Mass generation without symmetry breaking: staggered quarks

Simon Catterall (Syracuse)

KITP, 11 August

Kitaev-Wen-Xu from staggered fermions ...?

- CMT models predict *N_f* = 16 Majorana fermions can be gapped without generating a bilinear condensate via specially chosen four fermi interactions
- Revisit old DWF constructions of lattice chiral gauge theories and try to decouple mirror fermions ...?
- Try to understand how this works in Euclidean lattice path integrals. Connection to staggered fermions ? Structure of 4 fermi term ...
- Start: Chandrasekharan and Ayyer, 1410.6474. Plus some additional work ...

Model

Take *reduced staggered fermions* equipped with additional *SO*(4) symmetry.

$$S = \sum_{x} \sum_{\mu} \eta_{\mu}(x) \psi^{a}(x) \Delta^{ab}_{\mu} \psi^{b}(x) - \frac{1}{8} G^{2} \sum_{x} \epsilon_{abcd} \psi^{a}(x) \psi^{b}(x) \psi^{c}(x) \psi^{d}(x)$$

Single component fermions resulting from spin diagonalization of naive fermions. Truncate so $\psi, \overline{\psi}$ defined only on even/odd parity sites ...

 2×4 Dirac fermions in naive continuum limit

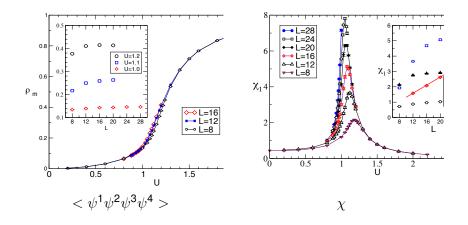
No SO(4) invariant bilinear possible

Simon Catterall (Syracuse)

Mass generation without symmetry breaking

Numerical results in 3D

1410.6474 (note: *SU*(4) not *SO*(4) symmetry.)



Auxiliary fields

Initial results obtained using worm algorithm.

To attempt (R)HMC simulation need to replace four fermi term by Yukawa. Note: pfaffian positive for SO(4)

Notice:

$$\epsilon^{abcd}\psi^{a}\psi^{b}\psi^{c}\psi^{d} = \left(\psi^{a}\psi^{b} + \frac{1}{2}\epsilon^{abcd}\psi^{c}\psi^{d}\right)^{2}$$

Introduce antisymmetric self-dual auxiliary scalar ϕ^{ab}_+

$$S_4=G\psi^a\psi^b\phi^{ab}_++rac{1}{2}(\phi^{ab}_+)^2$$

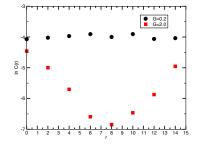
Note: $SO(4) = SO(3) \times SO(3)$ with ϕ_+^{ab} transforming as fundamental under one of the SO(3)'s

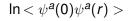
Dynamics

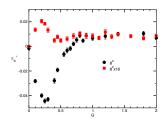
- For large *G* expect auxiliary can develop vev four fermion condensate. Vacuum manifold is *S*².
- Boundary of system is also *S*². Hence topologically stable configurations possible (hedgehogs).
- Hedgehogs suppressed (action diverges linearly with size) but neutral combinations HH possible.

Conjecture that vacuum populated by condensate of such objects – restores *SO*(4) while ensuring that fermions propagating in such a background acquire a mass

Numerical results from (R)HMC: 3D







Order parameter σ_+ Add symmetry breaking field m = 0.1.

Four dimensions ? General questions ...

In 4D mapping is $S^3 \to S^2$. Topological fields are Hopf defects.

Summary:

- Model has same number of fermions as CMT constructions. Similar four fermion interaction. Key feature: no symmetric fermion bilinear possible. Explicit connection to CMT constructions ?
- 3D See dynamical mass generation and no symmetry breaking. Continuous phase transition with non Heisenberg critical exponents $\eta \sim 0.8 0.9$
- Does this survive to 4D/5D ?
- Can one gauge SO(4) and dispense with four fermi ?
- Can this mechanism be used to revisit the problem of constructing chiral lattice gauge theories ?

Backup: Hedgehogs and Hopf defects

$$\phi^{a}_{\text{hedgehog}} = vf(r)\hat{x}_{a}$$

where $\hat{x}_a = x_a/r$ and

$$f(r) o 0 \quad r o 0$$

 $f(r) o 1 \quad r o \infty$
 $\phi_{\text{hopf}} = vf(r) \begin{pmatrix} 2(\hat{x}_1\hat{x}_3 + \hat{x}_2\hat{x}_4) \\ 2(\hat{x}_2\hat{x}_3 - \hat{x}_1\hat{x}_4) \\ \hat{x}_1^2 + \hat{x}_2^2 - \hat{x}_3^2 - \hat{x}_4^2 \end{pmatrix}$

In both cases $\phi^a \phi^a = v^2$ as $r \to \infty$.

(1)