INCLUSIVE AND EXCLUSIVE B \rightarrow SLL: THEORY perspective and experimental status

ENRICO LUNGHI INDIANA UNIVERSITY

WHY $b \rightarrow s \ell^{+} \ell^{-}$

- Sensitive to many extensions of the SM

- Exclusive modes are experimentally easier (LHCb) but harder to bring under theoretical control (factorization, power corrections, ...)
- Inclusive modes require a super-B machine to be fully exploited but the theoretical outlook is very impressive
- Some references (inclusive): - Some references (exclusive):

Misiak; Buras, Munz, Bobeth, Urban, Asatryan, Asatrian, Greub, Walker, Ghinculov, Hurth, Isidori, Yao, Gambino, Gorbahn, Haisch, Huber, Lunghi, Wyler, Lee, Ligeti, Stewart, Tackmann, ...

Beneke, Feldmann, Seidel, Grinstein, Pirjol, Bobeth, Hiller, Dyk, Wacker, Piranishvili, Altmannshofer, Ball, Bharucha, Buras, Wick, Straub,
Matias, Lunghi, Virto, DescotesGenon, Hofer, Hurth, Mahmoudi, ...

WHY $b \rightarrow s \ell^{+} \ell^{-}$

SM operator basis:

$$
\mathcal{L}_{e f f}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t q}^{*}[\sum_{i=1}^{10} C_{i} Q_{i}+\frac{V_{u b} V_{u q}^{*}}{V_{t b} V_{t q}^{*}} \sum_{i=1}^{2} C_{i}\left(Q_{i}-Q_{i}^{u}\right)+\underbrace{\sum_{i=3}^{6} C_{i Q} Q_{i Q}+C_{b} Q_{b}}_{\text {for QED corrections }}]
$$

- Magnetic \& chromo-magnetic

$$
\begin{aligned}
& Q_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{q}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu} \\
& Q_{8}=\frac{g}{16 \pi^{2}} m_{b}\left(\bar{q}_{L} \sigma^{\mu \nu} T^{a} b_{R}\right) G_{\mu \nu}^{a}
\end{aligned}
$$

Everything is known very well $\left(\mathrm{V}_{\mathrm{ub}} \mathrm{V}_{\mathrm{uq}}\right.$ contribution is small for $\mathrm{b} \rightarrow$ sll but important for $\mathrm{b} \rightarrow$ dll)

WHY $b \rightarrow s \ell^{+} \ell^{-}$

In NP extensions we get more structures ($\mathrm{V}+\mathrm{A}$, scalar, tensor)

- Right-handed (V+A):

$$
\begin{aligned}
Q_{7}^{\prime} & =\frac{e}{16 \pi^{2}} m_{b}\left[\bar{s}_{R} \sigma^{\mu \nu} b_{L}\right] F_{\mu \nu} \\
Q_{8}^{\prime} & =\frac{g}{16 \pi^{2}} m_{b}\left[\bar{s}_{R} \sigma^{\mu \nu} T^{a} b_{L}\right] G_{\mu \nu}^{a} \\
Q_{9}^{\prime} & =\left[\bar{s}_{R} \gamma_{\mu} b_{R}\right]\left[\bar{\ell} \gamma^{\mu} \ell\right] \\
Q_{10}^{\prime} & =\left[\bar{s}_{R} \gamma_{\mu} b_{R}\right]\left[\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right]
\end{aligned}
$$

- Scalar:
$Q_{S}=\left[\bar{s}_{L} b_{R}\right][\bar{\ell} \bar{\ell}]$
$Q_{S}^{\prime}=\left[\bar{s}_{R} b_{L}\right][\bar{\ell} \bar{\ell}]$
$Q_{P}=\left[\bar{s}_{L} b_{R}\right]\left[\bar{\ell} \gamma_{5} \bar{\ell}\right]$
$Q_{P}^{\prime}=\left[\bar{s}_{R} b_{L}\right]\left[\bar{\ell} \gamma_{5} \bar{\ell}\right]$
- Tensor

$$
\begin{aligned}
Q_{T} & =\left[\bar{s} \sigma_{\mu \nu} b\right]\left[\bar{e} l l \sigma^{\mu \nu} \ell\right] \\
Q_{T 5} & =\frac{i}{2} \varepsilon^{\mu \nu \alpha \beta}\left[\bar{s} \sigma_{\mu \nu} b\right]\left[\bar{\ell} \sigma_{\alpha \beta} \ell\right]
\end{aligned}
$$

TYPICAL SPECTRUM

- Intermediate charmonium resonances contribute via:
$B \rightarrow\left(K, K^{*}, X_{s}\right) \psi_{\bar{c} c} \rightarrow\left(K, K^{*}, X_{s}\right) \ell^{+} \ell^{-}$
- Contributions of J / ψ and ψ^{\prime} have to be dropped (for different reasons in inclusive and exclusive modes)

WHY $b \rightarrow s \ell^{+} \ell^{-}$

- Multi-objects in the final state (3 for $B \rightarrow K / X_{s}, 4$ for $B \rightarrow K^{*} \rightarrow K \pi$) allows to isolate contributions from various operators
- $B \rightarrow X_{s} \ell$

$$
\left.\left.\begin{array}{rl}
\frac{d^{2} \Gamma^{X_{s}}}{d q^{2} d \cos \theta_{\ell}} & =\frac{3}{8}\left[\left(1+\cos ^{2} \theta_{\ell}\right) H_{T}+2\left(1-\cos ^{2} \theta_{\ell}\right) H_{L}+2 \cos \theta_{\ell} H_{A}\right] \\
H_{T} & \sim 2 \hat{s}(1-\hat{s})^{2}\left[\left|C_{9}+\frac{2}{\hat{s}} C_{7}\right|^{2}+\left|C_{10}\right|^{2}\right] \\
H_{L} & \sim(1-\hat{s})^{2}\left[\left|C_{9}+2 C_{7}\right|^{2}+\left|C_{10}\right|^{2}\right] \\
H_{A} & \sim-4 \hat{s}(1-\hat{s})^{2} \operatorname{Re}\left[q^{2} / m_{b}^{2}\right. \\
\hline
\end{array} C_{9}+2 \frac{m_{b}^{2}}{q^{2}} C_{7}\right)\right] \quad \text {. }
$$

- H_{A} is not suppressed by the lepton mass
- There are similar contributions from non-SM operators but there is no interference between $V+A$ and $V-A$ structures
- We have three observables and those related by CP and isospin

WHY $b \rightarrow s \ell^{+} \ell^{-}$

- Multi-objects in the final state (3 for $B \rightarrow K / X_{s}, 4$ for allows to isolate contributions from v
- $B \rightarrow K^{*} \ell \ell \rightarrow \pi \ell \ell$

$$
\begin{aligned}
& \frac{d^{4} \Gamma^{K^{*}}}{d q^{2} d \cos \theta_{l} d \cos \theta_{K^{*}} d \phi} \simeq \\
& J_{1}^{s} \sin ^{2} \theta_{K^{*}}+J_{1}^{c} \cos ^{2} \theta_{K^{*}}+\left(J_{2}^{s} \sin ^{2} \theta_{K^{*}}+J_{2}^{c} \cos ^{2} \theta_{K^{*}}\right) \cos 2 \theta_{l} \\
& \quad+J_{3} \sin ^{2} \theta_{K^{*}} \sin ^{2} \theta_{l} \cos 2 \phi+J_{4} \sin 2 \theta_{K^{*}} \sin 2 \theta_{l} \cos \phi+J_{5} \sin 2 \theta_{K^{*}} \sin \theta_{l} \cos \phi \\
& \quad+J_{6} \sin ^{2} \theta_{K^{*}} \cos \theta_{l}+J_{7} \sin 2 \theta_{K^{*}} \sin \theta_{l} \sin \phi \\
& \quad+J_{8} \sin 2 \theta_{K^{*}} \sin 2 \theta_{l} \sin \phi+J_{9} \sin ^{2} \theta_{K^{*}} \sin ^{2} \theta_{l} \sin 2 \phi,
\end{aligned}
$$

- We have 11 observables and those related by CP and isospin!
- The J_{a} observables are functions of all the Wilson coefficients (V+A and V-A operators do interfere)
- In the literature one finds various combinations of these J_{a}

WHY $b \rightarrow s \ell^{+} \ell^{-}$

- Multi-objects in the final state (3 for $B \rightarrow K / X_{s}, 4$ for $B \rightarrow K^{*} \rightarrow K \pi$) allows to isolate contributions from various operators
- $B \rightarrow$ Kll

$$
\begin{aligned}
\frac{d^{2} \Gamma^{K}}{d q^{2} d \cos \theta_{\ell}}= & a+b \cos \theta_{\ell}+c \cos \theta_{\ell}^{2} \\
a \sim & C_{7}+C_{7}^{\prime}, C_{9}+C_{9}^{\prime}, C_{10}+C_{10}^{\prime} \\
& C_{S}+C_{S}^{\prime}, C_{P}+C_{P}^{\prime}, m_{\ell} C_{T} \\
b \sim & C_{S}+C_{S}^{\prime}, C_{P}+C_{P}^{\prime}, C_{T}, C_{T 5}, m_{\ell}\left(C_{10}+C_{10}^{\prime}\right) \\
c \sim & C_{7}+C_{7}^{\prime}, C_{9}+C_{9}^{\prime}, C_{10}+C_{10}^{\prime}, C_{T}, C_{T 5}
\end{aligned}
$$

- In the $\mathrm{SM} \boldsymbol{b}$ is suppressed by the lepton mass: huge sensitivity to scalar, pseudoscalar, tensor operators (e.g. forward-backward asymmetry)
- We have three observables and those related by CP and isospin
- Advantage: form factors very accessible to lattice QCD

THEORY: INCLUSIVE

$$
\begin{aligned}
p_{X_{s}}^{2} & =\left(p_{b}-q\right)^{2}=m_{b}^{2}+q^{2}-2 m_{b} q_{0} \\
& <m_{b}^{2}+q^{2}-2 m_{b} \sqrt{q^{2}}=\left(m_{b}-\sqrt{q^{2}}\right)^{2}
\end{aligned}
$$

OPE is an expansion in $\Lambda_{Q C D} /\left(m_{b}-\sqrt{q^{2}}\right)$ and breaks down at $q^{2} \sim m_{b}^{2}$

CHARMONIUM TROUBLES

- Optical theorem:
[Beneke, Buchalla, Neubert, Sachrajda]

$$
\begin{aligned}
& \operatorname{Im}\left[\sum_{i j}\langle\bar{B}| T Q_{i}(0) Q_{j}(x)|\bar{B}\rangle\right] \sim \Gamma\left(\bar{B} \rightarrow X_{s}\right) \neq \Gamma\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) \\
& \Gamma\left(\bar{B} \rightarrow X_{s}\right) \sim 10^{-4} \\
& \left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right) \sim 10^{-6} \quad b \rightarrow c \bar{c} s
\end{aligned}
$$

1. This is not a violation of quark-hadron duality (that in the inclusive is related to the integral over the real states in the Xs system)
2. The OPE itself is perfectly fine and it breaks down only at large q^{2}
3. For $\mathbf{q}^{2} \sim \mathbf{m}_{\mathrm{cc}}$ the diagram is controlled by resonant long distance contributions (think about the hadronic contribution to $\left.(\mathrm{g}-2)_{\mu}\right)$
4. The problem is that we are not including diagrams corresponding to open charm and hadronic decays of the charmonium resonances

CHARMONIUM TROUBLES

Q^{2} CUTS

- Kruger-Sehgal mechanism:

$$
\begin{aligned}
R_{\mathrm{had}}^{c \bar{c}} & =\frac{\sigma\left(e^{+} e^{-} \rightarrow \mathrm{c} \overline{\mathrm{c}} \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \\
& ={ }_{e^{+}}^{e^{-}}
\end{aligned}
$$

$$
\operatorname{Im}\left\langle O_{2}\right\rangle \rightarrow\left\langle O_{9}\right\rangle_{\text {tree }}\left(\frac{\pi}{3} R_{\text {had }}^{c \bar{c}}(\hat{s})\right)
$$

$$
\operatorname{Re}\left\langle O_{2}\right\rangle \rightarrow\left\langle O_{9}\right\rangle_{\text {tree }}\left(-\frac{8}{9} \log m_{c} / m_{b}-\frac{4}{9}+\frac{\hat{s}}{3} P \int_{4 \hat{m}_{D}^{2}}^{\infty} \frac{R_{\mathrm{had}}^{c \bar{c}}\left(\hat{s}^{\prime}\right)}{\hat{s}^{\prime}\left(\hat{s}^{\prime}-\hat{s}\right)} d \hat{s}^{\prime}\right)
$$

- Alternatively use a Breit-Wigner ansatz to parametrize $\left.<\mathrm{O}_{2}\right\rangle$

$$
Y_{\mathrm{amm}}(\hat{s})=Y_{\mathrm{pert}}(\hat{s})+\frac{3 \pi}{\alpha^{2}} C^{(0)} \sum_{V_{i}=\psi(1 s), \ldots, \psi(6 s)} \kappa_{i} \frac{\Gamma\left(V_{i} \rightarrow \ell^{+} \ell^{-}\right) m_{V_{i}}}{m_{V_{i}}^{2}-\hat{s} m_{B}^{2}-i m_{V_{i}} \Gamma_{V_{i}}}
$$

- The impact in the low q^{2} region is $+1.8 \%$, in the high q^{2} region is -10%
- Historically $\kappa_{i} \approx 2$. Using NNLO Wilson coefficients one finds $\kappa_{i} \approx 1$

THEORY: INCLUSIVE

- The KS mechanism captures the long distance contribution that corresponds to cc pair in color singlet state (J / ψ)
- The color octet contribution is non-resonant, is captured by $\Lambda^{2} / m_{c}{ }^{2}$ power corrections

and yields a local contribution proportional to $\langle\bar{B}| \bar{b} \sigma_{\mu \nu} G^{\mu \nu} b|\bar{B}\rangle \sim \lambda_{2}$

THEORY: INCLUSIVE

$$
\Gamma\left[\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right]=\Gamma\left[\bar{b} \rightarrow X_{s} \ell^{+} \ell^{-}\right]+O\left(\frac{\Lambda_{Q C D}^{2}}{m_{b}^{2}}, \frac{\Lambda_{Q C D}^{3}}{m_{b}^{3}}, \frac{\Lambda_{Q C D}^{2}}{m_{c}^{2}}, \ldots\right)
$$

local OPE, optical theorem quark-hadron duality

Phase space cuts introduce sensitivity to new scales, the rate becomes less inclusive and new non-perturbative effects appear

$M_{X_{s}}<[1.8,2] \mathrm{GeV}$ cut to remove double semileptonic decay background
9 High-q ${ }^{2}$ region unaffected

- Experiments correct using Fermi motion model
- SCETI suggests cuts are universal (same for $b \rightarrow$ sll and $b \rightarrow u l v$)
Effect of cc resonances can be included using data from ee \rightarrow hadrons

THEORY: INCLUSIVE

$$
\Gamma\left[\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right]=\Gamma\left[\bar{b} \rightarrow X_{s} \ell^{+} \ell^{-}\right]+O\left(\frac{\Lambda_{Q C D}^{2}}{m_{b}^{2}}, \frac{\Lambda_{Q C D}^{3}}{m_{b}^{3}}, \frac{\Lambda_{Q C D}^{2}}{m_{c}^{2}}, \ldots\right)
$$

local OPE, optical theorem quark-hadron duality

- Low-q²: theory in excellent shape
- High-q²: the OPE starts to break down and only integrated quantities are reliable
- mismatch between partonic and hadronic phase space
- power corrections are larger
- higher charmonium resonances must be integrated over
- things improve dramatically by normalizing the rate to the semileptonic rate with the same q^{2} cut [Ligeti et al.]

$$
\mathcal{R}\left(s_{0}\right)=\int_{s_{0}}^{1} \mathrm{~d} \hat{s} \frac{\mathrm{~d} \Gamma\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{\mathrm{d} \hat{s}} / \int_{s_{0}}^{1} \mathrm{~d} \hat{s} \frac{\mathrm{~d} \Gamma\left(\bar{B}^{0} \rightarrow X_{u} \ell \nu\right)}{\mathrm{d} \hat{s}}
$$

THEORY: EXCLUSIVE (LOW ${ }^{2}$)

- The central problem is the calculation of matrix elements:

$$
\left\langle K^{(*)} \ell \ell\right| O(y)|B\rangle \approx\left\langle K^{(*)}\right| T J_{\mu}^{\mathrm{em}}(x) O(y)|B\rangle
$$

if O contains a leptonic current (i.e. $\mathrm{O}_{7,9,10}$) the matrix elements reduces to a form factor

- At low- q^{2} the $K^{(*)}$ recoils strongly:

- The large energy of the $K^{(*)}$ introduces three scales: $\mathrm{m}_{\mathrm{b}}{ }^{2}, \Lambda \mathrm{~m}_{\mathrm{b}}$ and Λ^{2} :

$$
\left\langle K^{(*)}\right| T J_{\mu}^{\mathrm{em}}(x) O(y)|B\rangle \sim \begin{array}{cc}
C \times\left[\text { Form Factor }+\phi_{B} \star J \star \phi_{K}\right]+O\left(\frac{\Lambda}{m_{b}}\right) \\
\mathrm{m}_{\mathrm{b}}^{2} & \Lambda^{2}
\end{array}
$$

THEORY: EXCLUSIVE (LOW ${ }^{2}$)

- Soft Collinear Effective Theory

- us-hc factorization is rock solid (inclusive modes, collider physics)
- us-c factorization is more problematic (exclusive modes) because both collinear and ultrasoft modes have $\mathrm{p}^{2} \sim \Lambda^{2}$ and sometimes they don't factorize (zero-bin, messenger modes ...)

THEORY: EXCLUSIVE (LOW ${ }^{2}$)

- For example, the $\mathrm{B} \rightarrow \mathrm{Kll}$ rate is given by:

$$
\begin{aligned}
\frac{d \Gamma}{d q^{2}} & \sim \left\lvert\, f_{+}\left(q^{2}\right) C_{9}^{\mathrm{eff}}\left(q^{2}\right)+\frac{2 m_{b}}{m_{B}+m_{K}} f_{T}\left(q^{2}\right) C_{7}^{\mathrm{eff}}\left(q^{2}\right)\right. \\
& +\left.\frac{2 m_{b}}{m_{B}} \frac{\pi^{2}}{N_{c}} \frac{f_{B} f_{K}}{m_{B}} \sum_{ \pm} \int \frac{d \omega}{\omega} \Phi_{B, \pm}(\omega) \int_{0}^{1} d u \Phi_{K}(u)\left[T_{P, \pm}^{(0)}+\tilde{\alpha}_{s} C_{F} T_{P, \pm}^{(\mathrm{nf})}\right]\right|^{2} \\
& +\left|f_{+}\left(q^{2}\right) C_{10}\right|^{2}
\end{aligned}
$$

- The form factor f_{T} can be expressed in terms of f_{+}(it is now preferable to use directly the lattice determination of f_{T}):

$$
\begin{aligned}
\frac{m_{B}}{m_{B}+m_{K}} f_{T} & =f_{+}\left[1+\tilde{\alpha}_{s} C_{F}\left(\log \frac{m_{b}^{2}}{\mu^{2}}+2 L\right)\right] \\
& -\frac{\pi}{N_{c}} \frac{f_{B} f_{K}}{E} \alpha_{s} C_{F} \overbrace{\int \frac{d \omega}{\omega} \Phi_{B,+}(\omega)}^{\lambda_{B,+}^{-1}} \int_{0}^{1} \frac{d u}{\bar{u}} \Phi_{K}(u)
\end{aligned}
$$

THEORY: EXCLUSIVE (HIGH ${ }^{2}$)

- The central problem is the calculation of matrix elements:

$$
\left\langle K^{(*)} \ell \ell\right| O(y)|B\rangle \approx\left\langle K^{(*)}\right| T J_{\mu}^{\mathrm{em}}(x) O(y)|B\rangle
$$

if O contains a leptonic current (i.e. $\mathrm{O}_{7,9,10}$) the matrix elements reduces to a form factor (lattice, QCD sum rules)

- At high- q^{2} the $\mathrm{K}^{(*)}$ doesn't recoil:

Grinstein \& Pirjol showed how to write a simple OPE in which all matrix elements are given in terms of calculable hard coefficients and form factors (up to power corrections)

THEORY: EXCLUSIVE (HIGH ${ }^{2}$)

- $\mathrm{b} \rightarrow$ sll matrix elements are controlled by the large q^{2}

$$
\begin{aligned}
& \left\langle K^{(*)}\right| O_{9,10}(y)|B\rangle \sim f_{+}\left(q^{2}\right) \\
& \left\langle K^{(*)}\right| T J^{\mu}(x) O_{7}(y)|B\rangle \sim \frac{1}{q^{2}} f_{T}\left(q^{2}\right) \quad \text { local }
\end{aligned}
$$

$\left\langle K^{(*)}\right| T J^{\mu}(x) O_{1,2}(y)|B\rangle \sim h\left(q^{2}\right) f_{+}\left(q^{2}\right) \quad$ highly non-local

THEORY: EXCLUSIVE (HIGH ${ }^{2}$)

- Note the difference between inclusive and exclusive (high-q²) OPE:

The breakdown of the OPE at very large q^{2} is independent of the presence of resonant charm loops

$$
(x-y)^{2} \gg \frac{1}{q^{2}}
$$

The presence of resonant charm loops jeopardize the OPE itself and one has to rely on quarkhadron duality
[Beylich, Buchalla, Feldmann]

THEORY: EXCLUSIVE (HIGH Q²)

- Does the KS mechanism to include resonant effects work?
- For $\mathrm{B} \rightarrow \mathrm{Kll}$ these attempts seem to fail:

Experimental and theoretical valley and peaks do not match

Beylich, Buchalla and Feldmann argue that integrating over the highq^{2} region and invoking quark-hadron duality yields accurate predictions

- What is going on? Apparently this seems to be a failure of QCD factorization in describing the hadronic $\mathrm{B} \rightarrow \psi_{\mathrm{cc}} \mathrm{K}$ process (i.e. color octet contributions might be important)
- Will this persists for the K^{*} and Xs modes?

Apparently not [Bobeth, Hiller, van Dyk]

INCLUSIVE: CED LOGS

- The rate is proportional to $\alpha_{\mathrm{em}}^{2}\left(\mu^{2}\right)$. Without QED corrections the scale μ is undetermined $\rightarrow \pm 4 \%$ uncertainty
- Focus on corrections enhanced by large logarithms:
- $\alpha_{\mathrm{em}} \log \left(m_{W} / m_{b}\right) \sim \alpha_{\mathrm{em}} / \alpha_{s}$
- $\alpha_{\mathrm{em}} \log \left(m_{\ell} / m_{b}\right)$
[WC, RG running] [Bobeth,Gambino,Gorbahn,Haisch] [Matrix Elements]
- The differential rate is not IR safe with respect to photon emission the results in the presence of a physical collinear logarithm, $\log \left(m_{\ell} / m_{b}\right)$

CED LOGS: THERY VS EXPERIMENT

- Theory
include all bremsstrahlung photons into the X_{s} system:

- Experiment (fully inclusive, Super-B only) One B is identified; on the other side only the two leptons are reconstructed:

- Experiment (Xs system reconstructed as a sum over exclusive states): At BaBar (Belle) photons with energies smaller than 30 (20) MeV are not resolved. There is an attempt to identify photons emitted inside a small cone ($35 \times 50 \mathrm{mrad}$) around the electrons.
Photons inside the cone are included in the definition of the q^{2}.
- Measured rates are sensitive to the soft photon cutoff and to the size of the cone

$$
\frac{\left[\mathcal{B}_{e e}^{\text {low }}\right]_{q=p_{e}+}+p_{e^{-}}+p_{\gamma_{\text {coll }}}}{\left[\mathcal{B}_{e e}^{\text {low }}\right]_{q=p_{e^{+}}+p_{e^{-}}}}-1=1.65 \%
$$

$$
\frac{\left[\mathcal{B}_{e e}^{\text {high }}\right]_{q=p_{e}++p_{e}-+p_{\gamma_{c o l l}}}}{\left[\mathcal{B}_{e e}^{\text {high }}\right]_{q=p_{e}++p_{e}-}}-1=6.8 \%
$$

QED LOGS: SIZE OF THE EFFECT

- We calculated the effect of collinear photon radiation and found large effects on some observables

Shift on H_{T} is $\sim 70 \%$!
H_{T} is smaller than $\mathrm{H}_{\mathrm{L}}(\hat{s} \lesssim 0.3)$:
$H_{T} \sim 2 \hat{s}(1-\hat{s})^{2}\left[\left|C_{9}+\frac{2}{\hat{s}} C_{7}\right|^{2}+\left|C_{10}\right|^{2}\right]$ $H_{L} \sim(1-\hat{s})^{2}\left[\left|C_{9}+2 C_{7}\right|^{2}+\left|C_{10}\right|^{2}\right]$

	$q^{2} \in[1,6] \mathrm{GeV}^{2}$			$q^{2} \in[1,3.5] \mathrm{GeV}^{2}$			$q^{2} \in[3.5,6] \mathrm{GeV}^{2}$		
	$\frac{O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[1,6]}}{O_{[1,6]}}$	$\frac{O_{[1,3.5]}}{\mathcal{B}_{(1,6]}}$	$\frac{\Delta O_{[1,3,5]} \mathcal{B}_{(1,6]}}{}$	$\frac{\Delta O_{[1,3,5]}}{O_{[1,3,5]}}$	$\frac{o_{[3.5,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[3,5,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[3.5,6]}}{O_{[3,5]}}$
\mathcal{B}	100	5.1	5.1	54.6	3.7	6.8	45.4	1.4	3.1
\mathcal{H}_{T}	19.5	14.1	72.5	9.5	8.8	92.1	10.0	5.4	53.6
\mathcal{H}_{L}	80.0	-8.7	-10.9	44.7	-4.7	-10.6	35.3	-4.0	-11.3
\mathcal{H}_{A}	-3.3	1.4	-43.6	-7.2	0.8	-10.7	4.0	0.6	16.2

QED LOGS: SIZE OF THE EFFECT

- We calculated the effect of collinear photon radiation and found large effects on some observables

Size of QED contributions to the H_{T} and H_{L} is similar

	$q^{2} \in[1,6] \mathrm{GeV}^{2}$			$q^{2} \in[1,3.5] \mathrm{GeV}^{2}$			$q^{2} \in[3.5,6] \mathrm{GeV}^{2}$		
	$\frac{O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[1,6}}{\mathcal{B}_{11,6]}}$	$\frac{\Delta O_{[1,6]}}{O_{[1,6]}}$	$\frac{O_{[1,3.5]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[1,3,5]}}{\mathcal{B}_{11,6]}}$	$\frac{\Delta O_{[1,3.5]}}{O_{[1,3.5]}}$	$\frac{O_{[3,5,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{13}}{\mathcal{B}_{11}}$	$\frac{\Delta O_{[3,5,6]}}{O_{[3,5]}}$
\mathcal{B}	100	5.1	5.1	54.6	3.7	6.8	45.4	1.4	3.1
\mathcal{H}_{T}	19.5	14.1	72.5	9.5	8.8	92.1	10.0	5.4	53.6
\mathcal{H}_{L}	80.0	-8.7	-10.9	44.7	-4.7	-10.6	35.3	-4.0	-11.3
\mathcal{H}_{A}	-3.3	1.4	-43.6	-7.2	0.8	-10.7	4.0	0.6	16.2

QED LOGS: MONTE CARLO

- EM effects have been calculated analytically and cross checked against Monte Carlo generated events (EVTGEN + PHOTOS)

QED LOGS: MONTE CARLO

- The Monte Carlo study reproduces the main features of the analytical results

Monte Carlo:			
	$q^{2} \in[1,6]$		
	$\frac{O_{11,6]}}{\mathcal{B}_{11,6]}}$	$\frac{\Delta O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[1,6]}}{O_{[1,6]}}$
\mathcal{B}	100	3.5	3.5
\mathcal{H}_{T}	19.0	8.0	43.0
\mathcal{H}_{L}	81.0	-4.5	-5.5

Analytical:

	$q^{2} \in[1,6] \mathrm{GeV}^{2}$		
	$\frac{O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[1,6]}}{\mathcal{B}_{[1,6]}}$	$\frac{\Delta O_{[1,6]}}{O_{[1,6]}}$
\mathcal{B}	100	5.1	5.1
\mathcal{H}_{T}	19.5	14.1	72.5
\mathcal{H}_{L}	80.0	-8.7	-10.9

QED LOGS: MONTE CARLO

- The Monte Carlo study reproduces the main features of the analytical results

DEFINITION OF OBSERVABLES

- At leading order in QED and at all orders in QCD, the double differential width is a quadratic polynomial: $\Gamma \sim a \cos ^{2} \theta+b \cos \theta+c$.
- Γ receives non polynomial log-enhanced QED corrections
- Best strategy: measure individual observables (BR, A_{FB}) and use Legendre polynomial as projectors

$$
H_{I}\left(q^{2}\right)=\int_{-1}^{+1} \frac{d^{2} \Gamma}{d q^{2} d z} W_{I}(z) d z
$$

$$
\begin{array}{lr}
W_{T}=\frac{2}{3} P_{0}(z)+\frac{10}{3} P_{2}(z), & W_{3}=P_{3}(z) \\
W_{L}=\frac{1}{3} P_{0}(z)-\frac{10}{3} P_{2}(z), & W_{4}=P_{4}(z) \\
W_{A}=\frac{4}{3} \operatorname{sign}(z) . &
\end{array}
$$

$$
\begin{aligned}
\frac{d \Gamma}{d q^{2}} & =\int_{-1}^{+1} \frac{d^{2} \Gamma}{d q^{2} d z} d z=H_{T}+H_{L} \\
\frac{d A_{\mathrm{FB}}}{d q^{2}} & =\int_{-1}^{+1} \frac{d^{2} \Gamma}{d q^{2} d z} \operatorname{sign}(z) d z=\frac{3}{4} H_{A} \\
\frac{d \bar{A}_{\mathrm{FB}}}{d q^{2}} & =\frac{\int_{-1}^{+1} \frac{d^{2} \Gamma}{d q^{2} d z} \operatorname{sign} d z}{\int_{-1}^{+1} \frac{d^{2} \Gamma}{d q^{2} d z} d z}=\frac{3}{4} \frac{H_{A}}{H_{T}+H_{L}}
\end{aligned}
$$

INCLUSIVE: PRESENT STATUS

$$
\begin{aligned}
& \delta_{\text {th }} \\
& \pm 7 \% \\
& \mathcal{H}_{T}[1,6]_{e e}=(5.34 \pm 0.38) \cdot 10^{-7} \\
& \pm 6 \% \\
& \mathcal{H}_{L}[1,6]_{e e}=(1.13 \pm 0.06) \cdot 10^{-6} \\
& \mathcal{H}_{A}[1,3.5]_{e e}=(-1.03 \pm 0.05) \cdot 10^{-7} \\
& \mathcal{H}_{A}[3.5,6]_{e e}=(+0.73 \pm 0.12) \cdot 10^{-7} \\
& \mathcal{H}_{3}[1,6]_{e e}=(8.92 \pm 1.20) \cdot 10^{-9} \\
& \mathcal{H}_{4}[1,6]_{e e}=(8.41 \pm 0.78) \cdot 10^{-9} \\
& \mathcal{B}[1,6]_{e e}=(1.67 \pm 0.10) \cdot 10^{-7} \\
& \mathcal{B}[>14.4]_{e e}=(2.20 \pm 0.70) \cdot 10^{-7} \\
& \text { R(} \mu / \mathrm{e} \text {) } \\
& 0.75 \\
& 1.07 \\
& 1.07 \\
& 0.92 \\
& 0.42 \\
& 0.42 \\
& 0.97 \\
& 1.15
\end{aligned}
$$

- Scale uncertainties dominate at low-q²
- Power corrections and scale uncertainties dominate at high-q²
- Log-enhanced QED corrections at low and high q^{2} are correlated

Q ED LOGS IN Rk?

- Inclusive: at BaBar and Belle the Xs system is reconstructed as sum over exclusive final states. Most of the photons are not recovered nor searched for. The analysis is performed by letting them be part of the hadronic system: $\log \left(\mathrm{m}_{\mathrm{e}, \mu} / \mathrm{m}_{\mathrm{b}}\right)$ is physical.
- Exclusive: At LHCb the B meson are massively boosted and collinear photons can be extremely energetic. LHCb uses PHOTOS to put back into the leptons all soft / collinear emissions. This procedure is cross checked on $J / \psi \rightarrow(e e, \mu \mu)$.
There are no $\log \left(m_{e, \mu} / m_{b}\right)$ enhanced corrections.
- Given the not-so-great agreement between the analytic calculation and the MC simulation, LHCb is pursuing a data-driven approach to the reconstruction of missing photons

HIGH-Q2: REDUCING THE ERRORS

- Normalize the decay width to the semileptonic $B \rightarrow X_{u} l v$ rate with the same dilepton invariant mass cut:

$$
\mathcal{R}\left(s_{0}\right)=\frac{\int_{\hat{s}_{0}}^{1} \mathrm{~d} \hat{s} \frac{\mathrm{~d} \Gamma\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{\mathrm{d} \hat{s}}}{\int_{\hat{s}_{0}}^{1} \mathrm{~d} \hat{s} \frac{\mathrm{~d} \Gamma\left(\bar{B}^{0} \rightarrow X_{u} \ell \nu\right)}{\mathrm{d} \hat{s}}}
$$

- Impact of $1 / m_{b}^{2}$ and $1 / m_{b}^{3}$ power corrections drastically reduced:

$$
\begin{aligned}
\mathcal{R}(14.4)_{\mu \mu}= & \left(2.62 \pm 0.09_{\text {scale }} \pm 0.03_{m_{t}} \pm 0.01_{C, m_{c}} \pm 0.01_{m_{b}} \pm 0.01_{\alpha_{s}} \pm 0.23_{\mathrm{CKM}}\right. \\
& \left. \pm 0.0002_{\lambda_{2}} \pm 0.09_{\rho_{1}} \pm 0.04_{f_{u}^{0}+f_{s}} \pm 0.12_{f_{u}^{0}-f_{s}}\right) \cdot 10^{-3} \\
= & (2.62 \pm 0.30) \cdot 10^{-3} \\
\mathcal{R}(14.4)_{e e}= & \left(2.25 \pm 0.12_{\text {scale }} \pm 0.03_{m_{t}} \pm 0.02_{C, m_{c}} \pm 0.01_{m_{b}} \pm 0.01_{\alpha_{s}} \pm 0.20_{\mathrm{CKM}}\right. \\
& \left. \pm 0.02_{\lambda_{2}} \pm 0.14_{\rho_{1}} \pm 0.08_{f_{u}^{0}+f_{s}} \pm 0.12_{f_{u}^{0}-f_{s}}\right) \cdot 10^{-3} \\
= & (2.25 \pm 0.31) \cdot 10^{-3}
\end{aligned}
$$

- The largest source of uncertainty is $V_{u b}$

present status

BaBar: $471 \times 10^{6} \mathrm{BB}$ pairs ($424 \mathrm{fb}^{-1}$) Belle: 152×10^{6} BB pairs ($140 \mathrm{fb}^{-1}$)

- World averages (Babar, Belle):

$$
\begin{aligned}
\mathrm{BR}^{\exp } & =(1.58 \pm 0.37) \times 10^{-6}
\end{aligned} q^{2} \in[1,6] ~ 子 \begin{aligned}
& \mathrm{BR}^{\exp }=(0.48 \pm 0.10) \times 10^{-6} \\
& \bar{A}^{2}>14.4 \\
& \overline{\mathrm{FB}}^{\exp }= \begin{cases}0.34 \pm 0.24 & q^{2} \in[0.2,4.3] \\
0.04 \pm 0.31 & q^{2} \in[4.3,7.3(8.1)]\end{cases}
\end{aligned}
$$

```
\delta exp }\approx23
\delta exp }\approx21
non-optimal binning
```

- Theory:

$$
\begin{aligned}
\mathrm{BR}^{\mathrm{th}} & =(1.65 \pm 0.10) \times 10^{-6} \\
\mathrm{BR}^{\mathrm{th}} & =(0.237 \pm 0.070) \times 10^{-6} \\
\bar{A}_{\mathrm{FB}}^{\mathrm{th}} & = \begin{cases}-0.077 \pm 0.006 & q^{2}>14.4 \\
0.05 \pm 0.02 & q^{2} \in[0.2,4.3]\end{cases}
\end{aligned}
$$

$$
\delta_{\mathrm{th}} \approx 6 \%
$$

$$
\delta_{\mathrm{th}} \approx 30 \%
$$

non-optimal binning

- $\mathrm{BR}=H_{T}+H_{L} \quad \bar{A}_{\mathrm{FB}}=\frac{3}{4} \frac{H_{A}}{H_{T}+H_{L}}$

present status

- Constraints in the $\left[\mathrm{R}_{9}, \mathrm{R}_{10}\right]$ plane $\left(R_{i}=C_{i}\left(\mu_{0}\right) / C_{i}^{\mathrm{SM}}\left(\mu_{0}\right)\right)$:

- Note that $C_{9}^{\mathrm{SM}}\left(\mu_{0}\right)=1.61$ and $C_{10}^{\mathrm{SM}}\left(\mu_{0}\right)=-4.26$
- Best fits from the exclusive anomaly translate in $\mathrm{R}_{9} \sim 0.3$ (for the single WC fit) or $\mathrm{R}_{9} \sim 0.65$ and $\mathrm{R}_{10} \sim 0.9$ (for the $C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}$ scenario)

PROJECTIONS

- Projected reach with $50 \mathrm{ab}^{-1}$ of integrated luminosity

$$
\begin{gathered}
\mathcal{O}_{\exp }=\int \frac{d^{2} \mathcal{N}}{d \hat{s} d z} W[\hat{s}, z] d \hat{s} d z \\
\delta \mathcal{O}_{\exp }=\left[\int \frac{d^{2} \mathcal{N}}{d \hat{s} d z} W[\hat{s}, z]^{2} d \hat{s} d z\right]^{\frac{1}{2}}
\end{gathered}
$$

	$[1,3.5]$	$[3.5,6]$	$[1,6]$	>14.4
\mathcal{B}	3.7%	4.0%	3.0%	4.1%
\mathcal{H}_{T}	24%	21%	16%	-
\mathcal{H}_{L}	5.8%	6.8%	4.6%	-
\mathcal{H}_{A}	37%	44%	200%	-
\mathcal{H}_{3}	240%	180%	150%	-
\mathcal{H}_{4}	140%	360%	140%	-

PROJECTIONS

INCLUSIVE/EXCLUSIVE INTERPLAY

- The effects on C9 and C9' are large enough to be easily checked at Belle II with inclusive decays (free of most uncertainties that plague the exclusive modes)

[Hurth, Mahmoudi 1411.2786]

CONCLUSIONS

Q Inclusive calculations are almost at the "end-of-the-road", are clean but require Belle II

Q Inclusive modes are sensitive to the treatment of QED radiation. The effect can be very large (depending on the observable) and can be exploited to test further combinations of Wilson coefficients

- Exclusive modes have a rich phenomenology but are plagued by form factor uncertainties (progress from lattice QCD expected), parametric uncertainties (light-cone wave functions, ...) and power corrections
- LHCb data are in general agreement with the SM predictions with the exception of an angular distribution ($\mathrm{P}_{5}{ }^{\prime}$), the BR at high $-\mathrm{q}^{2}$ and a lepton flavor universality breaking ratio $\left(\mathrm{R}_{\mathrm{K}}\right)$

BACKUP SLIDES

EXCLUSIVE: OBSERVABLES (K*)

- LHCb measured the complete angular distribution for the K^{*} channel:

$$
\begin{aligned}
\left.\frac{1}{\mathrm{~d}(\Gamma+\bar{\Gamma}) / \mathrm{d} q^{2}} \frac{\mathrm{~d}^{3}(\Gamma+\bar{\Gamma})}{\mathrm{d} \vec{\Omega}}\right|_{\mathrm{P}}=\frac{9}{32 \pi} & {\left[\frac{3}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K}+F_{\mathrm{L}} \cos ^{2} \theta_{K}\right.} \\
& +\frac{1}{4}\left(1-F_{\mathrm{L}}\right) \sin ^{2} \theta_{K} \cos 2 \theta_{l} \\
& -F_{\mathrm{L}} \cos ^{2} \theta_{K} \cos 2 \theta_{l}+S_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \cos 2 \phi \\
& +S_{4} \sin 2 \theta_{K} \sin 2 \theta_{l} \cos \phi+S_{5} \sin 2 \theta_{K} \sin \theta_{l} \cos \phi \\
P_{i=4,5,6,8}^{\prime}=\frac{S_{j=4,5,7,8}}{\sqrt{F_{\mathrm{L}}\left(1-F_{\mathrm{L}}\right)}} . \quad & +\frac{4}{3} A_{\mathrm{FB}} \sin ^{2} \theta_{K} \cos \theta_{l}+S_{7} \sin 2 \theta_{K} \sin \theta_{l} \sin \phi \\
& \left.+S_{8} \sin 2 \theta_{K} \sin 2 \theta_{l} \sin \phi+S_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \sin 2 \phi\right]
\end{aligned}
$$

EXCLUSIVE: OBSERVABLES (K*)

- All these observables are given by simple formulas in terms of helicity amplitudes:

$$
\begin{aligned}
& A_{\perp}^{L, R}=\sqrt{2} N m_{B}(1-\hat{s})\left[\left(\mathcal{C}_{9}^{\text {eff }}+\mathcal{C}_{9}^{\text {eff }}\right) \mp\left(\mathcal{C}_{10}+\mathcal{C}_{10}^{\prime}\right)+\frac{2 \hat{m}_{b}}{\hat{s}}\left(\mathcal{C}_{7}^{\text {eff }}+\mathcal{C}_{7}^{\text {eff }}\right)\right] \xi_{\perp}\left(E_{K^{*}}\right), \\
& A_{\|}^{L, R}=-\sqrt{2} N m_{B}(1-\hat{s})\left[\left(\mathcal{C}_{9}^{\text {eff }}-\mathcal{C}_{9}^{\text {eff }}\right) \mp\left(\mathcal{C}_{10}-\mathcal{C}_{10}^{\prime}\right)+\frac{2 \hat{m}_{b}}{\hat{s}}\left(\mathcal{C}_{7}^{\text {eff }}-\mathcal{C}_{7}^{\text {eff }}\right)\right] \xi_{\perp}\left(E_{K^{*}}\right) \\
& A_{0}^{L, R}=-\frac{N m_{B}(1-\hat{s})^{2}}{2 \hat{m}_{K^{*}} \sqrt{\hat{s}}}\left[\left(\mathcal{C}_{9}^{\text {eff }}-\mathcal{C}_{9}^{\text {eff } \prime}\right) \mp\left(\mathcal{C}_{10}-\mathcal{C}_{10}^{\prime}\right)+2 \hat{m}_{b}\left(\mathcal{C}_{7}^{\text {eff }}-\mathcal{C}_{7}^{\text {eff }}\right)\right] \xi_{\|}\left(E_{K^{*}}\right)
\end{aligned}
$$

- These formulas hold at leading power and receive $\mathrm{O}\left(\alpha_{s}\right)$ corrections (that are included in the numerics)

EXCLUSIVE: LHCB RESULTS

EXCLUSIVE: LHCB RESULTS

EXCLUSIVE: LHCB RESULTS

- In the elusive $\mathrm{P}_{5}{ }^{\prime}$ distribution a 3.7 sigma excess is observed

EXCLUSIVE: LHCB RESULTS

- Angular distributions in $\mathrm{B} \rightarrow \mathrm{K}^{*}$ ll

Observable
Measurement \quad SM prediction ${ }^{\dagger}$

F_{L}	$+0.16 \pm 0.06 \pm 0.03$	$+0.10_{-0.05}^{+0.11}$
$A_{\mathrm{T}}^{(2)}$	$-0.23 \pm 0.23 \pm 0.05$	$0.03_{-0.04}^{+0.05}$
$A_{\mathrm{T}}^{\mathrm{Re}}$	$+0.10 \pm 0.18 \pm 0.05$	$-0.15^{+0.04}$
$A_{\mathrm{T}}^{\mathrm{Im}}$	$+0.14 \pm 0.22 \pm 0.05$	$\left(-0.2_{-1.2}^{+1.2}\right) \times 10^{-4}$

EXCLUSIVE: LHCB RESULTS

- Branching ratio at high- q^{2}

Average from LHCb, CDF, CMS and ATLAS

Theory predictions with $\mathrm{C}_{9}=\mathrm{C}_{(\mathrm{SM})}-1.5$

LHCb: JHEP 06 (2014) 133, JHEP 08 (2013)131, JHEP 07 (2013) 084
CDF: Public note 10894, CMS: arXiv: 1308.3409 ATLAS: ATLAS-CONF-2013-038
At high- q^{2} the only sensible comparison is between rates integrated over a large enough range

EXCLUSIVE: LHCB RESULTS

- Evidence for violation of lepton flavor universality?

$$
\mathrm{R}_{\mathrm{k}}=\mathrm{BR}\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \mu^{+} \mu^{-}\right) / \mathrm{BR}\left(\mathrm{~B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{e}^{+} \mathrm{e}^{-}\right)
$$

- Experimentally the ratio is fairly clean (stat dominated)

$$
\mathrm{R}_{\mathrm{K}}=0.745+^{0.090}{ }_{-0.074} \text { (stat) }{ }^{+0.036}{ }_{-0.036} \text { (syst) }
$$

$$
\mathrm{R}_{\mathrm{K}}(\mathrm{SM})=1.0003 \pm 0.0001
$$

LHCb, PRL 113 (2014) 151601
Belle, PRL 103 (2009) 171801
Babar, PRD 86 (2012) 032012

WILSON COEFFICIENTS FITS

- Deviations in P_{5}^{\prime} seem to favor a negative shift in C_{9} and a smaller positive contribution to $\mathrm{C}_{9}{ }^{\prime}$

- BR data is compatible with the SM

WILSON COEFFICIENTS FITS

- Deviations in P_{5}^{\prime} seem to favor a negative shift in C_{9} and a smaller positive contribution to $\mathrm{C}_{9}{ }^{\prime}$

[Altmannshofer, Straub 1411.3161]
- Dashed contours are obtained doubling some theory uncertainties (form factors, non-form factors)

FIT RESULTS

Coeff.	best fit	1σ	2σ	$\sqrt{\chi_{\text {b.f. }}^{2}-\chi_{\text {SM }}^{2}}$	$p[\%]$
$C_{7}^{\text {NP }}$	-0.04	$[-0.07,-0.02]$	$[-0.10,0.01]$	1.52	1.1
C_{7}^{\prime}	0.00	$[-0.05,0.06]$	$[-0.11,0.11]$	0.05	0.8
$C_{9}^{N P}$	-1.12	$[-1.34,-0.88]$	$[-1.55,-0.63]$	4.33	10.6
C_{9}^{\prime}	-0.04	$[-0.26,0.18]$	$[-0.49,0.40]$	0.18	0.8
$C_{10}^{\text {NP }}$	0.65	$[0.40,0.91]$	$[0.17,1.19]$	2.75	2.5
C_{10}^{\prime}	-0.01	$[-0.19,0.16]$	$[-0.36,0.33]$	0.09	0.8
$C_{9}^{\mathrm{NP}}=C_{10}^{\mathrm{NP}}$	-0.20	$[-0.41,0.05]$	$[-0.60,0.33]$	0.82	0.8
$C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}$	-0.57	$[-0.73,-0.41]$	$[-0.90,-0.27]$	3.88	6.8
$C_{9}^{\prime}=C_{10}^{\prime}$	-0.08	$[-0.33,0.17]$	$[-0.58,0.41]$	0.32	0.8
$C_{9}^{\prime}=-C_{10}^{\prime}$	-0.00	$[-0.11,0.10]$	$[-0.22,0.20]$	0.03	0.8

[Altmannshofer, Straub 1411.3161]

CHARMONIUM TROUBLES?

- Charm loops are included in C9 ${ }^{\text {eff }}$ using LCSR [Mannel et al]
- Issues in the calculation of charm effects could mimic NP in C9 but effects should be:
- q^{2} dependent

- lepton flavor universal
- What about resonant effects (tail of the J / ψ)?

- In David [Straub]'s words: "interesting hint or cruel coincidence?"

NP INTERPRETATION

- The deviations in P_{5}^{\prime} and R_{K} are difficult to embed in NP models
- Large contributions to C_{9} or $\mathrm{C}_{9}{ }^{\prime}$ cannot be obtained in any minimal flavor violating MSSM and require additional flavor changing couplings (e.g. mass insertions in the 2-3 sector):

Z penguins can contribute to C 10 but not to C9 because the Z current is mostly axial:

$$
J_{\mu}^{Z} \propto\left(4 s_{W}^{2}-1\right) \bar{\ell} \gamma_{\mu} \ell+\bar{\ell} \gamma_{\mu} \gamma_{5} \ell
$$

- Leptoquarks:

NP INTERPRETATION

- No large effects on C_{9} and $\mathrm{C}_{9}{ }^{\prime}$ are seen in the pMSSM

[Hurth, Mahmoudi 1411.2786]

NP INTERPRETATION

- Example: MSSM with mass insertions in the 2-3 sector (A_{ct}):

[Altmannshofer, Straub 1411.3161]
- Outside of the dashed circles: color/charge breaking minima
- Blue region: agreement with LHCb is "improved by more than one sigma"

INPUTS FOR B \rightarrow SLL

$$
\begin{aligned}
& \alpha_{s}\left(M_{z}\right)=0.1184 \pm 0.0007 \\
& \alpha_{e}\left(M_{z}\right)=1 / 127.918 \\
& s_{W}^{2} \equiv \sin ^{2} \theta_{W}=0.2312 \\
& \left|V_{t s}^{*} V_{t b} / V_{c b}\right|^{2}=0.9621 \pm 0.0027[85] \\
& \left|V_{t s}^{*} V_{t b} / V_{u b}\right|^{2}=130.5 \pm 11.6[85] \\
& B R\left(B \rightarrow X_{c} e \bar{\nu}\right)_{\exp }=0.1051 \pm 0.0013[86] \\
& M_{Z}=91.1876 \mathrm{GeV} \\
& M_{W}=80.385 \mathrm{GeV} \\
& \mu_{b}=5_{-2.5}^{+5} \mathrm{GeV} \\
& \lambda_{2}^{\mathrm{eff}}=(0.12 \pm 0.02) \mathrm{GeV}^{2} \\
& \lambda_{1}^{\mathrm{eff}}=(-0.362 \pm 0.067) \mathrm{GeV}^{2}[86,87] \\
& f_{u}^{0}-f_{s}=(0 \pm 0.04) \mathrm{GeV}^{3}[52]
\end{aligned}
$$

Xs CUT

- MX cuts required to suppress the $\mathrm{b} \rightarrow \mathrm{cl}^{-} v \rightarrow \mathrm{sl}^{-} \mathrm{l}^{+} v v$ background

- Correction factor added in experimental results
- Framework: Fermi motion, SCET

Xs CUT

- New idea: use SCET to describe the X_{s} system

$p_{X}^{+} \ll p_{X}^{-} \Longrightarrow m_{X}^{2} \ll E_{X}^{2}$
X_{S} is a hard-collinear mode:

$$
\Lambda^{2} \ll p_{X_{s}}^{2} \sim \Lambda m_{b} \ll m_{b}^{2}
$$

$$
\eta_{i j}=\frac{\int_{1 \mathrm{GeV}^{2}}^{6 \mathrm{GeV}^{2}} \mathrm{~d} q^{2} \int_{0}^{m_{X}^{\mathrm{cut}}} \mathrm{~d} m_{X}^{2} \frac{\mathrm{~d} \Gamma_{i j}}{\mathrm{~d} q^{2} \mathrm{~d} m_{X}^{2}}}{\int_{1 \mathrm{GeV}^{2}}^{6 \mathrm{GeV}^{2}} \mathrm{~d} q^{2} \frac{\mathrm{~d} \Gamma_{i j}}{\mathrm{~d} q^{2}}}
$$

$$
i j: C_{9}^{2} \text { and } C_{10}^{2}, C_{7} C_{9}, C_{7}^{2}
$$

Xs CUT

- At leading power and at order α_{s}, these corrections are a universal multiplicative factor:

- Reduce non-perturbative effects by considering: [Lee, Ligeti, Stewart, Tackmann] $\Gamma^{\mathrm{cut}}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right) / \Gamma^{\mathrm{cut}}\left(B \rightarrow X_{u} \ell \bar{\nu}\right)$ [same M_{X} cut]

