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There is no doubt that the SM is incomplete since we cannot even account for a number
of basic observations:

• Neutrino physics: Only recently it has been possible to have some definite an-
swers about properties of neutrinos. We now know that they have a tiny mass,
which can be naturally accommodated in extensions of the SM, featuring for ex-
ample a see-saw mechanism. We do not yet know if the neutrinos have a Dirac
or a Majorana nature.

• Origin of bright and dark mass: Leptons, quarks and the gauge bosons medi-
ating the weak interactions possess a rest mass. Within the SM this mass can be
accounted for by the Higgs mechanism, which constitutes the electroweak sym-
metry breaking sector of the SM. However, the associated Higgs particle has not
yet been discovered. Besides, the SM cannot account for the observed large frac-
tion of dark mass of the universe. What is interesting is that in the universe the
dark matter is about five times more abundant than the known baryonic matter,
i.e. bright matter. We do not know why the ratio of dark to bright matter is of
order unity.

• Matter-antimatter asymmetry: From our everyday experience we know that
there is very little bright antimatter in the universe. The SM fails to predict the
observed excess of matter.

These arguments do not imply that the SM is necessarily incorrect, but it must be
extended to answer any of the questions raised above. The truth is that we do not have
an answer to the basic question: What lies beneath the SM?

A number of possible generalizations have been conceived (see [2, 3, 4, 5, 6, 7] for
reviews). Such extensions are introduced on the base of one or more guiding principles
or prejudices. Two technical reviews are [8, 9].

In the models we will consider here the electroweak symmetry breaks via a fermion
bilinear condensate. The Higgs sector of the SM becomes an e�ective description of a
more fundamental fermionic theory. This is similar to the Ginzburg-Landau theory of
superconductivity. If the force underlying the fermion condensate driving electroweak
symmetry breaking is due to a strongly interacting gauge theory these models are
termed Technicolor (TC).

TC, in brief, is an additional non-abelian and strongly interacting gauge theory
augmented with (techni)fermions transforming under a given representation of the
gauge group. The Higgs Lagrangian is replaced by a suitable new fermion sector
interacting strongly via a new gauge interaction (technicolor). Schematically:

LHiggs ⇤ �
1
4

Fµ⇤Fµ⇤ + iQ̄�µDµQ + . . . , (1.14)

where, to be as general as possible, we have left unspecified the underlying nonabelian
gauge group and the associated technifermion (Q) representation. The dots represent
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quarks and leptons without introducing Flavor Changing Neutral Currents (FCNC)s
at the tree level. The Higgs sector of the SM possesses, when the gauge couplings are
switched o�, an SU(2)L ⇤ SU(2)R symmetry. The full symmetry group can be made
explicit when re-writing the Higgs doublet field

H =
1⌦
2

⇤
⇤2 + i⇤1
⌅ � i⇤3

⌅
(1.1)

as the right column of the following two by two matrix:

1⌦
2

�
⌅ + i⌦⇧ · ⌦⇤⇥ ⇧M . (1.2)

The first column can be identified with the column vector i⇧2H⌅ while the second with
H. ⇧2 is the second Pauli matrix. The SU(2)L⇤SU(2)R group acts linearly on M according
to:

M⌃ gLMg†R and gL/R � SU(2)L/R . (1.3)

One can verify that:

M
�
1 � ⇧3⇥

2
= (0 , H) . M

�
1 + ⇧3⇥

2
= (i ⇧2H⌅ , 0) . (1.4)

The SU(2)L symmetry is gauged by introducing the weak gauge bosons Wa with a =
1, 2, 3. The hypercharge generator is taken to be the third generator of SU(2)R. The
ordinary covariant derivative acting on the Higgs, in the present notation, is:

DµM =  µM � i g WµM + i g⌥M Bµ , with Wµ =Wa
µ
⇧a

2
, Bµ = Bµ

⇧3

2
. (1.5)

The Higgs Lagrangian is

L =
1
2

Tr
⇧
DµM†DµM

⌃
�

m2
M

2
Tr
⇧
M†M

⌃
� �

4
Tr
⇧
M†M

⌃2
. (1.6)

At this point one assumes that the mass squared of the Higgs field is negative and this
leads to the electroweak symmetry breaking. Except for the Higgs mass term the other
SM operators have dimensionless couplings meaning that the natural scale for the SM
is encoded in the Higgs mass1. We recall that the Higgs Lagrangian has a familiar
form since it is identical to the linear ⌅ Lagrangian which was introduced long ago to
describe chiral symmetry breaking in QCD with two light flavors.

1The mass of the proton is due mainly to strong interactions, however its value cannot be determined
within QCD since the associated renormalization group invariant scale must be fixed to an hadronic
observable.
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strongly coupled gauge theory

fermions (Q) in gauge group reps:

                                                                              light scalar separated from

                                           has to be unlike QCD   2-3 TeV resonance spectrum

                                           needle in the BSM haystack? 
                                           QCD in 1971 was a needle in the haystack

spontaneous symmetry breaking
Higgs mechanism

What is our composite Higgs paradigm?
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Figure: Preliminary chiral extrapolation of Fp . The calculation is

performed on lattices with b = 3.20, V = 483⇥96 for m = 0.003 and

V= 323⇥64 for the rest, using 200�300 configurations. Hadron

spectroscopy at b = 3.20 in physical units (right).

0++ scalar Higgs?

a0 scalar isovector?

Needle in the haystack?

theory has no tuning 

minimal composite Higgs mechanism 

incomplete (fermion mass origin?) 

can be used in several extensions 
fermion mass generation, … 

explanation of the spectrum? 
near-conformal   linear sigma model?   dilaton? 

lattice: actually have to solve the theory 
needs new tools 

scaled up QCD cannot do this



I add a remark concerning the model of Hanhart, Peláez and Ríos [32], who apply
the inverse amplitude method to improve the one loop approximation to the chiral
perturbation series of SU(2)×SU(2). In the original formulation of the model, the chiral
expansion t00(s) = t2(s)+t4(s)+ . . . is unitarized with t00(s) = t2(s)/{1−t4(s)/t2(s)}, but
this recipe fails in the vicinity of the Adler zero, because the term t4(s) does not vanish
there. The deficiency is readily cured. It suffices to replace the IAM formula with

t00(s) =
t̃2(s)

1− t̃4(s)/t̃2(s)
, t̃2(s) = t2(s)− t2(sA4) , t̃4(s) = t4(s)+ t2(sA4) , (6)

where sA4 is the position of the Adler zero in one loop approximation. Since t2(sA4)
represents a term of O(p4), the chiral expansion of (6) reproduces the one loop approx-
imation of χPT, also in the vicinity of the Adler zero. A similar recipe is used in [32].
The model exclusively involves the coupling constants Fπ ,ℓ1, . . . ,ℓ4 of the effective

Lagrangian. As discussed above, ℓ3 and ℓ4 are known quite well; ℓ1 and ℓ2 can be
determined on phenomenological grounds [11]. The result for the phase shift obtained
by inserting the numerical values in the above formula is indicated on the right panel of
Fig. 4. This shows that the model yields a decent approximation only below 500 MeV.
The parametrization used by Hanhart eta al. [32] is better, because these authors treat the
coupling constants ℓ1 and ℓ2 as free parameters. This extends the range of energies where
the IAM parametrization makes sense, but since the model does not account for the sharp
increase in the phase towardsKK̄ threshold, it can at best give a semi-quantitative picture
of the σ . For the parameter values adopted in [32], the zero of the denominator in (6)
occurs at 444(6) - i 218(10) MeV: the mass is OK, but the width is too low by 100 MeV.
Inserting the observed values of ℓ1 and ℓ2, the zero moves to 413(12) - i 269(12) MeV:
now the width is OK, but the mass is too low.
ad 3. Finally, I turn to the contributions of the third category: higher energies and

other partial waves. Among these, the one from the P-wave, for example, is by no means
negligible, but, as mentioned above, this wave is known very well. In fact, in the vicinity
of the zero of S00(s), the sum of the contributions of this category can be worked out
quite accurately. In [1], we estimated the net uncertainty in the pole position from this
source at ± 4 ± i 6 MeV. As a check, we can simply replace our central representation
for the contributions of category 3 by the one in [30], retaining our own representation
only for the remainder. The operation shifts the pole position by - 0.6 - i 1.2 MeV, well
within the estimated range.

CONCLUSION

Adding the errors up in square, the result for the pole position becomes [1]
√
sσ = 441+16

−8 − i 272+9
−12.5 MeV . (7)

The error bars account for all sources of uncertainty and are an order of magnitude
smaller than for the crude estimate √sσ = (400 - 1200) - i (250 - 500) MeV quoted by
the Particle Data Group [25]. The dispersive representation of the S-matrix element also
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well as for the P-wave. According to figure 2a in [97], the resulting fit yields
δ0
0(sA) ≃ 87◦. In view of the relatively large errors attached to the phase shift

in [96], this result must come with a sizable uncertainty and may thus not
be inconsistent with the range obtained in [80], but it is on the high side.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

GeV

0

50

100

150

200

δ00

Roy solutions with  78.3o< δ00(sA) < 92.3o 
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Figure 9: Behaviour of δ0
0 below KK̄ threshold

The parametrizations of Kamiński, Peláez and Ynduráin [88] yield even
higher values: δ0

0(sA) = 90.7◦ ± 0.7 (A), δ0
0(sA) = 90.5◦ ± 0.7 (B). In view of

the remarkably small error, these results disagree with those obtained from
δ1
1(sA) − δ0

0(sA) [80] or from a Roy equation fit to the data of [94]. One of
the reasons for arriving at such a high value is that the authors include the
result for the phase difference δ0

0(M
2
K)− δ2

0(M
2
K) obtained from K → ππ [53]

in their fitting procedure. This pulls the value of δ0
0(sA) up. The response of

the Roy equations to this change in the input value for δ0
0(sA) is an increase in

δ0
0(M

2
K)−δ2

0(M
2
K) of 2◦. The fit obtained in KPYIII yields a somewhat larger

shift: the value for δ0
0(M

2
K) − δ2

0(M
2
K) is 50.9◦ ± 1.2◦, higher than our result

by 3.2◦. The difference is produced by the kink mentioned in the preceding
section, which can also be seen in figure 9. The kink generates a violation
of causality and hence of the Roy equations: while our amplitude or the
one of Kamiński, Leśniak and Loiseau [97] do represent decent approximate
solutions of the Roy equations, the one in KPYIII does not: in the region
between 0.7 and 1 GeV, the difference between input and output for the real
parts of the S-waves is of order 0.1. Quite irrespective of these details, the
increase in the phase difference δ0

0(M
2
K) − δ2

0(M
2
K) produced by an increase
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the failure of old Higgs-less technicolor:
0++ scalar in QCD     (bad Higgs impostor)

estimate in Particle Data Book

π-π phase shift in 0++ “Higgs” channel 

Leutwyler:   
dispersion theory combined with ChiPT

The light 0++ scalar          not scaled up QCD!

broad Mσ ~ 1.5 TeV in old technicolor, based 
on scaled up QCD, hence the tag “Higgs-less” 

This is expected to be different in near-
conformal strongly coupled gauge theories 

Low scalar  mass renormalizes F! 
Will require new low energy effective action 



Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking

2

Outline

Near-conformal SCGT     
     light scalar close to conformal window  effective theory? 
     scale setting and spectroscopy            
     taste breaking and mixed action      
       
Chiral Higgs condensate        
     new method                                     
     GMOR and mode number 
     epsilon regime and RMT 
     large mass anomalous dimension 

Scale dependent renormalized coupling   
      matching scale dependent coupling from  
      UV to IR with chiSB                          
     
Early universe 
     EW phase transition, sextet baryon, and dark matter    
       
Summary

 SCGT Theory Space 

Nf=2 sextet rep 
massless fermions 
SU(2) doublet 
3 Goldstones > weak bosons 
minimal realization of Higgs mechanism 
adding lepton doublet is a choice 
adding EW singlet massive flavor 
is also a choice

QCD intuition for near-conformal 
compositeness is plain wrong

Technicolor thought to be scaled up QCD
motivation of the project: 
composite Higgs-like scalar close to the 
conformal window with 2-3 TeV new physics

u(+e/2
d(-e/2)
⎡

⎣
⎢

⎤

⎦
⎥

minimal EW 
embedding

QCD far from scale 
invariance

sextet rep 
near-conformal? 

sextet from haystack:
Marciano in qcd
Sannino and Tuominen BSM

early lattice work: 
DeGrand/Shamir/Svetitsky
LatHC



composite Higgs mechanism in text book QCD example:
the origin of Technicolor

Since we want something different from 
scaled up QCD, to understand the role of 
the composite Higgs condensate is critically 
important if model would become relevant 
for LHC predictions …



composite Higgs with resonance spectrum in the 2 - 3 TeV range is a relevant 
model for LHC to consider

|M⌥⌥ �MR| < 5 GeV (4.115)

separately for the R1 and R2 peaks. The choice of the value 5 GeV is dictated by the
dilepton invariant mass resolution [86]. The invariant mass resolution drops when
the mass of the resonance increases, in any event, we use the same cut for all of the
di�erent mass values coming from the one with worst resolution. Also estimates for
the required integrated luminosity for the 3⇥ and 5⇥ discoveries are given in the Table.
The significance is defined as the number of signal events divided by the square root
of the number of background events, when the number of events is large. The Poisson
distribution is used for the small event samples. The dilepton final state should be
clearly visible at the LHC in this particular region of the parameter space already with
1 fb�1 integrated luminosity.

4.1.2 pp⇤ R⇤WZ⇤ ⌥⌥⌥�

R+(�)
1,2

W+(�)

Z

q

q̄

⌥+

⌥�

⌥+ (�̄)

� (⌥�)

Figure 22: Feynman diagram for the process pp⇤ R± ⇤WZ± ⇤ ⌥⌥⌥�.

The final state signature with three leptons and missing energy arises from the
process pp ⇤ R ⇤ WZ ⇤ ⌥⌥⌥� (see Fig. 22), where ⌥ denotes a muon or an electron
and � denotes the corresponding neutrino. This was also studied in [74], with

⇧
s = 14

TeV and 100 fb�1, where it was shown to be a promising signature for higher values
of g̃ and MA. The technivector-fermion couplings are suppressed for large g̃, which
makes the dilepton final state uninteresting in that region of the parameter space. In
contrast, the technivector coupling to SM vector bosons is enhanced for large values
g̃, balancing the suppression coming from the quark couplings. This can be seen from
Fig. 23, where the second peak begins to go down slowly with increasing g̃. Following
[74], we have used the transverse mass variable

(MT
3⌥)

2 = [
�

M2(⌥⌥⌥) + p2
T(⌥⌥⌥) + |/pT|]2 � |�pT(⌥⌥⌥) + �/pT|2, (4.116)

where /pT denotes the missing transverse momentum. The cuts for the leptons are
applied as in the previous subsection and in addition we impose a cut on the missing
transverse energy /ET > 15 GeV. As a background we consider the SM processes with
R±1,2 replaced by the W±.

53

 [TeV]W' m
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

 W
Z)

 [f
b]

→
 B

R(
W

' 
×

 W
') 

→
(p

p 
σ 

1−10

1

10

210

310

410 Observed 95% CL

Expected 95% CL

 uncertaintyσ 1±

 unceirtaintyσ 2±

EGM W', c = 1

ATLAS
-1 = 8 TeV, 20.3 fbs

(a)

 [TeV]
RSG m

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

 W
W

) [
fb

]
→ 

RS
 B

R(
G

×) 
RS

 G
→

(p
p 

σ 

1−10

1

10

210

310

410 Observed 95% CL

Expected 95% CL

 uncertaintyσ 1±

 uncertaintyσ 2±

 = 1PIM k/RSBulk G

ATLAS
-1 = 8 TeV, 20.3 fbs

(b)

 [TeV]
RSG m

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

 Z
Z)

 [f
b]

→ 
RS

 B
R(

G
×) 

RS
 G

→
(p

p 
σ 

1−10

1

10

210

310

410 Observed 95% CL

Expected 95% CL

 uncertaintyσ 1±

 uncertaintyσ 2±

 = 1PIM k/RSBulk G

ATLAS
-1 = 8 TeV, 20.3 fbs

(c)

Figure 6: Upper limits, at 95% C.L., on the section times branching ratio limits for the WZ window selection as a
function of mW� , and for the WW window selection and the ZZ window selections as a function of mGRS . The solid
red line in each figure displays the predicted cross section for the W � or GRS model as a function of the resonance
mass.

the WZ channel, and an excited bulk graviton GRS to represent resonances decaying to WW and ZZ. A
W�with EGM couplings and mass between 1.3 and 1.5 TeV is excluded at 95% CL.
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Figure 5: Background-only fits to the dijet mass (mj j) distributions in data (a) after tagging with the WZ selection,
(b) after tagging with the WW selection and (c) after tagging with the ZZ selection. The significance shown in
the inset for each bin is the di�erence between the data and the fit in units of the uncertainty on this di�erence.
The significance with respect to the maximum-likelihood expectation is displayed in red, and the significance when
taking the uncertainties on the fit parameters into account is shown in blue. The spectra are compared to the signals
expected for an EGM W � with mW� = 1.5, 2.0, or 2.5 TeV or to an RS graviton with mGRS = 1.5 or 2.0 TeV.

to the shape of the signal, and N is a log-normal distribution for the nuisance parameters, �, modelling
the systematic uncertainty on the signal normalisation. The expected number of events is the bin-wise
sum of the events expected for the signal and background: nexp = nsig + nbg. The number of expected
background events in dijet mass bin i, ni

bg, is obtained by integrating dn/dx obtained from eqn. (1) over
that bin. Thus nbg is a function of the dijet background parameters p1, p2, p3. The number of expected
signal events, nsig, is evaluated based on MC simulation assuming the cross section of the model under
test multiplied by the signal strength and including the e�ects of the systematic uncertainties described in
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hints from ATLAS and CMS for rho-like resonance around 2 TeV: 

exciting - paper flood is coming … 

The fate of the sextet model is now connected with Run 2 of 
the LHC. It predicts a resonance spectrum in the 2-3 TeV 
range including a Rho-like bump  just around 2 TeV!

just announced:  
June 3, 2015

The light 0++ scalar   sextet model is not scaled up QCD!





before I get carried away: 

(from Julius Caesar, spoken by Marc Antony) 

I come to bury Caesar, not to praise him.







Spoiler alert:                         ⇒ no theory  

chiral p-regime
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rotator      pion
energy gap

El =
1

2θ
l(l + 2) with l = 0,1,2,...    rotator spectrum for SU(2) f × SU(2) f

direct application to sextet model 

θ = F2L3
s (1+

C(N f = 2)
F2L2

s

+O(1 / F 4L4
s ))   (P. Hasenfratz and F. Niedermayer)

expansion in 1/F2L2
s  !  

C(N f = 2) = 0.45 (FL=1 is ~ 2fm in lite QCD)   C will grow with  ~  N f  
the constraints are the same in the ε-regime and p-regime

Condition of reaching the chiral expansion regime can 
be estimated from rotator spectrum  ⇒

FL = 0.1  L=0.2 fm in QCD  femto world OK to study volume dependent PT coupling running with V
 

FL > 1     L= 2 fm in QCD and we crossed over to the χSB phase  all 3 regimes (ε,δ,p) OK

FL = 0.4  squeezed L= 0.8 fm, begins to look conformal     not OK, misidentifies infinite volume phase

when in finite volume, 1/FL has to be small in all three regimes!

F2L2 < NF

3-fold adiabatic hierarchy of delta-regime is a great tool to explore!
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FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇥aTa/v

⇥
, with covariant derivative DµU ⇥

⌅µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. �S is the contribution to the S parameter from the physics at the cuto⇤ scale, and is

assumed to vanish in the M⇤ ⌅ ⌃ limit. The interactions contributing to the Higgs self-energy

are

LH ⇤
2 m2

W r⇥
v

H W+
µ W�µ +

m2
Z r⇥
v

H Zµ Zµ � mt rt

v
H t̄ t

+
m2

W s⇥
v2 H2 W+

µ W�µ +
m2

Z s⇥
2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

r⇥ = s⇥ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cuto⇤ come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
H = (M0

H)2 +
3(4⇥�F⇥)2

16⇥2v2

⇧
    ⌥�4r2

t m2
t + 2s⇥

⇤
����↵m2

W +
m2

Z
2

⌅
�����

⌃
⌦⌦⌦⌦� + �M2

H
(4⇥�F⇥) , (4)

where �M2
H

(4⇥�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇥�F⇥,

5

where F� is the TC pion decay constant and ⇥ scales like 1/
�

d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� ⌅ d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
⇤

m2
⌅ . (6)
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where F� is the TC pion decay constant and ⇥ scales like 1/
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d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅
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t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
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TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N⇥TF/2, where N⇥TF is the actual number of techniflavors arranged in weak

doublets and therefore N⇥TF ⇤ NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.
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(M0
H)2 =
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FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i⇥aTa/v

⇥
, with covariant derivative DµU ⇥

⌅µU � igWa
µTaU + ig⇧UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. �S is the contribution to the S parameter from the physics at the cuto⇤ scale, and is

assumed to vanish in the M⇤ ⌅ ⌃ limit. The interactions contributing to the Higgs self-energy

are

LH ⇤
2 m2

W r⇥
v

H W+
µ W�µ +

m2
Z r⇥
v

H Zµ Zµ � mt rt

v
H t̄ t

+
m2

W s⇥
v2 H2 W+

µ W�µ +
m2

Z s⇥
2 v2 H2 Zµ Zµ . (2)

The tree-level SM is recovered for

r⇥ = s⇥ = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cuto⇤ come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
H = (M0

H)2 +
3(4⇥�F⇥)2

16⇥2v2

⇧
    ⌥�4r2
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�����

⌃
⌦⌦⌦⌦� + �M2

H
(4⇥�F⇥) , (4)

where �M2
H

(4⇥�F⇥) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4⇥�F⇥,

5

where F� is the TC pion decay constant and ⇥ scales like 1/
�

d(RTC) if the cuto⇥ is identified

with the technirho mass, or is a constant if the cuto⇥ is of the order of 4⇤F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H ⌅ �12⇥2r2

t m2
t ⌅

�⇥2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH ⇧ 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the ⌅meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of
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gauge theory. For a generalization to di⇥erent gauge groups see [24, 25]. We then discuss possible

e⇥ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e⇥ects from walking.
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Mπ
2

2m
= B 1+ 1

32π 2F2 l(mUI

2 )+ 4 l(mη 'V
2 )− l(mUV

2 )( ) + 4 l(mη 'A
2 )− l(mUA

2 )( )⎡⎣ ⎤⎦ + a
2CM + 4m ⋅B

F2 l3
⎧
⎨
⎩

⎫
⎬
⎭

We take the the unrooted, mass-degenerate case, with NF staggered fields.
(So the “4+4” case is NF = 2.) In the taste-vector (V ) channel, there are
NF − 1 degenerate pions with mass mπV

, and a single η′

V with mass

m2
η′

V
= m2

πV
+ NF a2δ′V , (1)

The taste-axial-vector (A) case is just V → A. Similarly, in the taste-singlet
channel, we have NF − 1 degenerate pions with mass mπI

, and a single η′

I

with mass

m2
η′

I
= m2

πI
+ NF

4m2
0

3
, (2)

where I use the definition of m0 given in the Lagrangian of eq. (17) of Ref. [1].
Then eq. (75) Ref. [1] becomes

(m1−loop

π+
5

)2

2m
= µ

{

1 +
1

16π2f 2

(

2

NF

[

ℓ(m2
η′

V
) − ℓ(m2

πV
)
]

+
2

NF

[

ℓ(m2
η′

A
) − ℓ(m2

πA
)
]

+
1

2NF

ℓ(m2
πI

)

)

+
16µ

f 2
(2L8 − L5) (2m) +

32µ

f 2
(2L6 − L4) (4NFm) + a2C

}

. (3)

The analytic 2L6−L4 term gives sea-quark dependence (coming from a trace
over the mass matrix), and the 4NF counts the number of sea quarks. Of
course, all LECs also have hidden NF dependence. The rooted 3-flavor case,
(eq. (75) or (76) of Ref. [1] in the degenerate limit) can be obtained by
NF → 3/4, where the factor of 1/4 is just the replica trick for rooting.

For fπ, eq. (27) in Ref. [2] becomes

f 1−loop

π+
5

= f

{

1 +
1

16π2f 2

[

−4NF

(

1

16

∑

B

ℓ(m2
πB

)

)

−

2

NF

(

ℓ(m2
η′

V
) − ℓ(m2

πV
)

)

−

2

NF

(

ℓ(m2
η′

A
) − ℓ(m2

πA
)

)

+
16µ

f 2
(4NFm) L4 +

8µ

f 2
(2m)L5 + a2F

}

, (4)

where the 1
16

∑

B is the average over tastes. This term comes from a mixed
meson (valence-sea) loop, and the 4NF factor in front again just counts the

1

rsChiPT analysis of Mpi and Fpi fitting functions
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where ! is a traceless 4n! 4n matrix:

! "

U !# K# $ $ $
!% D K0 $ $ $
K% K0 S $ $ $
..
. ..

. ..
. . .

.

0
BBBB@

1
CCCCA; (9)

with 4! 4 submatrices:

U "
X16

a"1

UaTa; (10)

and so forth. The pion decay constant, f, is normalized
such that f! & 132 MeV. We choose to express the SU'4(
generators in the following Hermitian basis:

Ta " f"5; i"#5; i"#$;"#;"Ig; (11)

where "I is just the 4! 4 identity matrix. It is important to
retain the taste singlet meson, UI / tr'U(, because with n
flavors (and thus 4n tastes), only the overall SU'4n( singlet
decouples. Under a SU'4n(L ! SU'4n(R chiral symmetry
transformation, " transforms as

" ! L"Ry; (12)

where L 2 SU'4n(L and R 2 SU'4n(R.
We use the following power-counting scheme when

determining the staggered chiral Lagrangian:

p2=#2
QCD & m=#QCD & a2#2

QCD; (13)

which is consistent with parameters of current simulations.
The lowest order Lagrangian, which is of O'p2; m; a2(, is

L% " f2

8
Tr'@#"@#"y( % 1

4
#f2 Tr'M"#M"y(

# a2V ; (14)

where M is the quark mass matrix:

M "

muI 0 0 $ $ $
0 mdI 0 $ $ $
0 0 msI $ $ $
..
. ..

. ..
. . .

.

0
BBBB@

1
CCCCA; (15)

and V is the taste-breaking potential resulting from the
four-fermion operators in the quark effective action. Note
that Tr is a full 4n! 4n trace in both flavor and taste space.
The dimensionful constant, #, is of O'#QCD(, and is
defined such that the PGB mass is given at LO by

'm2
!(LO " 2#

mi #mj

2
# a2$F: (16)

The labels i and j indicate the flavors of quarks in the PGB,

here assumed to be different, while the splitting, $F,
depends on the taste.

The mapping of the four-fermion operators enumerated
in the previous section into the mesonic operators in V is
done by treating the taste matrices as spurions. Having
worked out the implications of the symmetry under axial
U'n( transformations at the quark level, no further subtle-
ties arise in the mapping. The method of Ref. [12], gener-
alized to multiple flavors [13], can be used. A key result is
that only the FF'A( operators, i.e. those in (3), contribute
to V , so the potential has a larger symmetry than the
underlying lattice theory. We give a brief recapitulation
of the determination of the form of V at the end of
Appendixes A 2 a and A 2 b, as a byproduct of our
extension of the methodology to NLO. In the notation of
Ref. [13], the result is

V " U#U0 (17)

where

%U )
X

k

CkOk " C1 Tr'"'n(5 ""'n(5 "y(

# C3
1

2

X
$
*Tr'"'n($ ""'n($ "( # H:c:+

# C4
1

2

X
$
*Tr'"'n($5""

'n(
5$"( # H:c:+

# C6

X
#<$

Tr'"'n(#$""'n($#"y( (18)
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Ck0Ok0 "C2V
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4

X
$
*Tr'"'n($ "(Tr'"'n($ "(#H:c:+

#C2A
1

4

X
$
*Tr'"'n($5"(Tr'"

'n(
5$"(#H:c:+

#C5V
1

2

X
$
*Tr'"'n($ "(Tr'"'n($ "y(+

#C5A
1

2

X
$
*Tr'"'n($5"(Tr'"

'n(
5$"

y(+: (19)

Here "'n(T is the 4n! 4n generalization of the taste-matrix:

"'n(T "

"T 0 0 $ $ $
0 "T 0 $ $ $
0 0 "T $ $ $
..
. ..

. ..
. . .

.

0
BBBB@

1
CCCCA; (20)

with "T the ordinary 4! 4 taste matrix. This flavor diago-
nal form mirrors that of the underlying quark operators,
(6).

The potential is both rotationally and SO'4( taste sym-
metric. Therefore the PGB sector respects a larger sym-
metry than the lattice theory at O'a2(. Although the 16
PGB masses (for a given choice of constituent quark
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‘‘source’’ operators. We collect all of the NLO taste-
violating operators in the tables of Appendix B.

In this section we focus on the pattern of symmetry
breaking exhibited by these NLO operators. Unlike the
LO staggered potential, they come from four-fermion op-
erators in both SFF!A"6 and SFF!B"6 . Thus they break the
SO!4"-taste symmetry down to the lattice symmetry group.
In order to understand the symmetries and symmetry
breaking, we examine the consequences of these operators
for physical observables. We discuss the symmetries re-
spected by these quantities order-by-order in the combined
chiral-continuum expansion. It is useful to keep in mind
the general form of this expansion, illustrated by the NLO
PGB mass:

!m2
!"NLO # !m2

!"LO $ !"m2
!"1-loop $ !"m2

!"m2

$ !"m2
!"a2m $ !"m2

!"a4 : (23)

The subscripts indicate the order, in S#PT, of the terms
which contribute to the physical quantity, with m indicat-
ing both m and p2. We use a similar notation for the axial
and pseudoscalar decay constants, fA and fP.6

The LO pion mass is given in (16), while the LO decay
constants are

!fA"LO # f; !fP"LO # $f: (24)

The results of the previous section imply that the LO
contributions to these quantities respect the SO!4" taste
symmetry, since the potential V does. This has already
been discussed for the PGB mass, but also holds for the
decay constants. In fact, the LO decay constants are SU!4"
symmetric, since V does not contribute to either one. The
staggered potential also generates interesting predictions
for the difference between the properties of flavor-singlet
and nonsinglet particles. This difference is predicted to
vanish for decay constants of all tastes, and for the masses
of taste %5 and %$& pions (since there are only vector and
axial hairpins).7 One of our aims is to determine at what
order these predictions fail.

The form of the 1-loop contributions is

!"m2
!"1-loop % &!m2

!"LO $ a2'2 ln!m2
!"LO; (25)

!"fA;P"1-loop % &!m2
!"LO $ a2' ln!m2

!"LO: (26)

These involve only LO vertices, and thus do not break the
SO!4" taste symmetry. They do, however, break the SU!4"
symmetry of decay constants down to SO!4". Note that,
unlike in continuum #PT, the coefficients of the logarithms
are not proportional to the LO mass—there are additional
a2 terms from the hairpin vertices and four-pion vertices
produced by V . The exception is in the lattice Goldstone
mass, which is protected by the U!1"A symmetry. The 1-
loop contributions to the lattice Goldstone mass and axial
decay constant have been calculated in Ref. [13,19].

Now we turn to the analytic NLO contributions. The
generic form of these contributions are as follows:

!"m2
!"m2 %m2; !"m2

!"a2m % a2m;

!"m2
!"a4 % a4;

(27)

!"fA;P"m2 %m; !"fA;P"a2m % a2: (28)

!A4!"m2 %m2 $mp2 $ p4;

!A4!"a2m % a2m$ a2p2; !A4!"a4 % a4:
(29)

Here we begin to include the 4-pion scattering amplitude,
A4!, as it is the simplest quantity showing the most general
pattern of contributions from the NLO operators. In these
expressions we use a schematic notation, leaving out fac-
tors of !QCD, but distinguishing between mass and
momentum-dependent terms. Note that there is no O!a4"
contribution to fA;P because such terms in the chiral
Lagrangian contain no sources. In order to determine
whether there are relationships between splittings, one
needs to know which types of operators from
Appendix B contribute to which of the corrections in
(27)–(29). This information is collected in Table I for
single supertrace operators, and in Table II for double
supertrace operators. The former are the only contributions
to the masses and decay constants of flavor nonsinglet
mesons, while the latter give the additional hairpin contri-
butions for flavor singlets. The distinction between single
and double supertraces is less significant for the scattering
amplitude, so we only include it in the first table.

As indicated in the tables, there is an important distinc-
tion between the contributions from underlying FF!A" and
FF!B" four-fermion operators: the former cannot break the
taste SO!4" symmetry, while the latter can. These two
types of operators differ primarily in their index structure.
Those resulting from FF!A" operators must have indices
contracted in pairs, while those from FF!B" operators must
contain more than two identical indices. This can be seen
by comparing the O!a2p2" FF!A" operators in Tables XVII

6We use ‘‘axial decay constant’’ to refer to the standard decay
constant, which comes from the vacuum-to-pion matrix element
of the axial current, h0jA$j!i / fA. In a slight abuse of termi-
nology, ‘‘pseudoscalar decay constant’’ refers to the decay
constant from the corresponding matrix element of the pseudo-
scalar density, h0jPj!i / fP.

7We are phrasing this discussion as if the hairpin vertices
iterate to give only a mass shift for flavor singlets. As is well
known, however, this in not generally true in PQ theories
because valence quark loops are absent, and there are factors
of 1/4 added by hand due to the

!!!!!!!
det4

p
trick. There will generally

be additional, unphysical double poles in correlators [34].
Nevertheless, one can always determine the size of the hairpin
vertices by measuring the residue of the double pole and com-
paring to the prediction of PQ S#PT, as discussed below.
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‘‘source’’ operators. We collect all of the NLO taste-
violating operators in the tables of Appendix B.

In this section we focus on the pattern of symmetry
breaking exhibited by these NLO operators. Unlike the
LO staggered potential, they come from four-fermion op-
erators in both SFF!A"6 and SFF!B"6 . Thus they break the
SO!4"-taste symmetry down to the lattice symmetry group.
In order to understand the symmetries and symmetry
breaking, we examine the consequences of these operators
for physical observables. We discuss the symmetries re-
spected by these quantities order-by-order in the combined
chiral-continuum expansion. It is useful to keep in mind
the general form of this expansion, illustrated by the NLO
PGB mass:

!m2
!"NLO # !m2

!"LO $ !"m2
!"1-loop $ !"m2

!"m2

$ !"m2
!"a2m $ !"m2

!"a4 : (23)

The subscripts indicate the order, in S#PT, of the terms
which contribute to the physical quantity, with m indicat-
ing both m and p2. We use a similar notation for the axial
and pseudoscalar decay constants, fA and fP.6

The LO pion mass is given in (16), while the LO decay
constants are

!fA"LO # f; !fP"LO # $f: (24)

The results of the previous section imply that the LO
contributions to these quantities respect the SO!4" taste
symmetry, since the potential V does. This has already
been discussed for the PGB mass, but also holds for the
decay constants. In fact, the LO decay constants are SU!4"
symmetric, since V does not contribute to either one. The
staggered potential also generates interesting predictions
for the difference between the properties of flavor-singlet
and nonsinglet particles. This difference is predicted to
vanish for decay constants of all tastes, and for the masses
of taste %5 and %$& pions (since there are only vector and
axial hairpins).7 One of our aims is to determine at what
order these predictions fail.

The form of the 1-loop contributions is

!"m2
!"1-loop % &!m2

!"LO $ a2'2 ln!m2
!"LO; (25)

!"fA;P"1-loop % &!m2
!"LO $ a2' ln!m2

!"LO: (26)

These involve only LO vertices, and thus do not break the
SO!4" taste symmetry. They do, however, break the SU!4"
symmetry of decay constants down to SO!4". Note that,
unlike in continuum #PT, the coefficients of the logarithms
are not proportional to the LO mass—there are additional
a2 terms from the hairpin vertices and four-pion vertices
produced by V . The exception is in the lattice Goldstone
mass, which is protected by the U!1"A symmetry. The 1-
loop contributions to the lattice Goldstone mass and axial
decay constant have been calculated in Ref. [13,19].

Now we turn to the analytic NLO contributions. The
generic form of these contributions are as follows:

!"m2
!"m2 %m2; !"m2

!"a2m % a2m;

!"m2
!"a4 % a4;

(27)

!"fA;P"m2 %m; !"fA;P"a2m % a2: (28)

!A4!"m2 %m2 $mp2 $ p4;

!A4!"a2m % a2m$ a2p2; !A4!"a4 % a4:
(29)

Here we begin to include the 4-pion scattering amplitude,
A4!, as it is the simplest quantity showing the most general
pattern of contributions from the NLO operators. In these
expressions we use a schematic notation, leaving out fac-
tors of !QCD, but distinguishing between mass and
momentum-dependent terms. Note that there is no O!a4"
contribution to fA;P because such terms in the chiral
Lagrangian contain no sources. In order to determine
whether there are relationships between splittings, one
needs to know which types of operators from
Appendix B contribute to which of the corrections in
(27)–(29). This information is collected in Table I for
single supertrace operators, and in Table II for double
supertrace operators. The former are the only contributions
to the masses and decay constants of flavor nonsinglet
mesons, while the latter give the additional hairpin contri-
butions for flavor singlets. The distinction between single
and double supertraces is less significant for the scattering
amplitude, so we only include it in the first table.

As indicated in the tables, there is an important distinc-
tion between the contributions from underlying FF!A" and
FF!B" four-fermion operators: the former cannot break the
taste SO!4" symmetry, while the latter can. These two
types of operators differ primarily in their index structure.
Those resulting from FF!A" operators must have indices
contracted in pairs, while those from FF!B" operators must
contain more than two identical indices. This can be seen
by comparing the O!a2p2" FF!A" operators in Tables XVII

6We use ‘‘axial decay constant’’ to refer to the standard decay
constant, which comes from the vacuum-to-pion matrix element
of the axial current, h0jA$j!i / fA. In a slight abuse of termi-
nology, ‘‘pseudoscalar decay constant’’ refers to the decay
constant from the corresponding matrix element of the pseudo-
scalar density, h0jPj!i / fP.

7We are phrasing this discussion as if the hairpin vertices
iterate to give only a mass shift for flavor singlets. As is well
known, however, this in not generally true in PQ theories
because valence quark loops are absent, and there are factors
of 1/4 added by hand due to the

!!!!!!!
det4

p
trick. There will generally

be additional, unphysical double poles in correlators [34].
Nevertheless, one can always determine the size of the hairpin
vertices by measuring the residue of the double pole and com-
paring to the prediction of PQ S#PT, as discussed below.
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‘‘source’’ operators. We collect all of the NLO taste-
violating operators in the tables of Appendix B.

In this section we focus on the pattern of symmetry
breaking exhibited by these NLO operators. Unlike the
LO staggered potential, they come from four-fermion op-
erators in both SFF!A"6 and SFF!B"6 . Thus they break the
SO!4"-taste symmetry down to the lattice symmetry group.
In order to understand the symmetries and symmetry
breaking, we examine the consequences of these operators
for physical observables. We discuss the symmetries re-
spected by these quantities order-by-order in the combined
chiral-continuum expansion. It is useful to keep in mind
the general form of this expansion, illustrated by the NLO
PGB mass:

!m2
!"NLO # !m2

!"LO $ !"m2
!"1-loop $ !"m2

!"m2

$ !"m2
!"a2m $ !"m2

!"a4 : (23)

The subscripts indicate the order, in S#PT, of the terms
which contribute to the physical quantity, with m indicat-
ing both m and p2. We use a similar notation for the axial
and pseudoscalar decay constants, fA and fP.6

The LO pion mass is given in (16), while the LO decay
constants are

!fA"LO # f; !fP"LO # $f: (24)

The results of the previous section imply that the LO
contributions to these quantities respect the SO!4" taste
symmetry, since the potential V does. This has already
been discussed for the PGB mass, but also holds for the
decay constants. In fact, the LO decay constants are SU!4"
symmetric, since V does not contribute to either one. The
staggered potential also generates interesting predictions
for the difference between the properties of flavor-singlet
and nonsinglet particles. This difference is predicted to
vanish for decay constants of all tastes, and for the masses
of taste %5 and %$& pions (since there are only vector and
axial hairpins).7 One of our aims is to determine at what
order these predictions fail.

The form of the 1-loop contributions is

!"m2
!"1-loop % &!m2

!"LO $ a2'2 ln!m2
!"LO; (25)

!"fA;P"1-loop % &!m2
!"LO $ a2' ln!m2

!"LO: (26)

These involve only LO vertices, and thus do not break the
SO!4" taste symmetry. They do, however, break the SU!4"
symmetry of decay constants down to SO!4". Note that,
unlike in continuum #PT, the coefficients of the logarithms
are not proportional to the LO mass—there are additional
a2 terms from the hairpin vertices and four-pion vertices
produced by V . The exception is in the lattice Goldstone
mass, which is protected by the U!1"A symmetry. The 1-
loop contributions to the lattice Goldstone mass and axial
decay constant have been calculated in Ref. [13,19].

Now we turn to the analytic NLO contributions. The
generic form of these contributions are as follows:

!"m2
!"m2 %m2; !"m2

!"a2m % a2m;

!"m2
!"a4 % a4;

(27)

!"fA;P"m2 %m; !"fA;P"a2m % a2: (28)

!A4!"m2 %m2 $mp2 $ p4;

!A4!"a2m % a2m$ a2p2; !A4!"a4 % a4:
(29)

Here we begin to include the 4-pion scattering amplitude,
A4!, as it is the simplest quantity showing the most general
pattern of contributions from the NLO operators. In these
expressions we use a schematic notation, leaving out fac-
tors of !QCD, but distinguishing between mass and
momentum-dependent terms. Note that there is no O!a4"
contribution to fA;P because such terms in the chiral
Lagrangian contain no sources. In order to determine
whether there are relationships between splittings, one
needs to know which types of operators from
Appendix B contribute to which of the corrections in
(27)–(29). This information is collected in Table I for
single supertrace operators, and in Table II for double
supertrace operators. The former are the only contributions
to the masses and decay constants of flavor nonsinglet
mesons, while the latter give the additional hairpin contri-
butions for flavor singlets. The distinction between single
and double supertraces is less significant for the scattering
amplitude, so we only include it in the first table.

As indicated in the tables, there is an important distinc-
tion between the contributions from underlying FF!A" and
FF!B" four-fermion operators: the former cannot break the
taste SO!4" symmetry, while the latter can. These two
types of operators differ primarily in their index structure.
Those resulting from FF!A" operators must have indices
contracted in pairs, while those from FF!B" operators must
contain more than two identical indices. This can be seen
by comparing the O!a2p2" FF!A" operators in Tables XVII

6We use ‘‘axial decay constant’’ to refer to the standard decay
constant, which comes from the vacuum-to-pion matrix element
of the axial current, h0jA$j!i / fA. In a slight abuse of termi-
nology, ‘‘pseudoscalar decay constant’’ refers to the decay
constant from the corresponding matrix element of the pseudo-
scalar density, h0jPj!i / fP.

7We are phrasing this discussion as if the hairpin vertices
iterate to give only a mass shift for flavor singlets. As is well
known, however, this in not generally true in PQ theories
because valence quark loops are absent, and there are factors
of 1/4 added by hand due to the

!!!!!!!
det4

p
trick. There will generally

be additional, unphysical double poles in correlators [34].
Nevertheless, one can always determine the size of the hairpin
vertices by measuring the residue of the double pole and com-
paring to the prediction of PQ S#PT, as discussed below.
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‘‘source’’ operators. We collect all of the NLO taste-
violating operators in the tables of Appendix B.

In this section we focus on the pattern of symmetry
breaking exhibited by these NLO operators. Unlike the
LO staggered potential, they come from four-fermion op-
erators in both SFF!A"6 and SFF!B"6 . Thus they break the
SO!4"-taste symmetry down to the lattice symmetry group.
In order to understand the symmetries and symmetry
breaking, we examine the consequences of these operators
for physical observables. We discuss the symmetries re-
spected by these quantities order-by-order in the combined
chiral-continuum expansion. It is useful to keep in mind
the general form of this expansion, illustrated by the NLO
PGB mass:
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The subscripts indicate the order, in S#PT, of the terms
which contribute to the physical quantity, with m indicat-
ing both m and p2. We use a similar notation for the axial
and pseudoscalar decay constants, fA and fP.6

The LO pion mass is given in (16), while the LO decay
constants are

!fA"LO # f; !fP"LO # $f: (24)

The results of the previous section imply that the LO
contributions to these quantities respect the SO!4" taste
symmetry, since the potential V does. This has already
been discussed for the PGB mass, but also holds for the
decay constants. In fact, the LO decay constants are SU!4"
symmetric, since V does not contribute to either one. The
staggered potential also generates interesting predictions
for the difference between the properties of flavor-singlet
and nonsinglet particles. This difference is predicted to
vanish for decay constants of all tastes, and for the masses
of taste %5 and %$& pions (since there are only vector and
axial hairpins).7 One of our aims is to determine at what
order these predictions fail.

The form of the 1-loop contributions is
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!"1-loop % &!m2

!"LO $ a2'2 ln!m2
!"LO; (25)
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These involve only LO vertices, and thus do not break the
SO!4" taste symmetry. They do, however, break the SU!4"
symmetry of decay constants down to SO!4". Note that,
unlike in continuum #PT, the coefficients of the logarithms
are not proportional to the LO mass—there are additional
a2 terms from the hairpin vertices and four-pion vertices
produced by V . The exception is in the lattice Goldstone
mass, which is protected by the U!1"A symmetry. The 1-
loop contributions to the lattice Goldstone mass and axial
decay constant have been calculated in Ref. [13,19].

Now we turn to the analytic NLO contributions. The
generic form of these contributions are as follows:
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Here we begin to include the 4-pion scattering amplitude,
A4!, as it is the simplest quantity showing the most general
pattern of contributions from the NLO operators. In these
expressions we use a schematic notation, leaving out fac-
tors of !QCD, but distinguishing between mass and
momentum-dependent terms. Note that there is no O!a4"
contribution to fA;P because such terms in the chiral
Lagrangian contain no sources. In order to determine
whether there are relationships between splittings, one
needs to know which types of operators from
Appendix B contribute to which of the corrections in
(27)–(29). This information is collected in Table I for
single supertrace operators, and in Table II for double
supertrace operators. The former are the only contributions
to the masses and decay constants of flavor nonsinglet
mesons, while the latter give the additional hairpin contri-
butions for flavor singlets. The distinction between single
and double supertraces is less significant for the scattering
amplitude, so we only include it in the first table.

As indicated in the tables, there is an important distinc-
tion between the contributions from underlying FF!A" and
FF!B" four-fermion operators: the former cannot break the
taste SO!4" symmetry, while the latter can. These two
types of operators differ primarily in their index structure.
Those resulting from FF!A" operators must have indices
contracted in pairs, while those from FF!B" operators must
contain more than two identical indices. This can be seen
by comparing the O!a2p2" FF!A" operators in Tables XVII

6We use ‘‘axial decay constant’’ to refer to the standard decay
constant, which comes from the vacuum-to-pion matrix element
of the axial current, h0jA$j!i / fA. In a slight abuse of termi-
nology, ‘‘pseudoscalar decay constant’’ refers to the decay
constant from the corresponding matrix element of the pseudo-
scalar density, h0jPj!i / fP.

7We are phrasing this discussion as if the hairpin vertices
iterate to give only a mass shift for flavor singlets. As is well
known, however, this in not generally true in PQ theories
because valence quark loops are absent, and there are factors
of 1/4 added by hand due to the

!!!!!!!
det4

p
trick. There will generally

be additional, unphysical double poles in correlators [34].
Nevertheless, one can always determine the size of the hairpin
vertices by measuring the residue of the double pole and com-
paring to the prediction of PQ S#PT, as discussed below.

STAGGERED CHIRAL PERTURBATION THEORY AT . . . PHYSICAL REVIEW D 71, 114505 (2005)

114505-7

NLO analytic terms from NLO taste 
breaking operators 

responsible for fan-out? 

B in our notation from LO taste breaking ops 
in chiral Lagrangian

rsChiPT analysis       taste breaking



LLO ¼ f2

8
Trð@!!@!!yÞ $ 1

4
!f2 TrðM!þM!yÞ

þ 2m2
0

3
ðUI þDI þ SIÞ2 þ a2ðUþU0Þ; (19)

where

M ¼
mu 0 0
0 md 0
0 0 ms

0
@

1
A & "I; (20)

"I is the identity matrix in taste space, and the trace (in
flavor-taste space) is ordinary; we use the replica method
of Damgaard and Splittorff to generalize the results of the
4þ 4þ 4 theory to the partially quenched case [30].

The term proportional to m2
0 is the contribution from the

anomaly, and the potentials U and U0 break SUð4ÞT to
SOð4ÞT . They are

$U ¼ C1Trð"ðnÞ5 !"ðnÞ5 !yÞ þ C6

X
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Trð"ðnÞ!#!"ðnÞ#!!yÞ

þ C3
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½Trð"ðnÞ# !ÞTrð"ðnÞ# !yÞ(

þ C5A
1
2

X
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5#!

yÞ(; (22)

where TaðnÞ ¼ Tað3Þ ) I3 & Ta in the 4þ 4þ 4 theory and
Ta is given in Eq. (18). I3 is the identity matrix in flavor
space. The potentials are derived by mapping the operators
of the mass dimension-six effective continuum Symanzik
action into the operators of $PT. The remnant taste sym-
metry of Lee and Sharpe emerges because contributions
to the potential from SOð4ÞT-breaking operators in the
Symanzik action are suppressed in the low-energy effec-
tive field theory by powers of the four-momenta of the
PGBs. The derivation of the potentials and the restoration
of taste SOð4ÞT symmetry are described in detail in
Refs. [7,12,29].

At NLO, the Lagrangian operators fall into six classes:
ðnp2 ; nm; na2Þ ¼ ð2; 0; 0Þ, (0, 2, 0), (1, 1, 0), (1, 0, 1),

(0, 1, 1), and (0, 0, 2). The first three contain terms
analogous to those in the Gasser-Leutwyler Lagrangian
[2]. The last three contain the terms enumerated by
Sharpe and Van de Water [29]. The Gasser-Leutwyler
terms of S$PT that contribute to the PGB masses at
NLO are

LGL¼L4Trð@!!y@!!ÞTrð$y!þ$!yÞ
þL5Trð@!!y@!!ð$y!þ!y$ÞÞ
$L6½Trð$y!þ$!yÞ(2$L8 ðTrð$y!$y!ÞþH:c:Þ;

(23)

where $ ¼ 2!M.
Many operators in the Sharpe–Van de Water Lagrangian

contribute at NLO, but only a handful break the remnant
taste SOð4ÞT to the hypercubic subgroup SW4 of the lattice
theory [29]. We use the symmetries of the Sharpe–Van
de Water terms to deduce the form of their contributions
to the masses; as discussed in Appendix B, the
explicit results of Sharpe and Van de Water for the
SOð4ÞT-breaking contributions to the flavor-charged PGB
dispersion relations restrict the number of independent
parameters in these contributions to only three.

III. SELF-ENERGIES OF FLAVOR-CHARGED
PSEUDO-GOLDSTONE BOSONS

The symmetries protect the flavor-charged PGBs
from mixing. For reasons discussed in Sec. III A below,
here we describe the calculation in the rest frame. In
terms of the self-energy !ðp2

4Þ at ~p ¼ 0 of the state
%a

xy ðx ! y; x; y 2 fu; d; sgÞ,
M2
% ¼ m2

% þ!ð$M2
%Þ; (24)

where m% is the tree-level (LO) mass, and M% is the
(exact) mass to all orders. Noting that the perturbative
expansion of !ðp2

4Þ begins at NLO and expanding !ðp2
4Þ

in a Taylor series around p2
4 ¼ $m2

% gives

M2
% ¼ m2

% þ!ð$m2
%Þ $!ð$M2

%Þ!0ð$m2
%Þ þ * * *

¼ m2
% þ!ð$m2

%Þ þ NNLO;

and the NLO correction to the mass is the leading contri-
bution to !ð$m2

%Þ.
In Sec. III A we consider the Feynman graphs entering

the expansion of the self-energies at NLO. In Sec. III B we
outline the calculation of these graphs, and in Sec. III C, we
present a condensed version of the results for the 4þ 4þ 4
theory.

A. Diagrammatic expansion

The power counting of Sec. II B, the Lagrangian of
Sec. II C, and the definition of ! constrain the diagrams
entering the NLO mass corrections to three types.
Expanding the LO Lagrangian through Oð%4Þ and the
NLO Lagrangian through Oð%2Þ, we write

!ðp2
4Þ ¼

1

ð4&fÞ2 ½'
conðp2

4Þ þ 'discðp2
4Þ( þ 'analðp2

4Þ þ * * * ;

(25)
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We now summarize the consequences of the previous
observations, with the goal in mind to generate predictions
of S!PT which can be tested on the lattice. We focus on the
masses and decay constants, as these quantities are
straightforward to calculate in simulations.

(1) The SU!4" symmetry in the LO decay constants of
flavor nonsinglet PGBs is broken down to SO!4" by
the NLO terms resulting from FF!A" operators.8

There is no relation between the SU!4" ! SO!4"
breaking in fA and fP, since the a2p2 and a2m
operators contribute differently to these two decay
constants. Furthermore, 1-loop contributions to m2

",
fA, and fP will give independent contributions to
the splittings. Thus there are no predictions between
splittings at this stage.

(2) The breaking of SO!4" down to !43 2SW4 occurs
first in the NLO analytic terms, and not in the 1-loop
terms. It arises only from two types of operator—
a2p2 and a2 source. In particular, since both m" and
fP only receive SO!4"-breaking contributions from
O!a2p2" operators, there are relations between the
splittings within SO!4" multiplets. The a2 source
operators break all such relations among splittings
in fA. There are also predictions for the rotational
symmetry breaking in the dispersion relations.
These results hold separately for flavor-singlet and
nonsinglet pions.

(3) The absence of taste #5 and #$% hairpins at LO does
not hold at NLO, where there are hairpin vertices for
all tastes. We note that the presence of a hairpin
vertex for taste #5 is consistent with its Goldstone
nature since the vertex is proportional to p2, and
thus m2

" at the pole.

(4) The hairpin contributions to fA and fP are related to
each other for tastes P and T, since there are no two-
supertrace operators with sources for either the
pseudoscalar density or the axial current. This is
true for both the SO!4"-conserving and the
SO!4"-violating contributions.

We discuss the various relations and predictions in detail
in the following section. Here we stress that none of these
relations follows from a symmetry of the lattice theory—
indeed, we have checked that all of them are broken by
higher-dimension operators in S!PT.

V. NLO RELATIONS FOR PGB MASSES AND
DECAY CONSTANTS

In this section we work out the detailed form of the
relations which follow from the particular form of the NLO
analytic terms.

We first study SO!4"-taste and rotational symmetry
breaking in the pion dispersion relations. This arises
from the a2p2 FF!B" operators, which are listed in
Table XIX. Of the 18 such operators, only 8 contribute to
SO!4" breaking in single-pion properties. The others, such
as

X
$

X
%!$

Str!@$"y@$""y#$%"#%$" # p:c:; (32)

(with p.c. indicating parity conjugate) give either vanishing
or taste symmetric contributions to two-pion properties,
because the two pions must be drawn from the fields with
derivatives acting on them. The contribution of the
SO!4"-breaking operators to the chiral Lagrangian is

a2
X
$

X
%!$

fC2Str!@$"y#$%@$"#%$" # C7Str!"@$"y#$%"Str!"y@$"#%$" # C10$Str!"@$"y#$%"@$"y#%$" # p:c:%

# C13$Str!"@$"y#$%"Str!"@$"y#%$" # p:c:%g# a2
X
$
fC36VStr!"@$"y#$"

y@$"#$"

# C36AStr!"@$"y#$5"
y@$"#5$" # C41VStr!@$"y#$"Str!@$"#$"

# C41AStr!@$"y#$5"Str!@$"#5$"g: (33)

The eight operators reduce to six for two-pion contributions, three single supertrace and three double supertrace operators:

a2

f2
X
$

(X
%!$

$!C2 & 2C10"Str!@$##$%@$##%$" # !C7 & 2C13"Str!@$##$%"Str!@$##$%"% # C36VStr!@$##$@$##$"

# C41VStr!@$##$"Str!@$##$" # C36AStr!@$##$5@$##5$" # C41AStr!@$##$5"Str!@$##5$"
)
: (34)

We consider first the effect of these operators on the
properties of flavor nonsinglet mesons, and, in particular,
those composed of a quark of flavor a and an antiquark of a
different flavor b, where these flavors can be either valence

8We have checked that there are sufficient independent opera-
tors to completely break the symmetry down to SU!4" in this and
all other similar cases that we mention.
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two outstanding spectroscopy problems: 

1. effective low energy theory for Goldstone 
dynamics coupled to the low mass scalar 
nonlinear sigma model or dilaton? 

2. effect of slow topology on the analysis 



Goldstone dynamics coupled to low mass scalar 

π σ

fπ

Mπ , Fπ , Mσ  are calculated now to 1-loop:  extended chiral SU(2) flavor dynamics
We are analyzing the small pion mass region in the Mπ = 0.07- 0.013 range 
of the p-regime, and lower in the RMT regime
To reach the nonlinear sigma model range requires very small pion masses
cutoff effects from taste breaking?

work in progress



pion mass and decay constant       slow topology
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Figure 1: The finite size effects 1+Tm (left panel) and 1+Tf (right panel) from fixed topology atQ= 0 with
L= 2 fm. The pion masses correspond to those in the dynamical simulation by the JLQCD collaboration.

where Aµ(x) = 1
Nf

∑ f ψ̄ f (x)γµγ5ψ f (x) and P(x) = 1
Nf

∑ f ψ̄ f (x)γ5ψ f (x) are the flavor singlet axial-
vector current and pseudo-scalar density, respectively, and δxO denotes a axial rotation of the oper-
ator O at x. Combining WT identities for O= 2mP(0) and O= 2ω(x) Combining these we finally
obtain

lim
|x|→large

⟨mP(x)mP(0)⟩Q =
1
V

(

Q2

V
− χt −

c4
2χtV

)

+O(e−mη′ |x|). (3.5)

In fact, using this formula one can determine the topological susceptibility from the nonzero asymp-
totic value of the singlet pseudoscalar correlator [6, 7].

4. Application to physics

One can estimate the finite size corrections for the pionic quantities with the help of Chiral
Perturbation Theory (ChPT). Using the next-to-leading order ChPT formula, θ dependence of the
the pion mass and the decay constant for two-flavor QCD is

m2π(θ)|rmNLO = m2π(θ)

[

1+

(

mπ(θ)

4π f

)2
(

ln
(

mπ(θ)

mphysπ
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− l̄phys3
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, (4.2)

where m2π(θ) ≡ 2B0mq cos
(

θ
Nf

)

, and l̄3, l̄4 are the low energy constants which can be estimated as

l̄phys3 = 2.9±2.4, and l̄phys4 = 4.4±0.2 [17]. Fig. 1 shows the finite size effects 1+Tm ≡ mQ=0
π /mπ

and 1+Tf ≡ f Q=0
π / fπ at L = 2 fm using the NLO ChPT. The pion masses correspond to those in

the dynamical simulation by the JLQCD collaboration [18]. The topological susceptibility χt is

5

θ vacuum physics from QCD at fixed topology Tetsuya Onogi

0.0 0.1 0.2 0.3 0.4 0.5 0.6
mπ

2(GeV2)

0.94

0.96

0.98

1.00

1.02

1+
T m

0.0 0.1 0.2 0.3 0.4 0.5 0.6
mπ

2(GeV2)

0.94

0.96

0.98

1.00

1.02

1+
T f

Figure 1: The finite size effects 1+Tm (left panel) and 1+Tf (right panel) from fixed topology atQ= 0 with
L= 2 fm. The pion masses correspond to those in the dynamical simulation by the JLQCD collaboration.

where Aµ(x) = 1
Nf

∑ f ψ̄ f (x)γµγ5ψ f (x) and P(x) = 1
Nf

∑ f ψ̄ f (x)γ5ψ f (x) are the flavor singlet axial-
vector current and pseudo-scalar density, respectively, and δxO denotes a axial rotation of the oper-
ator O at x. Combining WT identities for O= 2mP(0) and O= 2ω(x) Combining these we finally
obtain

lim
|x|→large

⟨mP(x)mP(0)⟩Q =
1
V

(

Q2

V
− χt −

c4
2χtV

)

+O(e−mη′ |x|). (3.5)

In fact, using this formula one can determine the topological susceptibility from the nonzero asymp-
totic value of the singlet pseudoscalar correlator [6, 7].

4. Application to physics

One can estimate the finite size corrections for the pionic quantities with the help of Chiral
Perturbation Theory (ChPT). Using the next-to-leading order ChPT formula, θ dependence of the
the pion mass and the decay constant for two-flavor QCD is

m2π(θ)|rmNLO = m2π(θ)

[

1+

(

mπ(θ)

4π f

)2
(

ln
(

mπ(θ)

mphysπ

)2
− l̄phys3

)]

, (4.1)

fπ(θ)|rmNLO = f

[

1−2
(

mπ(θ)

4π f

)2
(

ln
(

mπ(θ)

mphysπ

)2
− l̄phys4

)]

, (4.2)

where m2π(θ) ≡ 2B0mq cos
(

θ
Nf

)

, and l̄3, l̄4 are the low energy constants which can be estimated as

l̄phys3 = 2.9±2.4, and l̄phys4 = 4.4±0.2 [17]. Fig. 1 shows the finite size effects 1+Tm ≡ mQ=0
π /mπ

and 1+Tf ≡ f Q=0
π / fπ at L = 2 fm using the NLO ChPT. The pion masses correspond to those in

the dynamical simulation by the JLQCD collaboration [18]. The topological susceptibility χt is

5

Light meson spectrum with Nf = 2 dynamical overlap fermions J. Noaki

finite volume corrections for mπ and fπ . Though their calculation includes NNNLO of ChPT for
mπ and NNLO for fπ , we apply their NNLO results for both quantities. The NNLO effects depend
on the low energy constants (LECs) l̄1,2,3,4 of the Nf = 2 ChPT. At the scale of the physical pion
mass mphysπ = 139.6 MeV, they are estimated [12] as

l̄ phys1 = −0.4±0.6, (3.1)
l̄ phys2 = 4.3±0.1, (3.2)
l̄ phys3 = 2.9±2.4, (3.3)
l̄ phys4 = 4.4±0.2. (3.4)

We use these phenomenological values to correct our data. The errors in (3.1)–(3.4) are reflected
in the results assuming a gaussian distribution. Because the Lüscher’s formula is based on the full
theory, we can use this result only for the data with the same mass for valence and sea quarks.

3.2 Correction for fixed Qtop

Since our numerical simulation is done at the topological charge fixed to zero, our observables
are not free from the artifact. However, for large enough volume, local quantities such as hadron
mass or matrix elements do not depend on Qtop. In fact it is verified by a saddle-point expan-
sion [13] that the difference between the correlation function at fixed topological charge and that
in the θ -vacuum is of O(V−1). By using this relation to pion mass and decay constant, it can be
shown that the leading correction is proportional to their second derivative with respect to θ depen-
dence at the saddle point θs = iQtop/(Vχt). χt is the topological susceptibility, which is calculated
on the same set of configurations [14]. At NLO of ChPT we obtain the corrections

mQtop=0
π

mπ(θ = 0)
= 1−

1
16Vχt

[

1+

(

mtreeπ (θ = 0)
4π f

)2
(

ln
(

mtreeπ (θ = 0)
mphysπ

)2
− l̄ phys3 +1

)]

,

(3.5)
f Qtop=0π

fπ(θ = 0)
= 1+

1
4Vχt

(

mtreeπ (θ = 0)
4π f

)2
(

ln
(

mtreeπ (θ = 0)
mphysπ

)2
− l̄ phys4 +1

)

, (3.6)

where mtreeπ (θ)2 = 2B0mq cos(θ/Nf ) is the tree-level θ -dependent pion mass. The fixed Qtop cor-
rection starts at the tree-level for mπ while it does at NLO for fπ .

In Figure 2, we illustrate the effects of finite size effects for m2π/mq (left) and fπ (right). In
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The chiral condensate   new method

the lattice spacing. The Banks–Casher relation consequently cannot be expected to
hold exactly and the detailed properties of the low quark modes could be significantly
different from those in the continuum theory. On the other hand, as long as only
renormalizable quantities are considered, their values in the continuum limit must
in principle be computable using the Wilson theory.

The spectral density of the (hermitian) Dirac operator, and thus the average num-
ber of quark modes in a given range of eigenvalues, are known to be renormalizable
[5]. In the present paper, we first give a second proof of this important fact (sect. 3).
We then discuss the chiral perturbation expansion of the mode numbers and show, in
sect. 5, that their calculation in lattice QCD requires only a modest computational
effort. Taken together, these results allow the chiral condensate to be computed in
the Wilson theory in a straightforward manner (sect. 6). Spectral projectors however
have a wider range of applicability and provide interesting opportunities to explore
the chiral regime of QCD, some of which are briefly mentioned in sect. 7.

2. Preliminaries

For simplicity we focus on QCD with a doublet of mass-degenerate quarks, but the
theoretical discussion is more generally valid and extends to the case of real-world
QCD. The quarks will be referred to as the up and down quarks, the associated
Goldstone bosons as the pions and the SU(2) flavour symmetry as the isospin sym-
metry. We consider both the continuum and the Wilson lattice theory in order to
make it clear in which way the mode number computed on the lattice is related to
the one defined in the continuum theory.

2.1 Spectral density and mode number in the continuum theory

In a space-time box of volume V with periodic or antiperiodic boundary conditions,
the euclidean massless Dirac operator D in presence of a given gauge field has purely
imaginary eigenvalues iλ1, iλ2, . . ., which may be ordered so that those with the
lower magnitude come first. The associated average spectral density is given by

ρ(λ,m) =
1

V

∞
∑

k=1

⟨δ(λ − λk)⟩ (2.1)

where the bracket ⟨. . .⟩ denotes the QCD expectation value and m the current-quark

2

mass. Note that the isospin degeneracy is not included in the mode counting, i.e. the
Dirac operator is diagonalized in the subspace of, say, the up-quark fields.

The Banks–Casher relation [1]

lim
λ→0

lim
m→0

lim
V →∞

ρ(λ,m) =
Σ

π
(2.2)

provides a link between the chiral condensate

Σ = − lim
m→0

lim
V →∞

⟨ūu⟩ (2.3)

(where u is the up-quark field) and the spectral density. In particular, if chiral sym-
metry is spontaneously broken by a non-zero value of the condensate, the density of
the quark modes in infinite volume does not vanish at the origin. A non-zero density
conversely implies that the symmetry is broken, i.e. the Banks–Casher relation can
be read in either direction.

Instead of the spectral density, the average number ν(M,m) of eigenmodes of the
massive hermitian operator D†D + m2 with eigenvalues α ≤ M2 turns out to be a
more convenient quantity to consider. Evidently, since

ν(M,m) = V

∫ Λ

−Λ
dλρ(λ,m), Λ =

√

M2 − m2, (2.4)

the mode number ultimately carries the same information as the spectral density.

2.2 O(a)-improved lattice QCD

The lattice theory is set up as usual on a hyper-cubic lattice with spacing a, time-like
extent T and spatial size L. Periodic boundary conditions are imposed on all fields
and in all directions, the only exception being the quark fields which are taken to
be antiperiodic in time.

As already mentioned, we focus on the Wilson theory in this paper. The details
are not very relevant, but for definiteness we choose the Wilson plaquette action for
the gauge field [2] and the standard expression

SF = a4
∑

x

{

ū(x)Dmu(x) + d̄(x)Dmd(x)
}

(2.5)

for the quark action, in which Dm denotes the massive, O(a)-improved lattice Dirac
operator [3,4]. Apart from the bare coupling g0 and the bare mass m0, the only free
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chiral condensate and RG: mode number distribution of Dirac spectrum

spectral density
(Banks-Casher) 

mode number function

renormalized and RG invariant 

(Giusti and Luscher)

where it is understood that the bare masses are expressed through the renormalized
ones. The factors 1 + bPP amq in eq. (3.6) are required for the cancellation of the
O(amq) terms alluded to above which derive from the short-distance singularities of
the density-chain correlation functions [5].

3.3 Renormalized mode number

If the twisted-mass term is considered to be a perturbation of the theory at µ = 0,
one quickly notices that

Zµ = Z−1
P (3.7)

is a possible (and natural) choice of the renormalization factor Zµ.
Another simplification derives from the identity

∂

∂µ
σk(µ,mq) = −2kµσk+1(µ,mq). (3.8)

When the renormalized spectral sums are similarly differentiated with respect to the
renormalized twisted mass µR, the expressions one obtains must be O(a)-improved.
As it turns out, this is the case if and only if

bµ + bP − bPP = 0. (3.9)

The renormalization factor in eq. (3.6) thus becomes

ZP
1 + bP amq

1 + bPP amq
=

1

Zµ(1 + bµamq)
(3.10)

up to terms of order a2m2
q.

Returning to the integral representation (3.2), we now note that the renormaliza-
tion factor {Zµ(1 + bµamq)}−2k needed to renormalize the spectral sum on the left
of the equation is cancelled on the right if we substitute

MR = Zµ(1 + bµamq)M (3.11)

and renormalize µ. We are thus led to conclude that

νR(MR,mR) = ν(M,mq) (3.12)

is a renormalized and O(a)-improved quantity. In other words, the mode number is
a renormalization-group invariant.
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the running coupling and the β function    finite volume

LatHC  Nf = 2  sextet

monotonic increase of beta function consistent with: 
- mass deformed spectroscopy at low fermion mass 
- chiral condensate 
- GMOR 
- mass anomalous dimension 
- connection with g2(t,m) in bulk with chiSB

no sign of IRFP zero in step beta 
function in explored range 

Control on systematics is important 
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The running coupling of the minimal sextet composite Higgs model
Zoltan Fodor, Kieran Holland, Julius Kuti, Santanu Mondal, Daniel Nogradi, Chik Him Wong

Two strategies to connect UV with IR: 

1. push into RMT regime with the method 

2. use mass deformation in chiSB phase 
    to bridge UV and IR 
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Figure 1: Local fields Ot(x) constructed at flow time t > 0 depend on the fundamental field variables in a
region of space-time approximately 2

√
8t wide (red area). Further away from the point x, the sensitivity to

the basic fields decreases like a Gaussian and very rapidly becomes totally negligible.

The smoothing property of the gradient flow and the associated quark flow implies that correla-
tion functions of fields at non-zero flow times have no short-distance singularities. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicitly, if Ot(x) is a bare, gauge-
invariant composite field at flow time t > 0 of degree n and n̄ in the quark and antiquark fields, the
renormalized field is given by

OR,t = (Zχ)
1
2 (n+n̄)Ot , (2.9)

where the renormalization constant Zχ is independent of t. In particular, the field (2.7) does not
require renormalization and the chiral densities (2.8) renormalize with the same factor Zχ .

The proof of these statements [2, 3] is based on an exact representation of the correlation
functions through a local field theory in 4+1 dimensions, the extra dimension being the flow time.
Zinn–Justin and Zwanziger [8] introduced the representation many years ago in their work on the
renormalization of the Langevin equation. In the pure gauge theory, the latter actually coincides
with the flow equation (2.1) except for the fact that it includes a noise term, which complicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density ūu+ d̄d of the up and down quarks
diverges like the second or third inverse power of the lattice spacing when the continuum limit is
taken. The divergent terms are proportional to the light-quark masses if the lattice theory preserves
chiral symmetry, but also in these cases their subtraction tends to give rise to important significance
losses or even some conceptual issues. Using the gradient flow, this problem can now be elegantly
bypassed [3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at non-zero flow times, χ(t,x),
transforms in the same way as the fundamental field ψ(x) under global chiral rotations. In particu-
lar, the light-quark chiral densities

Srst ±Prst , r,s ∈ {u,d}, (3.1)

4
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Figure 1: Local fields Ot(x) constructed at flow time t > 0 depend on the fundamental field variables in a
region of space-time approximately 2

√
8t wide (red area). Further away from the point x, the sensitivity to

the basic fields decreases like a Gaussian and very rapidly becomes totally negligible.

The smoothing property of the gradient flow and the associated quark flow implies that correla-
tion functions of fields at non-zero flow times have no short-distance singularities. Renormalization
is nevertheless required, but turns out to be extremely simple. Explicitly, if Ot(x) is a bare, gauge-
invariant composite field at flow time t > 0 of degree n and n̄ in the quark and antiquark fields, the
renormalized field is given by

OR,t = (Zχ)
1
2 (n+n̄)Ot , (2.9)

where the renormalization constant Zχ is independent of t. In particular, the field (2.7) does not
require renormalization and the chiral densities (2.8) renormalize with the same factor Zχ .

The proof of these statements [2, 3] is based on an exact representation of the correlation
functions through a local field theory in 4+1 dimensions, the extra dimension being the flow time.
Zinn–Justin and Zwanziger [8] introduced the representation many years ago in their work on the
renormalization of the Langevin equation. In the pure gauge theory, the latter actually coincides
with the flow equation (2.1) except for the fact that it includes a noise term, which complicates the
situation and requires a renormalization of the Langevin time, for example.

3. Chiral condensate

In lattice QCD, the expectation value of the scalar density ūu+ d̄d of the up and down quarks
diverges like the second or third inverse power of the lattice spacing when the continuum limit is
taken. The divergent terms are proportional to the light-quark masses if the lattice theory preserves
chiral symmetry, but also in these cases their subtraction tends to give rise to important significance
losses or even some conceptual issues. Using the gradient flow, this problem can now be elegantly
bypassed [3].

3.1 Flow-time dependent condensate

Since the flow equations are chirally invariant, the quark field at non-zero flow times, χ(t,x),
transforms in the same way as the fundamental field ψ(x) under global chiral rotations. In particu-
lar, the light-quark chiral densities

Srst ±Prst , r,s ∈ {u,d}, (3.1)

4

we are on the verge of matching the two 
scale dependent couplings which will 
leave no room for speculations on 
conformal fixed points
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scale-dependent coupling    mass dependent tuning?

walking very close to  
weak coupling Nf=3 IRFP

two massive 
flavors freeze out

in 1+2 freeze-out scenario 
anything to learn about strong 
coupling dynamics of single 
massless flavor? 

Similarly, in 2+1 freeze-out 
scenario anything to learn about 
strong coupling dynamics of 
doublet massless flavor? 

Not likely that light scalar mass 
can be tuned this way



Kogut-Sinclair  EW phase transition 
Relevance in early cosmology (order of the phase transition?) 
LatHC is doing a new analysis using different methods 
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Early universe

• Nf=2   Qu=2/3 Qd = -1/3  fundamental rep 
   udd neutral dark matter candidate

• dark matter candidate  sextet Nf=2 
   electroweak active in the application 

• 1/2 unit of electric charge (anomalies) 

• rather subtle sextet baryon                           
  construction (symmetric in color) 

• charged relics not expected?

Baryon in the
sextet gauge

model

Zoltan Fodor,
Kieran
Holland,

Julius Kuti,
Santanu
Mondal,
Daniel

Nogradi, Chik
Him Wong

Constructing nucleon operator in continuum

Three SU(3) sextet fermions can give rise to a color singlet.
The tensor product 6⌦6⌦6 can be decomposed into
irreducible representations of SU(3) as,

6⌦6⌦6 = 1�2⇥8�10�10�3⇥27�28�2⇥35

where irreps are denoted by their dimensions and 10 is the
complex conjugate of 10.

Fermions in the 6-representation carry 2 indices, y
ab

, and
transform as

y
aa

0 �! U
ab

U
a

0
b

0 y
bb

0

and the singlet can be constructed explicitly as

e
abc

e
a

0
b

0
c

0 y
aa

0 y
bb

0 y
cc

0 .



Summary:  model exhibits chiSB with a light composite scalar  
(near-conformal?) 
  
   
•   no sign of IRFP                                         close to conformal window?

•   spectroscopy                                            resonance spectrum ~ 2-3 TeV LHC!
 
•   chiral condensate, large γ(λ)                      Chebyshev expansion very promising 

•   RMT regime is being explored                    mixed action strategy is applied

•   Fixed topology requires special analysis

•   running (walking) coupling no IRFP             Gradient Flow

•   Electroweak phase transition and baryon    intriguing

•   Staggered fermion action is not the issue    rooting works      

•   Analysis of low mass scalar coupled to 
    Goldstones remains a challenge


