Lambda_{b}}^{2}\left(2 c_{\gamma}^{2}\left(m_{\Lambda}^{2}-2 q^{2}\right)+\left(2 c_{\gamma} c_{v}+c_{v}^{2}\right)\left(m_{\Lambda}^{2}+q^{2}\right)\right)\right] \mathcal{F} } \\
&+4 c_{\gamma}\left(c_{\gamma}+c_{v}\right) \mathcal{G} F_{+} F_{-}, \\
& \mathcal{A}_{7,9}=3 c_{\gamma}\left(m_{\Lambda_{b}}^{2}-m_{\Lambda}^{2}+q^{2}\right) \mathcal{F}+2\left(3 c_{\gamma}+c_{v}\right)\left(m_{\Lambda}^{4}-2 m_{\Lambda}^{2}\left(m_{\Lambda_{b}}^{2}+q^{2}\right)+\left(q^{2}-m_{\Lambda_{b}}^{2}\right)^{2}\right) F_{+} F_{-}, \\
& \mathcal{F}=\left(\left(m_{\Lambda_{b}}-m_{\Lambda}\right)^{2}-q^{2}\right) F_{-}^{2}+\left(\left(m_{\Lambda_{b}}+m_{\Lambda}\right)^{2}-q^{2}\right) F_{+}^{2}, \\
& \mathcal{G}= m_{\Lambda_{b}}^{6}-m_{\Lambda_{b}}^{4}\left(3 m_{\Lambda}^{2}+q^{2}\right)-m_{\Lambda_{b}}^{2}\left(q^{2}-m_{\Lambda}^{2}\right)\left(3 m_{\Lambda}^{2}+q^{2}\right)+\left(q^{2}-m_{\Lambda}^{2}\right)^{3}
\end{aligned}
$$

Differential branching fraction

- Evaluate using lattice FFs
- Additional systematic uncertainty from using static limit FFs taken as $\sqrt{|\vec{p}|^{2}+\Lambda_{\text {QCD }}^{2}} / m_{b}$
- Comparison to CDF measurements

Differential branching fraction

- New LHCb data are much more precise

- LQCD calculation will improve soon (relativistic heavy quarks)
- Leptonic and Hadronic FB asymmetries

$$
A_{\mathrm{FB}}^{i}\left(q^{2}\right)=\frac{\int_{0}^{1} \frac{\mathrm{~d}^{2} \Gamma}{\mathrm{~d} q^{2} \cos \theta_{i}} \mathrm{~d} \cos \theta_{i}-\int_{-1}^{0} \frac{\mathrm{~d}^{2} \Gamma}{\mathrm{~d} q^{2} \operatorname{dcos} \theta_{i}} \mathrm{~d} \cos \theta_{i}}{\mathrm{~d} \Gamma / \mathrm{d} q^{2}}
$$

- Leptonic above SM in controlled region

$\left|V_{\mathrm{ub}} / \wedge_{\mathrm{cb}}\right|: \Lambda_{\mathrm{b}} \rightarrow p \mu^{-} \overline{\mathrm{v}}$ and $\Lambda_{\mathrm{b}} \rightarrow \Lambda_{\mathrm{c}} \mu^{-} \bar{\nabla}$

[Detmold, Lin, Meinel, \& Wingate PRD 88 (20|3) 0145I2]
[Detmold, Lehner,Meinel PRD 92 (2015) 034503]

- Long running tension between V_{ub} ($\mathrm{and} \mathrm{V}_{\mathrm{cb}}$) extractions from inclusive $B \rightarrow X_{u}\left(B \rightarrow X_{c}\right)$ and exclusive decays $B \rightarrow \pi(B \rightarrow D)$

$$
\mathcal{H}_{\mathrm{eff}}=\frac{G_{F}}{\sqrt{2}} V_{u b} \underbrace{\bar{u} \gamma^{\mu}\left(1-\gamma_{5}\right) b}_{\equiv J^{\mu}} \bar{\ell} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu
$$

- Long running tension between V_{ub} ($a n d \mathrm{~V}_{\mathrm{cb}}$) extractions from inclusive $B \rightarrow X_{u}\left(B \rightarrow X_{c}\right)$ and exclusive decays $B \rightarrow \pi(B \rightarrow D)$

Inclusive

$\frac{\mathrm{d} \Gamma}{\mathrm{d} q^{2} \mathrm{~d} E_{\ell}} \propto\left|V_{u b}\right|^{2}(\ldots)_{\mu \nu}$

$$
\mathbf{x} \operatorname{lm}(\underbrace{-i \int \mathrm{~d}^{4} x e^{-i q \cdot x}\langle B| \mathbf{T} J^{\mu \dagger}(x) J^{\nu}(0)|B\rangle}_{\text {OPE, HQET }})
$$

Exclusive
decay rate \propto

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} q^{2}} \propto\left|V_{u b}\right|^{2}|(\ldots)_{\mu} \underbrace{\langle\pi| J^{\mu}|B\rangle}_{\text {lattice QCD }}|^{2}
$$

Inclusive vs exclusive V_{ub} \& V_{cb}

- Long running tension between V_{ub} ($\mathrm{and} \mathrm{V}_{\mathrm{cb}}$) extractions from inclusive $B \rightarrow X_{u}\left(B \rightarrow X_{c}\right)$ and exclusive decays $B \rightarrow \pi(B \rightarrow D)$

- Possible to reconcile through BSM scenarios that produce RH currents at low energy

$$
\mathcal{H}_{\text {eff }}=\frac{G_{F}}{\sqrt{2}} V_{u b}^{L}\left[\left(1+\epsilon_{R}\right) \bar{u} \gamma^{\mu} b-\left(1-\epsilon_{R}\right) \bar{u} \gamma^{\mu} \gamma_{5} b\right] \bar{\ell} \gamma_{\mu}\left(1-\gamma_{5}\right) \nu
$$

figure modified from LHCb I504.01568

- Bottom baryons provide another exclusive decay channel: $\Lambda_{b} \rightarrow \mathrm{plv}$
- LHCb: branching fraction ratio measured $\frac{\int_{15 \operatorname{cev}^{2}}^{q_{\text {max }}^{2}} \frac{\mathrm{~d} \Gamma\left(\Lambda_{b} \rightarrow p \mu^{-} \bar{\nu}_{\mu}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}{\int_{7 \mathrm{GeV}^{2}}^{q_{\max }^{2}} \frac{\mathrm{~d} \Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu^{-} \bar{\nu}_{\mu}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}}$

$$
\text { [1504.01568=Nature Phys. } 1 \text { I (2015)] }
$$

- Extraction of $\left|\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}\right|$ requires hadronic matrix elements

$$
\begin{aligned}
& \qquad \begin{array}{l}
\langle p| \bar{u} \gamma^{\mu} b\left|\Lambda_{b}\right\rangle, \\
\langle p| \bar{u} \gamma^{\mu} \gamma_{5} b\left|\Lambda_{b}\right\rangle, \\
\left\langle\Lambda_{c}\right| \bar{c} \gamma^{\mu} b\left|\Lambda_{b}\right\rangle, \\
\text { from LQCD }
\end{array}
\end{aligned}
$$

- Extends previous calculation that used static quarks [WD,Lin,Meinel,Wingate]
- RHQ, z-expansion,....

- 12 form factors needed
- Compare partial integrals

$$
\left|\frac{V_{u b}}{V_{c b}}\right|=0.083(4)_{\text {expt }}(4)_{\mathrm{latt}}
$$

- Combine with exclusive $\mathrm{V}_{c b}$ to get |Vub|

- Extends previous calculation that used static quarks [WD,Lin,Meinel,Wingate]
- RHQ, z-expansion,....

- 12 form factors needed
- Compare partial integrals

$$
\left|\frac{V_{u b}}{V_{c b}}\right|=0.083(4)_{\mathrm{expt}}(4)_{\mathrm{latt}}
$$

- Combine with exclusive V_{cb} to get |Vub|

Inclusive vs exclusive $V_{\text {ub }}$

- Consistent with mesonic exclusive measurement

$$
\left|V_{u b}\right|=3.27(0.15)_{\operatorname{expt}}(0.16)_{\mathrm{latt}}(0.06)_{V_{c b}} \times 10^{-3}
$$

- Consistent with mesonic exclusive measurement

$$
\left|V_{u b}\right|=3.27(0.15)_{\operatorname{expt}}(0.16)_{\mathrm{latt}}(0.06)_{V_{c b}} \times 10^{-3}
$$

$$
\begin{aligned}
& \text { Inclusive [PDG 2014] } \\
& \mathrm{B} \rightarrow \pi / v[\mathrm{PDG} 2014] \\
& \Lambda_{b} \rightarrow \mathrm{plv}[\mathrm{DLM} / \mathrm{LHCb} 2015] \\
& \mathrm{B} \rightarrow \pi / v[\mathrm{RBC/UKQCD} 2015] \\
& \mathrm{B} \rightarrow \pi / v[\text { FNALMILC 2015] }
\end{aligned}
$$

- New LQCD calculations for $B \rightarrow \pi$ decays too!

Inclusive vs exclusive $V_{u b}$

- Different dependence of baryon decay disfavours RH currents as a solution to inclusive/exclusive tension

figure modified from
LHCb I504.01568
- Exclusive extractions:
- very different experimental and theoretical systematics
- Mutual consistency ($p=0.26$)
- Inclusive extractions creates significant tension
- Solution from RH currents disfavoured by baryonic extraction

- Other baryonic semi-leptonic decays
- Strange spectators: $\Xi_{b} \rightarrow \Sigma|v, \Lambda| v, \Omega_{b} \rightarrow \Xi \mid v ? ?$

Nice from LQCD perspective as final state is strongly stable

- Shape, angular observables?

Technical slides follow

- RBC/UKQCD 2+I flavour gauge configs Light and strange quarks are DWF using standard parameters

Set	β	$N_{s}^{3} \times N_{t} \times N_{5}$	$a m_{5}$	$a m_{s}^{\text {(sea) }}$	$a m_{u, d}^{\text {(sea) }}$	$a(\mathrm{fm})$	$a m_{u, d}^{\text {(val) }}$	$m_{\pi}^{\text {(val) }}(\mathrm{MeV})$	$N_{\text {meas }}$
C14	2.13	$24^{3} \times 64 \times 16$	1.8	0.04	0.005	$0.1119(17)$	0.001	$245(4)$	2672
C24	2.13	$24^{3} \times 64 \times 16$	1.8	0.04	0.005	$0.1119(17)$	0.002	$270(4)$	2676
C54	2.13	$24^{3} \times 64 \times 16$	1.8	0.04	0.005	$0.1119(17)$	0.005	$336(5)$	2782
F23	2.25	$32^{3} \times 64 \times 16$	1.8	0.03	0.004	$0.0849(12)$	0.002	$227(3)$	1907
F43	2.25	$32^{3} \times 64 \times 16$	1.8	0.03	0.004	$0.0849(12)$	0.004	$295(4)$	1917
F63	2.25	$32^{3} \times 64 \times 16$	1.8	0.03	0.006	$0.0848(17)$	0.006	$352(7)$	2782

- Heavy quarks: RHQ action a la Fermilab/Columbia/Tsukuba

$$
S_{Q}=a^{4} \sum_{x} \bar{Q}\left[m_{Q}+\gamma_{0} \nabla_{0}-\frac{a}{2} \nabla_{0}^{(2)}+\nu \sum_{i=1}^{3}\left(\gamma_{i} \nabla_{i}-\frac{a}{2} \nabla_{i}^{(2)}\right)-c_{E} \frac{a}{2} \sum_{i=1}^{3} \sigma_{0 i} F_{0 i}-c_{B} \frac{a}{4} \sum_{i, j=1}^{3} \sigma_{i j} F_{i j}\right] Q
$$

- Tuning of b quark from RBC/UKQCD

Tuning of c quark [Brown,WD,Meinel,Orginos 2014] m_{Q} and v tuned to give spin averaged charmonium mass and dispersion relation; CE,B fixed to mean-field tree-level improved values

Parameter	coarse	fine
$a m_{Q}^{(b)}$	8.45	3.99
$\xi^{(b)}$	3.1	1.93
$c_{E, B}^{(b)}$	5.8	3.57
$a m_{Q}^{(c)}$	0.1214	-0.0045
$\xi^{(c)}$	1.2362	1.1281
$c_{E}^{(c)}$	1.6650	1.5311
$c_{B}^{(c)}$	1.8409	1.6232

- Lattice versions of vector and axial currents

$$
\begin{aligned}
V_{0} & =\sqrt{Z_{V}^{(q q)} Z_{V}^{(b b)}} \rho_{V_{0}}\left[\bar{q} \gamma_{0} b+2 a\left(c_{V_{0}}^{R} \bar{q} \gamma_{0} \gamma_{j} \vec{\nabla}_{j} b+c_{V_{0}}^{L} \bar{q} \overleftarrow{\nabla}_{j} \gamma_{0} \gamma_{j} b\right)\right], \\
A_{0} & =\sqrt{Z_{V}^{(q q)} Z_{V}^{(b b)}} \rho_{A_{0}}\left[\bar{q} \gamma_{0} \gamma_{5} b+2 a\left(c_{A_{0}}^{R} \bar{q} \gamma_{0} \gamma_{5} \gamma_{j} \vec{\nabla}_{j} b+c_{A_{0}}^{L} \bar{q} \overleftarrow{\nabla}_{j} \gamma_{0} \gamma_{5} \gamma_{j} b\right)\right], \\
V_{i} & =\sqrt{Z_{V}^{(q q)} Z_{V}^{(b b)}} \rho_{V_{i}}\left[\bar{q} \gamma_{i} b+2 a\left(c_{V_{i}}^{R} \bar{q} \gamma_{i} \gamma_{j} \vec{\nabla}_{j} b+c_{V_{i}}^{L} \bar{q} \overleftarrow{\nabla}_{j} \gamma_{i} \gamma_{j} b+d_{V_{i}}^{R} \bar{q} \vec{\nabla}_{i} b+d_{V_{i}}^{L} \bar{q} \overleftarrow{\nabla}_{i} b\right)\right], \\
A_{i} & =\sqrt{Z_{V}^{(q q)} Z_{V}^{(b b)}} \rho_{A_{i}}\left[\bar{q} \gamma_{i} \gamma_{5} b+2 a\left(c_{A_{i}}^{R} \bar{q} \gamma_{i} \gamma_{5} \gamma_{j} \vec{\nabla}_{j} b+c_{A_{i}}^{L} \bar{q} \overleftarrow{\nabla}_{j} \gamma_{i} \gamma_{5} \gamma_{j} b+d_{A_{i}}^{R} \bar{q} \gamma_{5} \vec{\nabla}_{i} b+d_{A_{i}}^{L} \bar{q} \overleftarrow{\nabla}_{i} \gamma_{5} b\right)\right],
\end{aligned}
$$

- Mostly non-perturbative renormalisation
- Z(qq)'s fixed non-perturbativly from current conservation of flavour conserving current ($q=1, c, b$)
- ρ 's and c's calculated at one loop in mean-field improved lattice perturbation theory using PhySyHCAI [C Lehner]

$$
s_{ \pm}=\left(m_{\Lambda_{b}} \pm m_{X}\right)^{2}-q^{2}
$$

- Form factors

$$
q=p-p^{\prime}
$$

$$
\begin{aligned}
&\left\langle X\left(p^{\prime}, s^{\prime}\right)\right| \bar{q} \gamma^{\mu} b\left|\Lambda_{b}(p, s)\right\rangle=\bar{u}_{X}\left(p^{\prime}, s^{\prime}\right) {\left[f_{0}\left(q^{2}\right)\left(m_{\Lambda_{b}}-m_{X}\right) \frac{q^{\mu}}{q^{2}}\right.} \\
&+f_{+}\left(q^{2}\right) \frac{m_{\Lambda_{b}}+m_{X}}{s_{+}}\left(p^{\mu}+p^{\prime \mu}-\left(m_{\Lambda_{b}}^{2}-m_{X}^{2}\right) \frac{q^{\mu}}{q^{2}}\right) \\
&\left.+f_{\perp}\left(q^{2}\right)\left(\gamma^{\mu}-\frac{2 m_{X}}{s_{+}} p^{\mu}-\frac{2 m_{\Lambda_{b}}}{s_{+}} p^{\prime \mu}\right)\right] u_{\Lambda_{b}}(p, s), \\
&\left\langle X\left(p^{\prime}, s^{\prime}\right)\right| \bar{q} \gamma^{\mu} \gamma_{5} b\left|\Lambda_{b}(p, s)\right\rangle=-\bar{u}_{X}\left(p^{\prime}, s^{\prime}\right) \gamma_{5}\left[g_{0}\left(q^{2}\right)\left(m_{\Lambda_{b}}+m_{X}\right) \frac{q^{\mu}}{q^{2}}\right. \\
&+g_{+}\left(q^{2}\right) \frac{m_{\Lambda_{b}}-m_{X}}{s_{-}}\left(p^{\mu}+p^{\prime \mu}-\left(m_{\Lambda_{b}}^{2}-m_{X}^{2}\right) \frac{q^{\mu}}{q^{2}}\right) \\
&\left.+g_{\perp}\left(q^{2}\right)\left(\gamma^{\mu}+\frac{2 m_{X}}{s_{-}} p^{\mu}-\frac{2 m_{\Lambda_{b}}}{s_{-}} p^{\prime \mu}\right)\right] u_{\Lambda_{b}}(p, s) .
\end{aligned}
$$

- Alternate notation

$$
\begin{aligned}
\left\langle X\left(p^{\prime}, s^{\prime}\right)\right| \bar{q} \gamma^{\mu} b\left|\Lambda_{b}(p)\right\rangle & =\bar{u}_{X}\left(p^{\prime}, s^{\prime}\right)\left[f_{1}^{V}\left(q^{2}\right) \gamma^{\mu}-\frac{f_{2}^{V}\left(q^{2}\right)}{m_{\Lambda_{b}}} i \sigma^{\mu \nu} q_{\nu}+\frac{f_{3}^{V}\left(q^{2}\right)}{m_{\Lambda_{b}}} q^{\mu}\right] u_{\Lambda_{b}}(p, s), \\
\left\langle X\left(p^{\prime}, s^{\prime}\right)\right| \bar{q} \gamma^{\mu} \gamma_{5} b\left|\Lambda_{b}(p)\right\rangle & =\bar{u}_{X}\left(p^{\prime}, s^{\prime}\right)\left[f_{1}^{A}\left(q^{2}\right) \gamma^{\mu}-\frac{f_{2}^{A}\left(q^{2}\right)}{m_{\Lambda_{b}}} i \sigma^{\mu \nu} q_{\nu}+\frac{f_{3}^{A}\left(q^{2}\right)}{m_{\Lambda_{b}}} q^{\mu}\right] \gamma_{5} u_{\Lambda_{b}}(p, s),
\end{aligned}
$$

- Measure two point and three point functions (simple interpolating operators)

$$
\begin{aligned}
C_{\delta \alpha}^{(2, X, f \mathbf{f w})}\left(\mathbf{p}^{\prime}, t\right) & =\sum_{\mathbf{y}} e^{-i \mathbf{p}^{\prime} \cdot(\mathbf{y}-\mathbf{x})}\left\langle X_{\delta}\left(x_{0}+t, \mathbf{y}\right) \bar{X}_{\alpha}\left(x_{0}, \mathbf{x}\right)\right\rangle, \\
C_{\delta \alpha}^{(2, X, b \mathrm{bw})}\left(\mathbf{p}^{\prime}, t\right) & =\sum_{\mathbf{y}} e^{-i \mathbf{p}^{\prime} \cdot(\mathbf{x}-\mathbf{y})}\left\langle X_{\delta}\left(x_{0}, \mathbf{x}\right) \bar{X}_{\alpha}\left(x_{0}-t, \mathbf{y}\right)\right\rangle, \\
C_{\delta \alpha}^{\left(2, \Lambda_{b}, f \mathrm{fw}\right)}(t) & =\sum_{\mathbf{y}}\left\langle\Lambda_{b \delta}\left(x_{0}+t, \mathbf{y}\right) \bar{\Lambda}_{b \alpha}\left(x_{0}, \mathbf{x}\right)\right\rangle, \\
C_{\delta \alpha}^{\left(2, \Lambda_{b}, \mathrm{bw}\right)}(t) & =\sum\left\langle\Lambda_{b \delta}\left(x_{0}, \mathbf{x}\right) \bar{\Lambda}_{b \alpha}\left(x_{0}-t, \mathbf{y}\right)\right\rangle .
\end{aligned}
$$

$$
\begin{aligned}
C_{\delta \alpha}^{(3, \mathrm{fw})}\left(\Gamma, \mathbf{p}^{\prime}, t, t^{\prime}\right) & =\sum_{\mathbf{y}, \mathbf{z}} e^{-i \mathbf{p}^{\prime} \cdot(\mathbf{x}-\mathbf{y})}\left\langle\begin{array}{llll}
X_{\delta}\left(x_{0}, \mathbf{x}\right) & J_{\Gamma}^{\dagger}\left(x_{0}-t+t^{\prime}, \mathbf{y}\right) & \left.\bar{\Lambda}_{b \alpha}\left(x_{0}-t, \mathbf{z}\right)\right\rangle, \\
C_{\alpha \delta}^{(3, \mathrm{bw})}\left(\Gamma, \mathbf{p}^{\prime}, t, t-t^{\prime}\right) & =\sum_{\mathbf{y}, \mathbf{z}} e^{-i \mathbf{p}^{\prime} \cdot(\mathbf{y}-\mathbf{x})}\left\langle\Lambda_{b \alpha}\left(x_{0}+t, \mathbf{z}\right)\right. & J_{\Gamma}\left(x_{0}+t^{\prime}, \mathbf{y}\right) & \left.\bar{X}_{\delta}\left(x_{0}, \mathbf{x}\right)\right\rangle,
\end{array},\right.
\end{aligned}
$$

- Ratios to pull out form factors (axial-vector case similar)

$$
\begin{aligned}
& \mathscr{R}_{+}^{V}\left(\mathbf{p}^{\prime}, t, t^{\prime}\right)=\frac{r_{\mu}[(1, \mathbf{0})] r_{\nu}[(1, \mathbf{0})] \operatorname{Tr}\left[C^{(3, \mathrm{fw})}\left(\mathbf{p}^{\prime}, \gamma^{\mu}, t, t^{\prime}\right) C^{(3, \mathrm{bw})}\left(\mathbf{p}^{\prime}, \gamma^{\nu}, t, t-t^{\prime}\right)\right]}{\operatorname{Tr}\left[C^{(2, X, \mathrm{av})}\left(\mathbf{p}^{\prime}, t\right)\right] \operatorname{Tr}\left[C^{\left(2, \Lambda_{b}, \mathrm{av}\right)}(t)\right]} \\
& \mathscr{R}_{\perp}^{V}\left(\mathbf{p}^{\prime}, t, t^{\prime}\right)=\frac{r_{\mu}\left[\left(0, \mathbf{e}_{j} \times \mathbf{p}^{\prime}\right)\right] r_{\nu}\left[\left(0, \mathbf{e}_{k} \times \mathbf{p}^{\prime}\right)\right] \operatorname{Tr}\left[C^{(3, \mathrm{fw})}\left(\mathbf{p}^{\prime}, \gamma^{\mu}, t, t^{\prime}\right) \gamma_{5} \gamma^{j} C^{(3, \mathrm{bw})}\left(\mathbf{p}^{\prime}, \gamma^{\nu}, t, t-t^{\prime}\right) \gamma_{5} \gamma^{k}\right]}{\operatorname{Tr}\left[C^{(2, X, \mathrm{av})}\left(\mathbf{p}^{\prime}, t\right)\right] \operatorname{Tr}\left[C^{\left(2, \Lambda_{b}, \mathrm{av}\right)}(t)\right]} \\
& \mathscr{R}_{0}^{V}\left(\mathbf{p}^{\prime}, t, t^{\prime}\right)=\frac{q_{\mu} q_{\nu} \operatorname{Tr}\left[C^{(3, \mathrm{fw})}\left(\mathbf{p}^{\prime}, \gamma^{\mu}, t, t^{\prime}\right) C^{(3, \mathrm{bw})}\left(\mathbf{p}^{\prime}, \gamma^{\nu}, t, t-t^{\prime}\right)\right]}{\operatorname{Tr}\left[C^{(2, X, \mathrm{av})}\left(\mathbf{p}^{\prime}, t\right)\right] \operatorname{Tr}\left[C^{\left(2, \Lambda_{b}, \mathrm{av}\right)}(t)\right]}
\end{aligned}
$$

$R_{f_{+}}\left(\left|\mathbf{p}^{\prime}\right|, t\right)=\frac{2 q^{2}}{\left(E_{X}-m_{X}\right)\left(m_{\Lambda_{b}}+m_{X}\right)} \sqrt{\frac{E_{X}}{E_{X}+m_{X}} \mathscr{R}_{+}^{V}\left(\left|\mathbf{p}^{\prime}\right|, t, t / 2\right)}=f_{+}+$(excited-state contributions)
$R_{f_{\perp}}\left(\left|\mathbf{p}^{\prime}\right|, t\right)=\frac{1}{E_{X}-m_{X}} \sqrt{\frac{E_{X}}{E_{X}+m_{X}} \mathscr{R}_{\perp}^{V}\left(\left|\mathbf{p}^{\prime}\right|, t, t / 2\right)} \quad=f_{\perp}+$ (excited-state contributions)
$R_{f_{0}}\left(\left|\mathbf{p}^{\prime}\right|, t\right)=\frac{2}{m_{\Lambda_{b}}-m_{X}} \sqrt{\frac{E_{X}}{E_{X}+m_{X}} \mathscr{R}_{0}^{V}\left(\left|\mathbf{p}^{\prime}\right|, t, t / 2\right)}=f_{0}+($ excited-state contributions $)$

Ratios to pull out form factors (axial-vector case similar)

- Extrapolation: $R_{f, i, n}(t)=f_{i, n}+A_{f, i, n} e^{-\delta_{f, i, n} t}, \quad \delta_{f, i, n}=\delta_{\text {min }}+e^{l_{f, i, n}} \mathrm{GeV}$ (use augmented chi-sq to impose expected relations)
- Fits correlated between different ensembles, FFs

- Chiral/continuum extrapolation using z-expansion after factoring leading pole

$$
\begin{aligned}
f\left(q^{2}\right)= & \frac{1}{1-q^{2} /\left(m_{\mathrm{pole}}^{f}\right)^{2}}\left[a_{0}^{f}\left(1+c_{0}^{f} \frac{m_{\pi}^{2}-m_{\pi, \text { phys }}^{2}}{\Lambda_{\chi}^{2}}\right)+a_{1}^{f} z^{f}\left(q^{2}\right)\right] \\
& \times\left[1+b^{f} \frac{\left|\mathbf{p}^{\prime}\right|^{2}}{(\pi / a)^{2}}+d^{f} \frac{\Lambda_{\mathrm{QCD}}^{2}}{(\pi / a)^{2}}\right],
\end{aligned}
$$

With $a m_{\text {pole }}^{f}=a m_{\mathrm{PS}}+a \Delta^{f}$

$$
z^{f}\left(q^{2}\right)=\frac{\sqrt{t_{+}^{f}-q^{2}}-\sqrt{t_{+}^{f}-t_{0}}}{\sqrt{t_{+}^{f}-q^{2}}+\sqrt{t_{+}^{f}-t_{0}}} \quad t_{0}=\left(m_{\Lambda_{b}}-m_{X}\right)^{2}
$$

t^{+}below any singularities (based on $Q \#$ of $F F$ channel)

$$
\begin{aligned}
& a^{2} t_{+}^{f}=\left(a m_{\mathrm{PS}}+a m_{\pi, \text { phys }}\right)^{2} \quad\left(\text { for } \Lambda_{b} \rightarrow p\right) \\
& a^{2} t_{+}^{f}=\left(a m_{\mathrm{PS}}+a \Delta^{f}\right)^{2} \quad\left(\text { for } \Lambda_{b} \rightarrow \Lambda_{c}\right) \text { : }
\end{aligned}
$$

Fitting systematics

- Generally assess by adding higher order terms to fit
- Chiral, continuum, z-dependence

$$
O \pm \underbrace{\sigma_{O}}_{\text {stat. }} \pm \underbrace{\max \left(\left|O_{\text {Но }}-O\right|, \sqrt{\left|\sigma_{О, \text { но }}^{2}-\sigma_{O}^{2}\right|}\right)}_{\text {syst. }}
$$

- Matching and improvement coeffs, lattice spacing sampled within uncertainties in each bootstrap sample
- Finite volume, isospin breaking, EM, heavy quark parameter tuning uncertainties estimated
- Dominated by z-expansion and continuum extrapolation at low q^{2}
- Limits precision of shape calculations
- Chiral extrapolation important at large q^{2}
- Address with physical mass calculations

Decay rate

- In terms of form factors, differential decay rate given by

$$
\begin{aligned}
\frac{\mathrm{d} \Gamma}{\mathrm{~d} q^{2}}= & \frac{G_{F}^{2}\left|V_{q}^{L}\right|^{2} \sqrt{s_{+} s_{-}}}{768 \pi^{3} m_{\Lambda_{\bullet}}^{3}}\left(1-\frac{m_{\ell}^{2}}{q^{2}}\right)^{2} \\
& \times\left\{4\left(m_{\ell}^{2}+2 q^{2}\right)\left(s_{+}\left[\left(1-\epsilon_{q}^{R}\right) g_{\perp}\right]^{2}+s_{-}\left[\left(1+\epsilon_{q}^{R}\right) f_{\perp}\right]^{2}\right)\right. \\
& +2 \frac{m_{\ell}^{2}+2 q^{2}}{q^{2}}\left(s_{+}\left[\left(m_{\Lambda_{b}}-m_{X}\right)\left(1-\epsilon_{q}^{R}\right) g_{+}\right]^{2}+s_{-}\left[\left(m_{\Lambda_{b}}+m_{X}\right)\left(1+\epsilon_{q}^{R}\right) f_{+}\right]^{2}\right) \\
& \left.+\frac{6 m_{\ell}^{2}}{q^{2}}\left(s_{+}\left[\left(m_{\Lambda_{b}}-m_{X}\right)\left(1+\epsilon_{q}^{R}\right) f_{0}\right]^{2}+s_{-}\left[\left(m_{\Lambda_{b}}+m_{X}\right)\left(1-\epsilon_{q}^{R}\right) g_{0}\right]^{2}\right)\right\},
\end{aligned}
$$

- Since LQCD less precise at low q^{2}, partly integrated decay rates

$$
\begin{aligned}
\zeta_{p \mu \bar{\nu}}\left(15 \mathrm{GeV}^{2}\right) \equiv & \frac{1}{\left|V_{u b}\right|^{2}} \int_{15 \mathrm{GeV}^{2}}^{q_{\max }^{2}} \frac{\mathrm{~d} \Gamma\left(\Lambda_{b} \rightarrow p \mu^{-} \bar{\nu}_{\mu}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}=(12.31 \pm 0.76 \pm 0.77) \mathrm{ps}^{-1} \\
\zeta_{\Lambda_{c} \mu \bar{\nu}}\left(7 \mathrm{GeV}^{2}\right) \equiv & \frac{1}{\left|V_{c b}\right|^{2}} \int_{7 \mathrm{GeV}^{2}}^{q_{\max }^{2}} \frac{\mathrm{~d} \Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu^{-} \bar{\nu}_{\mu}\right)}{\mathrm{d} q^{2}} \mathrm{~d} q^{2}=(8.37 \pm 0.16 \pm 0.34) \mathrm{ps}^{-1} \\
& \frac{\zeta_{p \mu \bar{\nu}}\left(15 \mathrm{GeV}^{2}\right)}{\zeta_{\Lambda_{c} \mu \bar{\nu}}\left(7 \mathrm{GeV}^{2}\right)}=1.471 \pm 0.095 \pm 0.109
\end{aligned}
$$

- Lepton non-universality??

$$
\frac{\Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \tau^{-} \bar{\nu}_{\mu}\right)}{\Gamma\left(\Lambda_{b} \rightarrow \Lambda_{c} \mu^{-} \bar{\nu}_{\mu}\right)}=0.3328 \pm 0.0074 \pm 0.0070
$$

- Uncertainty budget

	$\zeta_{p \mu \bar{\nu}}\left(15 \mathrm{GeV}^{2}\right)$	$\zeta_{\Lambda_{c} \mu \bar{\nu}}\left(7 \mathrm{GeV}^{2}\right)$	$\frac{\zeta_{p \mu \bar{\nu}}\left(15 \mathrm{GeV}^{2}\right)}{\zeta_{\Lambda_{c} \mu \bar{\nu}}\left(7 \mathrm{GeV}^{2}\right)}$
Statistics	6.2	1.9	6.5
Finite volume	5.0	2.5	4.9
Continuum extrapolation	3.0	1.4	2.8
Chiral extrapolation	2.6	1.8	2.6
RHQ parameters	1.4	1.7	2.3
Matching \& improvement	1.7	0.9	2.1
Missing isospin breaking/QED	1.2	1.4	2.0
Scale setting	1.7	0.3	1.8
z expansion	1.2	0.2	1.3
Total	8.8	4.5	9.8

Decay rate

Extra

- Need to look carefully at the inclusive extraction

