Conformal or Confining Elisabetta Pallante U. of Groningen The Netherlands Powered by SURF SARA

Theory of this seminar:

QCD- N_f = Yang-Mills + N_f massless Dirac fermions in Fund repr.

▶ Find its phase diagram

References:

- ▶ 2009 Nf=12: Evidence for existence of conformal window (CW) Theory has IRFP
- 2009-13 Explored possible non-trivial UVFP
 Explored chiral phase boundary below conformal window
 "Exotic" phase in CW found due to improvement of lattice action
 Properties of exotic phase clarified (NB: it applies to e.g. graphene)
- ▶ 2014 Spectrum in CW (Nf=12 as prototype); gamma_m ≈ 0.12 Theory in analogy with quantum critical phenomena
- ▶ arXiv:1506.06396: Lower edge CW, Scalar glueball anomalous dimension
- arXiv:1509.00733: Topology, U(1) axial anomaly
 Glueballs and Wilson flow
 Breaking of conformal symmetry & spectrum:
 - QCD in isolation (no dilaton)
 - Embedding in complete theory (Planck scale)
 & SSB of global or local conformal symmetry

Questions

- ▶ How far is the complete theory from perturbation theory or large-N?
 - I) Interplay of confinement and chiral symmetry
 - II) Consequences of removing supersymmetry
- Is there a preconformal regime ?
- ▶ Is there a non-trivial UVFP?

Phenomenologically Appealing if:

- Conformal Window @ small Nf
- Large anomalous dimensions
- Exist (parametrically) light scalars

Outline

- ▶ The scalar glueball anomalous dimension
- ▶ The lower edge of the conformal window

NUNES DA SILVA, EP, ROBROEK ARXIV: 1506.06396

Question

How far is the complete theory from perturbation theory or large-N?

Trace anomaly of QCD

$$T^{\mu}_{\mu} = \frac{\beta(\alpha)}{16\pi\alpha^2} \operatorname{Tr}(G^2) + \text{fermion mass contribution}$$

$$\beta(\alpha) \equiv \frac{d\alpha(\mu)}{d\ln\mu} \qquad \alpha \equiv \frac{g^2}{4\pi}$$

Scaling of a quantum operator

$$\frac{dO}{d\ln\mu} = d_OO \quad O(\mu) \sim \mu^{d_O} \qquad d_O = d_c + \gamma_O$$

Non renormalization of T^{μ}_{μ} implies $d_{T^{\mu}_{\mu}}=4$ in d=4

$$d_G = 4 - \beta'(\alpha) + \frac{2}{\alpha}\beta(\alpha)$$
 $\gamma_G = -\beta'(\alpha^*)$ IRFP

Line of IR fixed points

Perturbation Theory:
$$\beta(\alpha) = -\alpha \sum_{l=1}^{\infty} b_l \alpha^l$$

	n=2		n = 3		n=4		
N_f	$\alpha_{\mathrm{IR},n}$	$\beta'(\alpha_{\mathrm{IR},n})$	$\alpha_{{\rm IR},n}$	$\beta'(\alpha_{\mathrm{IR},n})$	$\alpha_{\mathrm{IR},n}$	$\beta'(\alpha_{{\rm IR},n})$	
6	-	-	12.992	84.646	-	-	
7	-	-	2.453	5.956	-	-	
8	-	-	1.464	2.654	1.552	1.784	INCREASING
9	5.237	4.169	1.027	1.472	1.070	1.460	$ \gamma_G $
10	2.21	1.522	0.764	0.869	0.815	0.851	1 701
11	1.23	0.706	0.578	0.513	0.626	0.496	
12	0.754	0.360	0.435	0.296	0.470	0.281	

Two loops:
$$\alpha_{IR,2} = -b_1/b_2$$
 $\beta'(\alpha_{IR,2}) = -b_1^2/b_2$

Endpoint zero* is where b₂ changes sign, i.e., $\alpha_{IR,2} \rightarrow \infty$

^{*} Zero is necessary but not sufficient condition

Compare with exact large-N QCD beta-function in the Veneziano limit [BOCHICCHIO '13]

c(g) contains an anomalous dimension term not present in SQCD

Lower edge of CW found at $N_f/N = 5/2$ where quantum instability of glueball kinetic term sets in [BOCHICCHIO ARXIV:1312:1350]

NB: Condition for zero at the lower edge of CW is (and must be) renormalisation scheme independent

Plausible picture

SQCD	$N_c + 2 \leq N_f \leq 3N_c/2$ free magnetic phase	cusp in RG flow may occur
QCD	no such phase	no cusp (differentiable flow)

The large-N beta-function suggests that the two-loop singularity (b₂=0, $\alpha_{IR,2} \rightarrow \infty$) is an artifact of n-loop truncated perturbation theory.

Learn from (large-N) Yang-Mills:

A RG scheme "constructed" where the canonical coupling coincides with the physical coupling that saturates

$$V(r) = \sigma r - \frac{g_{phys}^2(1/r)}{4\pi r}$$

breaks conformal symmetry

If RG transformation exists, it suggests that zeros in the beta-function can occur below the conformal window

Fate of the anomalous dimension for $N_f \searrow N_f^c$

• Perturbation theory predicts an increasing $|\gamma_G|$ ($|\beta'(\alpha_*|)$

▶ The large-N QCD beta-function in the Veneziano limit reproduces the two-loop result up to $O(I/N^2)$, but plausibly cures singularities.

What happens for a UV-IR fixed-point merging?

$$\beta(\alpha, N_f) = (N_f - N_f^c) - (\alpha - \alpha^c)^2$$

 $\beta'(\alpha^c) = 0$, a local maximum at N_f^c

Its magnitude DECREASES for $N_f \searrow N_f^c$

The scalar glueball anomalous dimension can discriminate between the two mechanisms

Identify the lower edge of the CW with a lattice formulation of the theory (Euclidean action for YM+ N_f) that preserves chiral symmetry

Strategy:

Use observable(s) that undergo a phase transition — other observables are likely to change smoothly across the endpoint

This study:

Order parameter of chiral symmetry breaking (xSB) (Chiral symmetry restored if conformal symmetry realized)

3 signatures: Nf dependence

Nt dependence

Exotic phase at nonzero fermion mass

Line of bulk (T=0) chiral symmetry breaking phase transitions for $N_f \searrow N_f^c$

[ARXIV:1506.06396]

The N_f dependence of the red line is a leading order effect separating phases with different symmetries: larger N_f implies enhanced screening

Line of bulk (T=0) chiral symmetry breaking phase transitions for $N_f \searrow N_f^c$

[ARXIV:1506.06396]

The red line is the $N_t=1/(aT) o \infty$ limit of an N_t -finite family of curves

Red points from sequence $N_f = 12,...,7$: am=0.01 V=16c32, 12c24

NB: Exotic phase preserves exact chiral symmetry in massless limit (edge displayed for $N_f = 12$, 9, 8 nonzero fermion mass)

Eight versus Six

- ▶ Chiral condensate (red)
- ▶ Re(Polyakov loop) (green)

$$ightharpoonup R_{\pi} = rac{\partial \langle \bar{\psi}\psi \rangle / \partial m_{valence}}{\langle \bar{\psi}\psi \rangle / m}$$
 connected (blue)

Conclusions I

- ▶ The lattice study carefully selects observables that undergo a sharp change due to underlying symmetries. (NB: Finite volume effects have been easily excluded)
- ▶ Results are consistent with the lower edge of the conformal window between Nf=8 and Nf=6
- ▶ This is in agreement with perturbation theory, and remarkably close to large-N QCD in the Veneziano limit prediction based on the properties of glueball dynamics.
- It is also a direct comparison between observables sensitive to chiral symmetry and observables sensitive to confinement.

Conclusions II

- Best observables to probe the lower edge:
 n-point functions sensitive to string tension (confinement)
 n-point functions sensitive to chiral symmetry
 topological quantities
- Importantly, the scalar glueball anomalous dimension discriminates between different mechanisms for the loss of conformality:
- If its magnitude increases for decreasing Nf, according to perturbation theory, then UV-IR merging (the simplest mechanism that generates BKT/Miransky scaling) is not realised in QCD.