Semileptonic *B*-meson decay phenomenology with lattice QCD

Ran Zhou

Fermilab (On behalf of the FNAL/MILC Collaborations)

09/03/2015

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theoretical Motivation

- *B*-meson semileptonic decays through tree-level diagram $(b \rightarrow u l \nu)$. For example, $B \rightarrow \pi l \nu$, $B_s \rightarrow K l \nu$
- These processes are used to determine CKM matrix elements ($|V_{ub}|$ from $B \to \pi I \nu$ and $B_s \to K I \nu$, $|V_{cb}|$ from $B \to D I \nu$).

Theoretical Motivation

- B-meson semileptonic decays through loop-level diagram $(B \to K(\pi) l^+ l^-, B \to K(\pi) \nu \bar{\nu})$
- Standard Model contribution is suppressed in the loop-level diagram. (Suitable processes to detect physics BSM)
- Studied by many experiment groups (BABAR, Belle, CDF, LHCb, B-factory etc.)

Standard Model prediction

The effective Hamiltonian of the $b \rightarrow d(s)I^+I^-$ transition under OPE with α_s and Λ/m_b corrections is:

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{td(s)}^* V_{tb} \sum_{i=0}^{10} C_i(\mu) O_i(\mu) + \dots$$
(1)

the Standard Model prediction can be written in a generic form:

Theo. pred. = (prefactors) × (CKMfactor) ×
$$\langle f | \hat{O} | i \rangle$$
 (2)

- Prefactors contain the Wilson coefficients (short distance physics).
- CKM factor depends on the processes.
- Lattice QCD calculates $\langle f | \hat{O} | i \rangle$ non-perturbatively from first principle. (long distance physics)
- We use B-meson semileptonic decays to extract CKM factor or detect new physics.

(日) (周) (三) (三)

Hadronic matrix elements and form factors

• Matrix elements in $B \to K(\pi)II$ and $B \to \pi I\nu$ processes: $\langle B(p)|\bar{b}\gamma^{\mu}s|K(k)\rangle, \langle B(p)|\bar{s}\sigma^{\mu\nu}b|K(k)\rangle$

$$\begin{split} \langle \mathcal{B}(p) | \bar{b} \gamma^{\mu} s | \mathcal{K}(k) \rangle &= f_{+}(p^{\mu} + k^{\mu} - \frac{m_{B}^{2} - m_{K}^{2}}{q^{2}} q^{\mu}) + f_{0} \frac{m_{B}^{2} - m_{K}^{2}}{q^{2}} q^{\mu} \\ &= \sqrt{2m_{B}} \left[f_{\parallel} \frac{p^{\mu}}{m_{B}} + f_{\perp} k_{\perp}^{\mu} \right] \\ &\left\{ f_{\parallel}(E_{K}) = \frac{\langle \mathcal{B}(p) | \bar{b} \gamma^{0} s | \mathcal{K}(k) \rangle}{\sqrt{2m_{B}}} \\ f_{\perp}(E_{K}) = \frac{\langle \mathcal{B}(p) | \bar{b} \gamma^{i} s | \mathcal{K}(k) \rangle}{2\sqrt{m_{B}}} \frac{1}{p_{i}} \\ &\left\{ f_{0}(E_{K}) = \frac{2m_{B}}{m_{B}^{2} - m_{K}^{2}} \left[(m_{B} - E_{K}) f_{\parallel}(E_{K}) + (E_{K}^{2} - m_{K}^{2}) f_{\perp}(E_{K}) \right] \\ f_{+}(E_{K}) = \frac{1}{\sqrt{2m_{B}}} \left[f_{\parallel}(E_{K}) + (m_{B} - E_{K}) f_{\perp}(E_{K}) \right] \end{split}$$

Hadronic matrix elements and form factors

Semileptonic $B \rightarrow K$ transition from tensor current:

$$q_{\nu}\langle K(k)|\bar{s}\sigma^{\mu\nu}b|B(p)\rangle = \frac{if_{T}}{m_{B}+m_{K}}\left[q^{2}(p^{\mu}+k^{\mu})-(m_{B}^{2}-m_{K}^{2})q^{\mu}\right]$$

Solve for f_T :

$$f_T = \frac{m_B + m_K}{\sqrt{2m_B}} \frac{\langle K(k) | ib\sigma^{0i}s | B(p) \rangle}{\sqrt{2m_B}k^i}$$

→ Ξ →

Lattice ensembles used in $B \to K(\pi)$ works

Figure: Ensembles of QCD gauge field configurations used in the simulations.

Ran Zhou (Fermilab)

f_{\parallel} , f_{\perp} chiral-continuum extrapolations

Figure: Chiral-continuum extrapolation on f_{\parallel} (left).

- The heavy-meson chiral perturbation theory (HMChPT) is used as an effective theory of QCD in the extrapolation.
- Lattice-QCD simulations are in the low $E_{K(\pi)}$ region.

z-expansion on $B \to K(\pi)$ semileptonic decay form factors

The from factors from chiral-continuum extrapolations are valid only in low E_k regime, because

- Form factors computed on the lattice are mostly in low *E_k* regime. (Data range is limited.)
- ChPT is valid only in low E_k regime. (Extrapolation range is limited.) q^2 and $E_{K(\pi)}$ relation:
 - Form factors are functions of E_k or $q^2 = (p_B - p_K)^2 = m_B^2 + m_K^2 - 2m_B E_K$
 - We have extrapolated the continuum form factors in the high q^2 region.
 - Our continuum form factors are in the range of $17 \sim q_{
 m max}^2$.

We need z-expansion as a model independent extrapolation method to get form factors in low q^2 range.

イロト 不得下 イヨト イヨト 二日

z-expansion on $B \to K(\pi)$ semileptonic decay form factors $q^2 = (p_B - p_K)^2 = m_B^2 + m_K^2 - 2m_B E_K$

• z-expansion maps q^2 to z by:

$$z(q^2, t_0) = rac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}, \qquad t_\pm = (m_B \pm m_K)^2$$

• Choose $t_0 = t_+ \left(1 - \sqrt{1 - \frac{t_-}{t_+}}\right)$ such that z << 1

• Expand form factors as a function of z.

Ran Zhou (Fermilab)

z-expansion on $B \to K(\pi)$ semileptonic decay form factors

We expand form factors as a function of z in BCL formalism. (PRD **79**, 013008)

$$egin{aligned} f_{+,T}(q^2) &= rac{1}{P(q^2)} \sum_{k=0}^{K-1} b_k \left[z^k - (-1)^{k-K} rac{k}{K} z^K
ight], \ f_0(q^2) &= rac{1}{P(q^2)} \sum_{k=0}^{K-1} b_k z^k, \end{aligned}$$

• $P(q^2) = 1 - \frac{q^2}{m_R^2}$ and m_R is used to count the pole in form factors.

- Unitarity constrains ensure $\sum_{j,k=0}^{\infty} B_{jk} b_j b_k \leq 1$
- We found three or four terms are enough for a good description of the lattice data and well controlled truncation error.

z-expansion on $B \rightarrow KII$ form factors

z-expansion fit result as a function of $z = z(q^2)$.

09/03/2015 12 / 34

z-expansion on $B \rightarrow KII$ form factors

z-expansion fit result as a function of q^2 .

Figure: Comparison of the form factors. HPQCD and LCSR results are from arXiv:1006.4945 and arXiv:1306.2384.

Semileptonic B-meson decay phenomenology

Outline:

Tree-level process:

• $B \rightarrow \pi I \nu$ and $|V_{ub}|$ determination. (arXiv:1503.07839)

Loop-level process:

•
$$B \rightarrow K l^+ l^- (l = e, \mu, \tau)$$

•
$$B o \pi l^+ l^ (l = e, \mu, \tau)$$
 (arXiv:1503.07839, arXiv:1507.01618)

•
$$B \to \pi \nu \bar{\nu}, \ B \to K \nu \bar{\nu}$$

(人間) トイヨト イヨト

 $B
ightarrow \pi I
u$ semileptonic decay and $|V_{ub}|$

Figure: $B \rightarrow \pi l \nu$ exclusive decay process.

$$\begin{aligned} \frac{d\Gamma}{dq^2} &\propto |V_{ub}|^2 |f_+(q^2)|^2 \quad \text{Exp.} \\ \langle \pi | V^{\mu} | B \rangle &= f_+(q^2) \left[p_B^{\mu} + p_{\pi}^{\mu} - \frac{M_B^2 - M_{\pi}^2}{q^2} q^{\mu} \right] + f_0(q^2) \frac{M^2 - m^2}{q^2} q^{\mu} \\ q^2 &= (p_B - p_{\pi})^2 = M_B^2 + M_{\pi}^2 - 2M_B M_{\pi} E_{\pi} \end{aligned}$$

Ran Zhou (Fermilab)

$B \rightarrow \pi I \nu$ semileptonic decay and $|V_{ub}|$

Figure: Combined fit of lattice-QCD form factors and experimental data. (arXiv:1503.07839) The combined fit of experimental data and lattice-QCD data significantly reduced the form factor's error at low q^2 .

 $B
ightarrow \pi l
u$ semileptonic decay and $|V_{ub}|$

Three ways to determine $|V_{ub}|$ via *B*-meson decay $(b \rightarrow u)$:

- Leptonic decay $(B \rightarrow \tau \nu)$ Lattice QCD can provide decay constant (f_B) .
- Semileptonic inclusive process (no specified final state): $B \rightarrow X_u l \nu$ Perturbation theory is applicable, but it has model dependent error.
- Semileptonic exclusive process (specify a final state): $B \rightarrow \pi I \nu$ etc. Lattice QCD can help in the determination of form factors.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $B
ightarrow \pi l
u$ semileptonic decay and $|V_{ub}|$

This work + BaBar + Belle, $B \rightarrow \pi l v$ Fermilab/MILC 2008 + HFAG 2014, $B \rightarrow \pi l v$ RBC/UKQCD 2015 + BaBar + Belle, $B \rightarrow \pi l v$ Imsong et al. 2014 + BaBar12 + Belle13, $B \rightarrow \pi l v$ HPQCD 2006 + HFAG 2014, $B \rightarrow \pi l v$ Detmold et al. 2015 + LHCb 2015, $\Lambda_h \rightarrow plv$ BLNP 2004 + HFAG 2014, $B \rightarrow X_{u} lv$ UTFit 2014, CKM unitarity

Figure: Comparison of the $|V_{ub}|$ results from different determinations. (arXiv:1503.07839)

$B \rightarrow \pi I \nu$ semileptonic decay and $|V_{ub}|$

Summary:

- The current lattice QCD+experimental data combined analysis gives very accurate form factors(f_+ , f_0) in the whole q^2 range for $B \rightarrow \pi I \nu$ semileptonic decay.
- The small tension ($\sim 2\sigma$) between inclusive and exclusive determination of $|V_{ub}|$ still exists in the more accurate result.
- Two ongoing projects about $B \rightarrow \pi l \nu$ by FNAL/MILC (HISQ val+HISQ sea) and HPQCD (HISQ val+Asqtad sea) will provide more results for comparison in the future.
- The studies on the $B_s \rightarrow K l \nu$ process can also provide an independent determination of $|V_{ub}|$ in the future. (arXiv:1406.2279, arXiv:1312.3197)

イロト イポト イヨト イヨト

$B ightarrow \pi(K) I^+ I^-$ semileptonic decay

- The $B \rightarrow \pi I^+ I^-$ decay was first observed in 2012 by LHCb (arXiv:1210.2645).
- The branching function of the $B o \pi \mu^+ \mu^-$ process is

$$\mathcal{B}(B^+ o \pi^+ \mu^+ \mu^-) ~=~ [2.3 \pm 0.6 (\textit{stat.}) \pm 0.1 (\textit{syst.})] imes 10^{-8} \, (3)$$

• The ratio of $B^+ o \pi^+ \mu^+ \mu^-$ to $B^+ o K^+ \mu^+ \mu^-$ is

$$\frac{\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)} = 0.053 \pm 0.014 (stat.) \pm 0.001 (syst.)$$
(4)

More detailed results are in arXiv:1509.00414.

Ran Zhou (Fermilab)

Theoretical results of the $B \rightarrow \pi I^+ I^-$ semileptonic decay

Some papers on the standard Model predictions (The form factors were calculated in different methods.):

- Wen-Fei Wang et al. 1207.0265 (QCD factorization)
- Ahmed Ali *et al.* <u>1312.2523</u> (lattice, LCSR, $B \rightarrow \pi l \nu$ exp.)
- R. N. Faustov et al. <u>1403.4466</u> (relativistic quark model)
- Wei-Shu Hou et al. <u>1403.7410</u> (LCSR)
- Zuo-Hong Li et al. <u>1411.0466</u> (LCSR)
- Christian Hambrock et al. 1506.07760 (LCSR)

Compared with these works, we use

- The most recent f_+ and f_0 from MILC(asqtad) lattice ensembles and experiments (arXiv:1503.07839).
- First result of f_T in $B \rightarrow \pi l^+ l^-$ process from lattice-QCD calculation (arXiv:1507.01618)
- NNLO Wilson coefficients (arXiv:0512066).

(日) (周) (三) (三)

Standard Model predictions

- Left: FNAL/MILC $B \rightarrow \pi$ lattice data + exp (arXiv:1503.07839)
- Right: (arXiv:1312.2523): old FNAL/MILC $B \rightarrow \pi$ lattice data (arXiv:0811.3640) + HPQCD's $B \rightarrow K$ lattice data(arXiv:1306.2384) + exp + LCSR + model

Standard Model predictions

Table: Standard-Model predictions for $B^+ \rightarrow \pi^+ \ell^+ \ell^-$ partial branching fractions. Errors shown are from the CKM elements, form factors, variation of the high and low matching scales, and the quadrature sum of all other contributions, respectively. (arXiv:1507.01618)

$[q_{\min}^2, q_{\max}^2]$	${\sf BR}(B^+ o \pi^+ \ell)$	$\ell^+\ell^-$) × 10 ⁹
(GeV^2)	$\ell=e,\mu$	$\ell = au$
[0.1, 2.0]	1.81(11,24,6,2)	
[2.0, 4.0]	1.92(11,22,6,3)	
[4.0, 6.0]	1.91(11,20,6,3)	
[6.0, 8.0]	1.89(11,18,5,3)	
[15, 17]	1.69(10,13,3,5)	1.11(7,8,2,4)
[17, 19]	1.52(9,10,2,4)	1.25(8,8,2,3)
[19, 22]	1.84(11,11,3,5)	1.93(12,10,4,5)
[22, 25]	1.07(6,6,3,3)	1.59(10,7,4,4)
[1,6]	4.78(29,54,15,6)	
[15, 22]	5.05(30,34,7,15)	4.29(26,25,7,12)
$[4m_{\ell}^2, 26.4]$	20.4(1.2,1.6,0.3,0.5)	

09/03/2015 23 / 34

< ロ > < 同 > < 三 > < 三

Standard Model predictions of $B \rightarrow K I^+ I^-$ process

Figure: Standard-Model differential branching fraction (gray band) for $B \rightarrow K\mu^+\mu^-$ decay (left) and $B \rightarrow K\tau^+\tau^-$ (right) using the form factors obtained from lattice QCD. Experimental results for $B \rightarrow K\mu^+\mu^-$ are from Belle (arXiv:0904.0770), CDF (arXiv:1107.3753), BaBar (arXiv:1204.3933), and LHCb (arXiv:1403.8044). The BaBar, Belle, and CDF experiments report isospin-averaged measurements, while LHCb separately reports results for B^+ and B^0 decays.

• • • • • • • • • • • •

Ratios of $B \rightarrow \pi II/B \rightarrow KII$ observables

The Standard-Model predicts the ratios between $B \rightarrow \pi II$ and $B \rightarrow KII$ partially-integrated branching ratios:

$$\frac{\mathsf{BR}(B^+ \to \pi^+ \mu^+ \mu^-)}{\mathsf{BR}(B^+ \to K^+ \mu^+ \mu^-)} = \left| \frac{V_{td}}{V_{ts}} \right|^2 F^{\pi/K}$$
(5)

- The ratio can be used to be compared with experiments. (check new physics)
- This ratio privides an independent determination of the $|\frac{V_{td}}{V_{ts}}|$ (Assuming Standard-Model is correct.). The results can be compared with the $|\frac{V_{td}}{V_{ts}}|$ determined from *B* mixing or CKM fitter.
- Lattice-QCD calculation can privide $F^{\pi/K}$.

Ratios of $B \rightarrow \pi II/B \rightarrow KII$ observables

Figure: Ratio of partially-integrated branching ratios $BR(B \rightarrow \pi \ell^+ \ell^-)/BR(B \rightarrow K \ell^+ \ell^-)$ in the Standard Model using the lattice form factors, compared with experimental measurements from LHCb(arXiv:1509.00414). The errors in the Standard-Model results are dominated by the form-factor uncertainties.

Lepton flavor violation in $B \to K(\pi) II$ process

Lepton-flavor-violating effect in the $B \to K(\pi) II$ process is defined as:

$$R^{\mu,e}(q_1^2,q_2^2) = \frac{\int_{q_1^2}^{q_2^2} dq^2 \, d\mathsf{BR}(B \to K\mu^+\mu^-)/dq^2}{\int_{q_1^2}^{q_2^2} dq^2 \, d\mathsf{BR}(B \to Ke^+e^-)/dq^2},\tag{6}$$

- $R^{\mu,e}$ is close 1 in Standard Model for $B \to KII$ and $B \to \pi II$ processes.
- BaBar found $R_K^{\mu,e} = 1.00 \binom{+31}{-25}(7)$ in the union of $[0.1, 8.12] \text{GeV}^2$ and $[10.11, q_{\max}^2] \text{GeV}^2$. (arXiv:1204.3933)
- Bell found $R_K^{\mu,e} = 1.03 \binom{+19}{-6}$ in the full q^2 range. (arXiv:0904.0770)
- LHCb found $R_{K}^{\mu,e} = 0.745 \binom{+90}{-74}(36)$ which is 2.6 σ away from 1. (arXiv:1406.6482)
- New physics models and lepton flavor violation. (arXiv:1411.0565, arXiv:1508.07009, *etc.*)

イロト 不得 トイヨト イヨト 二日

Lepton favor violation in $B \to K(\pi) II$ process

Figure: Standard-Model lepton-flavor-violating ratios $(R_{K^+}^{\mu e} - 1)$ (left) and $(R_{\pi^+}^{\mu e} - 1)$ (right) for $(q_{\min}^2, q_{\max}^2) = (1 \text{GeV}^2, 6 \text{GeV}^2)$ and $(15 \text{GeV}^2, 22 \text{GeV}^2)$ using the lattice form factors. Our result is consistent with HPQCD's (arXiv:1306.0434), but different from LHCb's experimental data.

$B ightarrow K u ar{ u}$ and $B ightarrow \pi u ar{ u}$

Feynman diagrams of the $b \rightarrow s \nu \bar{\nu}$ transition (from arXiv:1303.3719):

Experimental results:

- BaBar: BR $(B^+ \to K^+ \nu \bar{\nu}) < 3.2 \times 10^{-5}$ (90% CL) (arxiv:1303.7465)
- Belle: BR $(B^+ \to K^+ \nu \bar{\nu}) < 5.5 \times 10^{-5}$ (90% CL) (arxiv:1303.3719)
- Belle: BR $(B^+ \to \pi^+ \nu \bar{\nu}) < 9.8 \times 10^{-5}$ (90% CL) (arxiv:1303.3719)

Theoretical results:

- Wolfgang Altmannshofer et al. 0902.0160 (LCSR)
- Andrzej J. Buras et al. 1409.4557 (lattice, LCSR)
- Christian Hambrock et al. 1506.07760 (LCSR)

Ran Zhou (Fermilab)

Theoretical studies of the $B \to K(\pi) \nu \bar{\nu}$

In the Standard Model, the decay rate for $B \to K(\pi)\nu\bar{\nu}$ is: (arXiv:1409.4557, arXiv:0902.0160)

$$\frac{dB(B \to \mathcal{K}(\pi)\nu\bar{\nu})}{dq^2} = 3\tau_B |N_{\mathcal{K}(\pi)}|^2 \frac{X_t^2}{(\sin^2\theta_W)^4} \rho_{\mathcal{K}(\pi)}(q^2) , \qquad (7)$$

where the numerical coefficient $N_{K(\pi)}$ depends upon the relevant CKM factors and $\rho_{K(\pi)}$ is the rescaled hadronic form factor:

$$N_{K(\pi)} = V_{tb}V_{ts(d)}^* \frac{G_F \alpha_{EW}}{16\pi^2} \sqrt{\frac{M_B}{3\pi}}, \qquad (8)$$

$$\rho_{\mathcal{K}(\pi)}(q^2) = \frac{\lambda^{3/2}(q^2)}{M_B^4} f_+^2(q^2) .$$
(9)

• The form factor f_+ is the same as in the $B \to K(\pi) l^+ l^-$ lattice-QCD calculations.

(日) (周) (三) (三)

Theoretical studies of the $B \to K \nu \bar{\nu}$ (Preliminary)

• Grey band: theoretical result from FNAL/MILC $B \rightarrow K$ form factor

• Red points: theoretical result from and lattice-QCD plus LCSR form factor results (arXiv:1409.4557).

Ran Zhou (Fermilab)

Summary

- The form factors in the semileptonic *B*-meson decay processes can be computed by lattice-QCD accurately.
- The $B \rightarrow \pi l^+ l^-$ form factors and theoretical predictions are available. (1503.07839, 1507.01618)
- The $B \rightarrow K I^+ I^-$ form factors and other theoretical predictions will be finished soon.
- Theoretical predictions in the $B \to \pi I \nu$, $B \to K(\pi) I^+ I^-$, $B \to K(\pi) \nu \bar{\nu}$ process are shown and compared with the experiments. There are a few minor discrepancies. ($|V_{ub}|$, dB/dq^2 , lepton flavor violation, etc.)
- New experimental results could be available soon. (arXiv:1509.00414)
- More studies on the *B*-meson semileptonic decay form factors on the HISQ ensembles are under investigation.

イロト イポト イヨト イヨト

Backup slides

Backup Slides

Ran Zhou (Fermilab)

 ▶ < ∃ ▶ ∃ </th>
 ⇒ ○ < ○</th>

 09/03/2015
 33 / 34

Standard Model predictions

Theoretical prediction of dB/dq^2 in high q^2 region:

$$\frac{dB}{dq^2} = \frac{G_F^2 \alpha^2 |V_{tb} V_{td}^*|^2}{2^7 \pi^5} |\mathbf{k}| \beta_+ \left\{ \frac{2}{3} |\mathbf{k}|^2 \beta_+^2 \left| C_{10}^{\text{eff}} f_+(q^2) \right|^2 + \frac{m_l^2 (M_B^2 - M_K^2)^2}{q^2 M_B^2} \left| C_{10}^{\text{eff}} f_0(q^2) \right|^2 + |\mathbf{k}|^2 \left[1 - \frac{1}{3} \beta_+^2 \right] \left| C_9^{\text{eff}} f_+(q^2) + 2C_7^{\text{eff}} \frac{m_b}{M_B + M_K} f_T(q^2) \right|^2 \right\}, \quad (10)$$

where G_F , α , and V_{tq} are the Fermi constant, the (QED) fine structure constant, and CKM matrix elements, respectively, $|\mathbf{k}| = \sqrt{E_K^2 - M_K^2}$ is the kaon momentum in the *B*-meson rest frame, and $\beta_+^2 = 1 - 4m_l^2/q^2$, with m_l the lepton mass.