simulations 0000 running coupling

anomalous dimension

spectrum 000000 remarks

4+8 flavors: a model for BSM dynamics

Oliver Witzel Higgs Centre for Theoretical Physics

KITP, Santa Barbara, CA, September 24, 2015

[JETP 120 (2015) 3, 423] [PoS Lattice2014 254] [CCP proceedings 2014]

(a detailed paper is in preparation)

simulations

running coupling

anomalous dimension

spectrum 000000 remarks 00

motivation

 motivation
 simulations
 running coupling
 anomalous dimension
 spectrum
 remarks

 •0000000
 0000
 000
 00
 0000
 00
 00

Ingredients

- Dynamical model arising from strong interactions
- ▶ Higgs boson emerging from these new interactions
- ▶ 3 Goldstone bosons (W^{\pm} , Z)
- \blacktriangleright Light 0⁺⁺ state well separated from other hadrons
- Other states experimentally to be observed
 - \rightarrow Maybe 2 TeV vector state (ϱ)

motivation	simulations	running coupling	anomalous dimension	spectrum	remarks
0000000	0000	0000	00	000000	00
Candida	tes				

- ▶ 2 flavor sextet model [see Talk by Julius Kuti (LatHC)] → Maybe conformal? [see Talks by Yuzhi Liu and Daniel Nogradi]
- ▶ 8 flavor in the fundamental representation
 [see Talks by George Flemming (LSD) and Hiroshi Ohki (LatKMI)]
 → Maybe conformal? [see Talk by Elisabetta Pallante]
- and probably more . . .

 These theories have several common features but explore with large efforts only a very specific model

motivation	
00000000	

simulations 0000 running coupling

anomalous dimension

spectrum 000000 remarks

Common features

motivation	simulations	running coupling	anomalous dimension	spectrum	remarks
0000000	0000	0000	00	000000	00

A more general model to study near conformal behavior

SU(3) gauge theories with N_f fundamental fermions

► Staggered fermions come in multiplicities of 4 (no rooting) \Rightarrow 4, 8, 12, 16 are preferred N_f

motivation
00000000

remarks

Our model: 4+8 flavors

- ▶ SU(3) gauge theory with 4 light and 8 heavy flavors
- ► General model to study near conformal behavior
 - \rightarrow phenomenologically more viable: 2+10, 2+8, or 2+6 flavors
- Light quark mass m_ℓ will be chirally extrapolated
- Heavy quark mass m_h is additional free, continuous parameter
- Sufficiently well known limits
 - $\rightarrow m_h \rightarrow \infty$: 4-flavors
 - $ightarrow m_h
 ightarrow m_\ell$: 12-flavors
- Has a continuum limit
 - \Rightarrow Something interesting must happen
 - \Rightarrow We can tune to be near the conformal window

in collaboration with

Richard Brower, Anna Hasenfratz, Claudio Rebbi and Evan Weinberg

motivation	simulations	running coupling	anomalous dimension	spectrum	remarks
00000000	0000	0000	00	000000	00

Continuum limit in 4+8 flavors

- We have 3 parameters: β , m_{ℓ} , and m_h
- \blacktriangleright First we take the chiral limit, i.e. $m_\ell \rightarrow 0$ and only 2 parameters remain
- ▶ Now we take the continuum limit by sending *together* $\beta \rightarrow \infty$ and $m_h \rightarrow 0$

▶ In practice this may be a challenging tuning exercise

motivation 00000000

simulations

running coupling

anomalous dimension

spectrum

remarks

Expected dynamics in the $m_{\ell} = 0$ limit

Sketch: [Del Debbio and Zwicky 2010]

Similar to mass-deconformed conformal 12-flavor system

4-flavor infrared dynamics (dashed line) different to QCD-like 4-flavors

- Walking regime is driven by
 - \Rightarrow hyper scaling in m_h for all hadrons for $m_\ell \rightarrow 0$
- \Rightarrow ratios of hadron masses constant w.r.t. m_h (if $m_\ell \rightarrow 0$)
 - \rightarrow maybe the 0⁺⁺ is an exception

motivation	simulations	running coupling	anomalous dimension	spectrum	remarks
0000000	0000	0000	00	000000	00

Lattice setup

Setup

- SU(3) gauge group
- ► Fundamental adjoint gauge action with β_a = −β/4 [Cheng et al. 2013][Cheng et al. 2014]
- ▶ nHYP smeared staggered Fermions [Hasenfratz et al. 2007]
- ▶ Most simulations/measurements performed with FUEL [J. Osborn]
- Goals
 - Explore near conformal or conformal dynamics
 - ▶ Compute the iso-singlet 0⁺⁺

References

[JETP 120 (2015) 3, 423] [PoS Lattice2014 254] [CCP proceedings 2014]

(a detailed paper is in preparation)

simulations

running coupling

anomalous dimension

spectrum 000000 remarks 00

simulations

motivation
00000000

simulations •000

running coupling

anomalous dimension

spectrum

remarks

Performed simulations

Symbols indicate volumes and colors finite volume effects

otivation	
0000000	

m

running coupling

anomalous dimension

spectrum 000000 remarks

Input masses in a_{\bigstar} units

simulations

0000

- 12 flavor data fall on a diagonal line pointing to the origin
- ▶ In the $m_{\ell} \rightarrow 0$ limit hyperscaling suggests a small spread of $a_{\bigstar} m_h$ for our choices of m_h
- ► Good idea(s) still needed to explain a★ mℓ dependence

Frequency of tunneling slows down and amplitude of oscillations reduces

- \rightarrow when reducing m_h for fixed m_ℓ
- \rightarrow when reducing m_{ℓ} for fixed m_h (milder effect)

simulations 0000 running coupling

anomalous dimension

spectrum 000000 remarks 00

running coupling

otivation	
0000000	

m

running coupling

anomalous dimension

spectrum 000000 remarks

Running coupling form gradient flow

► Gradient flow defines the renormalized coupling [Narayanan and Neuberger 2006] [Lüscher 2010]

 $g^2_{GF}(\mu=1/\sqrt{8t})=t^2\langle E(t)
angle/\mathcal{N}$

t: flow time; E(t) energy density

• g_{GF}^2 is used for scale setting

$$g_{GF}^2(t = t_0) = 0.3/N$$
 ("t₀-scale")

Can determine renormalized running coupling on large enough volumes and large enough flow times in the continuum limit

motivation	simulations	running coupling	anomalous dimension	spectrum	remarks
0000000	0000	0000	00	000000	00

Running coupling form gradient flow: 4+8 flavors

Sketch: [Del Debbio and Zwicky 2010]

remarks

simulations

running coupling

anomalous dimension

spectrum 000000 remarks

anomalous dimension

motivation	simulations	running coupling	anomalous dimension	spectrum	remarks
0000000	0000	0000	•0	000000	00

Anomalous dimension

► We can predict a scale dependent anomalous dimension γ_{eff}(µ) form the mode number of the Dirac operator

 $\mu(\lambda) \propto \lambda^{4/(\gamma_{
m eff}(\lambda)+1)}$ with $\lambda \propto \mu$

→ For large $\mu \sim \lambda$: $\gamma_{\text{eff}}(\mu)$ matches perturbative value → At $\lambda = 0$: $\gamma_{\text{eff}}(\mu)$ matches universal IRFP, if the system is conformal;

meaningless once chiral symmetry breaks

Anomalous dimension is not large but still O(1) and can persist

For $m_h \rightarrow 0$ it approaches the value corresponding to the 12 flavor IRFP $\gamma_{\rm IRFP}^{\rm 12f} = 0.235(15)$

remarks

simulations 0000 running coupling

anomalous dimension

spectrum

remarks 00

spectrum

24 / 33

simulations 0000 running coupling

anomalous dimension

spectrum remarks •00000 00

Connected spectrum: M_{π} and M_{ϱ}

- ▶ Rescaling m_ℓ , M_π and M_ϱ by a_\bigstar
- ▶ M_π and M_ϱ more or less degenerate for different m_h
- M_{ϱ} has noticeable downward curvature

motivation	
00000000	

simulations 0000 running coupling

anomalous dimension

spectrum

remarks

Are we chirally broken?

- ▶ In 4 flavors (QCD-like) we know the ratio diverges
- ▶ In 12 flavors an almost constant ratio is observed [Cheng at al. 2014]

- as expected for conformal systems

simulations

running coupling

anomalous dimension

spectrum remarks 00●000 00

Disconnected spectrum: the 0^{++} scalar

Numerical measurement on the lattice

▶ 6 U(1) sources with dilution on each time slice, color and even/odd spatially

 \blacktriangleright Variance reduced $\langle \overline{\psi}\psi\rangle$

Analysis strategy

- Correlated fit to both parity states (staggered)
- ► Vacuum subtraction introduces very large uncertainties
- Advantageous to fit additional constant

$$C(t) = c_{0^{++}} \cosh\left(M_{0^{++}}\left(rac{N_{ au}}{2} - t
ight)
ight) + c_{\pi_{
m sc}}(-1)^t \cosh\left(M_{\pi_{
m sc}}\left(rac{N_{ au}}{2} - t
ight)
ight) +
u$$

• Equivalent to fitting the finite difference: C(t+1) - C(t)

motivation si 00000000 d

simulations 0000 running coupling

anomalous dimension

spectrum 000●00 remarks

Comparison of $D_{\ell\ell}$ and $D_{\ell\ell} - C_{\ell\ell}$

motivation	simulations	running coupling	anomalous dimension	spectrum	remarks
00000000	0000	0000	00	000000	00

 F_{π} , M_{π} , $M_{
ho}$, and $M_{0^{++}}$ for $m_h=0.060$ and $m_h=0.080$

▶ $m_{\ell} = 0.003$: $F_{\pi}L = 0.027 \cdot 48 = 1.3$ ▶ $m_{\ell} = 0.003$: $F_{\pi}L = 0.034 \cdot 36 = 1.2$ ▶ Lines solely to guide the eve!

motivation	simulations	running coupling	anomalous dimension	spectrum	remarks
0000000	0000	0000	00	00000	00

Pion taste splitting

- ► Taste splitting is artifact of staggered fermions
- ▶ In QCD modern, smeared staggered actions show small taste splitting effects
- ▶ Taste splitting is typically constant w.r.t. m_{ℓ}

▶ Taste splitting increases for larger m_ℓ when reducing m_h

simulations 0000 running coupling

anomalous dimension

spectrum 000000 remarks

remarks

motivation	simulations	running coupling	anomalous dimension	spectrum	remarks
0000000	0000	0000	00	000000	•0

Concluding remarks

- ► A great model to explore near conformal dynamics by varying the continuous parameter m_h
- Limiting cases of 4 and 12 flavors help to understand what is happening
- ► 4+8 is chosen for convenience of unrooted staggered fermions; investigating 2+10, 2+8, or 2+6 flavors with e.g. Wilson fermions is highly intersting

▶ Non-QCD like features

- → Running coupling develops a "shoulder"
- \rightarrow Chiral behavior can be tuned with m_h
- \rightarrow Curvature of M_{ϱ}
- \rightarrow Non-constant taste splitting
- ightarrow The 0⁺⁺ is light: $M_{0^{++}} < M_{\varrho}, 2M_{\pi}$

motivation	simulations	running coupling	anomalous dimension	spectrum
0000000	0000	0000	00	000000

Like in many other theories we find $M_{ ho}/F_{\pi}\sim 8$

 \Rightarrow setting the scale with $F_{\pi}=242$ GeV results in a ~ 2 TeV vector state!

remarks

appendix LSD: 8 fundamental flavors

L—s – D Lattice Strong Dynamics Collaboration

Lattice scales: 8 flavor

Running coupling form gradient flow: 8 flavors

Running coupling form gradient flow: 8 flavors

F_{π} , M_{π} , $M_{ ho}$, $M_{ m nucleon}$ and $M_{0^{++}}$ for 8 flavors

 $\mathbf{F}_{\ell} = 0.00222: \ F_{\pi}L = 0.027 \cdot 48 = 1.3$

Connected spectrum not too happy with "naive assumptions for fit"

Pion taste splitting

