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Outline

1) Complex φ4 with a chemical potential
� The nonzero chemical potential µ introduces a sign problem which

prohibits Monte Carlo simulations in the standard representation
� In EMFT the sign problem can be rotated away and results can be

obtained for arbitrary µ and temperature T .
2) Higgs-Yukawa model with higher dimension operators

� The Higgs-Yukawa model contains the Higgs field and the fermions of
the Standard Model.

� The higher dimension operator is a “generic” BSM induced feature.
� We show that EMFT can, in some aspects, beat simulations with

dynamical chiral fermions and massless Goldstone bosons.
� We investigate the T = 0 and finite-temperature phase diagrams,

relevant for electroweak baryogenesis.
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1) Complex φ4 with a chemical potential
arXiv:1405.6613

We want to study a relativistic Bose gas in 3 + 1 dimensions with the
Euclidean Lagrangian density

L[ϕ(x)] = ∂νϕ
∗(x)∂νϕ(x)+

(
m2

0 − µ2
)
|ϕ(x)|2+λ |ϕ(x)|4+µj0(x)

The chemical potential µ couples to the temporal component of the
conserved current

jν(x) = ϕ∗(x)∂νϕ(x)− ∂νϕ∗(x)ϕ(x),

i.e. the charge

Q =

∫
d3~x j0(~x).
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L[ϕ(x)] = ∂νϕ
∗(x)∂νϕ(x)+

(
m2

0 − µ2
)
|ϕ(x)|2+λ |ϕ(x)|4+µj0(x)

� This model has a global U(1) symmetry and exhibits spontaneous
symmetry breaking to a Bose-condensed phase at zero temperature
when the chemical potential reaches the renormalized mass mR.

� Due to the complex action the model suffers from a sign problem,
which can however be solved by a clever change to “dual”
variables [1].

� Like the real φ4 model it is also amenable to EMFT (and DMFT)
treatment, which allows a mapping of the full (T , µ)-phase diagram at
a very low computational cost.

[1] C. Gattringer and T. Kloiber, Nucl. Phys. B 869 (2013) 56
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The EMFT effective action

Analogous to the real case, the effective action contains an external
field φ ∈ R and shifts of the quadratic term ∆1 and ∆2
(remember, K−1

imp,c contributes only a contact term).

SEMFT = (η −∆1)ϕ2
1 + (η −∆2)ϕ2

2 + λ
(
ϕ2

1 + ϕ2
2

)2

− 2φϕ1(2(d − 1 + cosh(µ))−∆1),

with η = m2
0 + 8 and ϕ = ϕ1 + iϕ2. We have used the global U(1)

symmetry to align the expectation value to the real axis.
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Self-consistency equations

SEMFT = (η −∆1)ϕ2
1 + (η −∆2)ϕ2

2 + λ
(
ϕ2

1 + ϕ2
2

)2

− 2φϕ1(2(d − 1 + cosh(µ))−∆1)

There are three coupled self-consistency equations in the first and
second moments that need to be solved iteratively

〈ϕ〉 = φ,

2
〈
ϕ2

1

〉
c

=

∫
d4k

(2π)4
1

1
2〈ϕ2

1〉c
+ ∆1 − 2κZh

∑
ν cos (kν − iµδν,t )

,

2
〈
ϕ2

2

〉
=

∫
d4k

(2π)4
1

1
2〈ϕ2

2〉 + ∆2 − 2κZh
∑

ν cos (kν − iµδν,t )
.
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Wave-function renormalization

� When going from DMFT to EMFT, the nonperturbative mass
renormalization is kept but the wave-function renormalization is lost.

� This can be remedied in the broken phase if the theory contains
Goldstone bosons.

� We add an additional parameter Zh to the self-energy self-consistency
equation and fix it such that the Goldstone bosons are exactly
massless for an infinite spatial volume.

� Instead of just taking the self-energy ΣEMFT to be constant we make
the following substitution

Σ̃(k)→ ΣEMFT + (Zh − 1)
d∑
ν=1

cos (kν − iµδν,t )
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Scale setting and finite temperature

� The scale is set by matching some observable to an experimental
value, for example an expectation value (in the broken phase only) or
a mass.

� Finite temperature is then trivially introduced by limiting the number of
lattice sites in the temporal direction, i.e. by the substitution

π∫
−π

dkt

2π
→ 1

Nt

Nt−1∑
n=0

.
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The charge density

We measure the charge density n = ∂ log Z/∂µ and compare to
Monte Carlo results [1] (obtained in sign-problem free formulation)
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[1] C. Gattringer and T. Kloiber, Nucl. Phys. B 869 (2013) 56
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The (T , µ)-phase diagram

The full phase diagram can be obtained within less than an hour and
lies well within the error bars of the Monte Carlo result.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 1.05 1.1 1.15 1.2

T
/

µ c

µ/µc

〈ϕ〉= 0

〈ϕ〉 6= 0

EMFT, η = 9

EMFT, η = 7.44

Monte Carlo, η = 9

Monte Carlo, η = 7.44

KITP, UCSB, Aug 20, 2015 Lattice Gauge Theory for the LHC and Beyond 10



2) The Higgs-Yukawa model

� Poor man’s version of the Standard Model which nonetheless
captures the nonperturbative chiral Higgs-top interaction.

� The Higgs and Yukawa parts of the Lagrangian are given by:

LH = |∂µφ|2 + m2
0 |φ|2 + λ4 |φ|4 + M−2

BSM |φ|
6

Ltb = Ψt /∂Ψt + ybΨt ,LφbR + ytΨt ,Lφ̃tR + h.c. φ̃ = iτ2φ
†

where Ψt = (t ,b)ᵀ = (tL, tR,bL,bR)ᵀ and Ψt ,L = (tL,bL)ᵀ.
To ensure chiral fermions we use the overlap operator.
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Benchmarking the EMFT approximation

� To check that the fermions are treated correctly we compare to full
Monte Carlo simulations of the same Higgs-Yukawa model [1].

� Due to the large scale separation MBSM � 〈ϕ〉 = 246 GeV and the
Goldstone bosons, Monte Carlo simulations suffer from prohibitive
finite size effects. With EMFT, infinite volume is available at no extra
cost.

� Moreover, the Monte Carlo simulation suffers from a sign problem
unless the fermions are mass degenerate (mt = mb) whereas EMFT
can handle the physical case.

[1] P. Hegde, K. Jansen, C. -J. D. Lin and A. Nagy PoS LATT13 [arXiv:1310.6260]
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λ6 ≡ (aMBSM)−2 = 0.1, “perturbative”
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λ6 ≡ (aMBSM)−2 = 1, “non-perturbative”
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Finite volume effects

The finite volume corrections to the Higgs mass goes like (MhL)−3,
which calls for large lattices.

0.0001

0.001

0.01

0.1

1

10

0.1 1

M
h
(L

)
M

h
(∞

)
−
1

(Mh(∞)L)−1

Ns = 32

a−1 = 1 TeV
a−1 = 5 TeV
0.9(MhL)

−3.0

KITP, UCSB, Aug 20, 2015 Lattice Gauge Theory for the LHC and Beyond 14



Lowering the Higgs mass bound
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� 2 solutions to 〈φ〉 = φext
(〈φ〉 = 0 unstable)

� mHiggs ≈ slope at fixed point,
can be reduced to . 10 GeV.

� No spurious solution at
〈φ〉 ∼ MBSM.

Even when MBSM is as heavy as 50 TeV,
mHiggs can be as small as 10 GeV
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Zero temperature phase diagram

For each λ6 ≡ (aMBSM)−2

the κ-driven transition turns first
order at a tri-critical quartic cou-
pling λ.
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Tri-critical point at finite temperature

For a fixed λ6 the phase boundary in the (λ, κ)-plane marks the region
where one can find a theory with small lattice spacing and also where
to expect a first order finite temperature transition.
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Finite temperature phase diagram

For fixed Higgs mass Mh the transition turns from second to first order
as MBSM decreases.
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Conclusions and outlook

� EMFT works provides excellent accuracy at a negligible
computational cost.

� It is applicable to models with sign problem and chiral fermions.

� It may be possible to have a strong first order electroweak finite
temperature transition if new physics come in at 1− 2 TeV.
→ Electroweak baryogenesis.

� The obvious improvement to EMFT (DMFT) is to use a cluster of live
sites⇒ Gauge fields?
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Thank you for your attention!

KITP, UCSB, Aug 20, 2015 Lattice Gauge Theory for the LHC and Beyond 20


	Complex 4
	Higgs-Yukawa model
	Tests
	Results


