Lepton and Quark masses from Top

loops

Patrick Fox劳 Fermilab

Bogdan Dobrescu to appear...

Patrick Fox曼Fermilab

Bogdan Dobrescu to appear...

Loopy masses for leptons and quarks

Patrick Fox
黄Fermilab

Bogdan Dobrescu to appear...

Important high energy physics questions?

Important high energy physics questions?

$\mathrm{Q}:$ What sucks in the Standard Model??

A:The Higgs

-James Wells

Standard Model Higgs

Responsible for W, Z mass and (charged) fermion masses
Associated hierarchies:

Gauge hierarchy
$m_{W} \ll M_{p l}$

Yukawa hierarchy
$y_{e} \ll y_{t}$

Yukawa hierarchy

Technically natural but would still like an explanation
Symmetries (Froggatt Nielsen Models)

$$
Y_{i j}\left(\frac{\phi}{M}\right)^{q_{i}+q_{j}+q_{H}} H \bar{\psi}_{i} \psi_{j}
$$

$$
Y_{i j}^{S M}=Y_{i j} \epsilon^{q_{i}+q_{j}+q_{H}} \quad \epsilon=\frac{\langle\phi\rangle}{M}
$$

Charge the SM fermions differently

Geography (Extra dim~n-:-nal models)

$$
Y_{i j}^{S M}=\int d x_{5} \psi_{i}\left(x_{5}\right) \psi_{j}\left(x_{5}\right) h\left(x_{5}\right)
$$

Place the SM fermions in different places
-The SM is coupled to a strongly coupled CFT

- SM fields get large anomalous dimensions
- Enters approximate fixed point at scale μ and leaves at scale μ_{0}

$$
Y_{i j}^{S M}(\mu)=Y_{i j}\left(\mu_{0}\right)\left(\frac{\mu}{\mu_{0}}\right)^{\frac{1}{2}\left(\gamma_{i}+\gamma_{j}+\gamma_{H}\right)}
$$

SM fermions have different couplings

- Many clever mechanisms exist but must treat SM fermions separately.
- Convert small differences to large differences
-Example where SM fermions all charged the same way but get differences in Yukawas?

Quantum mechanics

Masses are generated through quantum effects

Electron mass from muon mass?
Georgi and Glashow, '73

Work in the ` 80 's, mainly one and two loop mass generation

Babu and Ma, ' 89

Quantum mechanics

Masses are generated through quantum effects

Electron mass from muon mass?

Work in the ` 80 's, mainly one and two loop mass generation

Babu and Ma, ' 89

Naively all masses at approximately the same
loop order

More ambitious attempt

Loop-level where
mass is generated

PJF and Dobrescu

Loop-level where
mass is generated

More likely to fail...?

Loop-level where
mass is generated

More likely to fail...?

Loop-level where
mass is generated

Top is clearly special

So,

assume only the top has a tree level Yukawa

$$
y_{t} H \bar{u}_{R}^{3} Q_{L}^{3}
$$

Top is clearly special

So,

assume only the top has a tree level Yukawa

$$
y_{t} H \bar{u}_{R}^{3} Q_{L}^{3}
$$

Charge the top?

Top is clearly special

So,

assume only the top has a tree level Yukawa

Instead charge Higgs under an extra $U(1)$
$U(1)$ broken by the vev of a SM singlet ϕ of charge - I

Introduce a vector like pair of fermions with quantum numbers of left handed quarks, also charged under $U(1)$

Yukawas:

$$
m_{i j} \propto \tilde{c}_{i} c_{j}
$$

But lh top and rh top only appear linearly in couplings Redefine couplings so only one lh and one rh couple Call these the top

Mass matrix is rank I

Only the top gets a tree level mass

Chiral symmetries

$$
U(3)_{Q} \times U(3)_{u} \times U(3)_{d} \rightarrow U(1)_{t} \times U(2)_{Q} \times U(2)_{u} \times U(3)_{d}
$$

Need to break remaining chiral symmetries

Introduce a scalar leptoquark $\tilde{r}:(3,2,+7 / 6)$

Most general interactions

$$
\lambda_{i j} \tilde{r} \bar{u}_{R}^{i} L_{L}^{j}+\lambda_{i j}^{\prime} \tilde{r} \bar{Q}_{L}^{i} e_{R}^{j}+\text { Н.c. }
$$

Chiral symmetries

$$
U(3)_{Q} \times U(3)_{u} \times U(3)_{d} \rightarrow U(1)_{t} \times U(2)_{Q} \times U(2)_{u} \times U(3)_{d}
$$

Need to break remaining chiral symmetries
Introduce a scalar leptoquark $\tilde{r}:(3,2,+7 / 6)$
(charge 0 under extra $U(1)$)
Most general interactions

$$
\lambda_{i j} \tilde{r} \bar{u}_{R}^{i} L_{L}^{j}+\lambda_{i j}^{\prime} \tilde{r} \bar{Q}_{L}^{i} e_{R}^{j}+\text { Н.с. }
$$

$$
y_{t} \neq 0
$$

$$
U(3)_{Q} \times U(3)_{u} \times U(3)_{d} \rightarrow U(1)_{t} \times U(2)_{Q} \times U(2)_{u} \times U(3)_{d}
$$

$$
\begin{aligned}
& \lambda \neq 0 \\
& \xrightarrow{\lambda^{\prime} \neq 0} U(1)_{u} \times U(3)_{d} \\
& U(3)_{L} \times U(3)_{e} \xrightarrow[\substack{\lambda \neq 0 \\
\lambda^{\prime} \neq 0}]{\longrightarrow} U(1)_{L}
\end{aligned}
$$

With this breaking of chiral symmetries up type quarks and charged leptons can get a mass at some loop order

$$
y_{t} \neq 0
$$

$$
U(3)_{Q} \times U(3)_{u} \times U(3)_{d} \rightarrow U(1)_{t} \times U(2)_{Q} \times U(2)_{u} \times U(3)_{d}
$$

$$
\begin{aligned}
& \lambda \neq 0 \\
& \lambda^{\prime} \neq 0 \\
& \xrightarrow{\neq} U(1)_{u} \times U(3)_{d} \\
& U(3)_{L} \times U(3)_{e} \xrightarrow[\substack{\lambda \neq 0 \\
\lambda^{\prime} \neq 0}]{\longrightarrow} U(1)_{L}
\end{aligned}
$$

With this breaking of chiral symmetries up type quarks and charged leptons can get a mass at some loop order

But what loop order?

Linear couplings

Redefine fields:

$$
\left(\begin{array}{lll}
\lambda_{11} & \lambda_{12} & \lambda_{13} \\
\lambda_{21} & \lambda_{22} & \lambda_{23} \\
\lambda_{31} & \lambda_{32} & \lambda_{33}
\end{array}\right)
$$

Linear couplings
Redefine fields:

Linear couplings
Redefine fields:
-Define L_{3} so it only couples only to u_{3}

$$
\left(\begin{array}{ccc}
\lambda_{11} & \lambda_{12} & \lambda_{13} \\
\lambda_{21} & \lambda_{22} & \lambda_{23} \\
0 & 0 & \lambda_{33}
\end{array}\right)
$$

$$
\lambda_{i j} \tilde{r} \bar{u}_{R}^{i} L_{L}^{j}+\lambda_{i j}^{\prime} \tilde{r} \bar{Q}_{L}^{i} e_{R}^{j}+\text { Н.с. }
$$

Linear couplings

Redefine fields:

-Define L_{3} so it only couples only to u_{3}

- u_{2} couples only to L_{2} and L_{3}

$$
\left(\begin{array}{ccc}
\lambda_{11} & \lambda_{12} & \lambda_{13} \\
0 & \lambda_{22} & \lambda_{23} \\
0 & 0 & \lambda_{33}
\end{array}\right)
$$

Linear couplings
Redefine fields:
-Define L_{3} so it only couples only to u_{3}

- u_{2} couples only to L_{2} and L_{3}
-Rotation of u_{1} and u_{2}

$$
\left(\begin{array}{ccc}
\lambda_{11} & \lambda_{12} & 0 \\
0 & \lambda_{22} & \lambda_{23} \\
0 & 0 & \lambda_{33}
\end{array}\right)
$$

$$
\lambda_{i j} \tilde{r} \bar{u}_{R}^{i} L_{L}^{j}+\lambda_{i j}^{\prime} \tilde{r} \bar{Q}_{L}^{i} e_{R}^{j}+\text { Н.с. }
$$

Linear couplings
Redefine fields:
-Define L_{3} so it only couples only to u_{3}

- u_{2} couples only to L_{2} and L_{3}
-Rotation of u_{1} and u_{2}

$$
\left(\begin{array}{ccc}
\lambda_{11} & \lambda_{12} & 0 \\
0 & \lambda_{22} & \lambda_{23} \\
0 & 0 & \lambda_{33}
\end{array}\right)
$$

$\lambda_{i j}, \lambda_{i j}^{\prime}$
can be made real and positive

One loop tau mass

$$
m_{\tau} \simeq \lambda_{33} \lambda_{33}^{\prime} m_{t} \underbrace{\frac{N_{c}}{16 \pi^{2}} \ln \left(\frac{\Lambda^{2}}{M_{\tilde{r}}^{2}}\right)}
$$

$$
\approx 0.09 \text { for } \Lambda \approx 10 M_{\tilde{r}}
$$

$\lambda_{33} \lambda_{33}^{\prime} \approx(0.36)^{2}$ for correct m_{τ} / m_{t} ratio

北Fermilab

One loop tau mass

$$
m_{\tau} \simeq \lambda_{33} \lambda_{33}^{\prime} m_{t} \underbrace{\frac{N_{c}}{16 \pi^{2}} \ln \left(\frac{\Lambda^{2}}{M_{\tilde{r}}^{2}}\right)}
$$

≈ 0.09 for $\Lambda \approx 10 M_{\tilde{r}}$
$\lambda_{33} \lambda_{33}^{\prime} \approx(0.36)^{2}$ for correct m_{τ} / m_{t} ratio

Two loop charm mass - a "rainbow" diagram

$$
\begin{aligned}
M_{u}[\tilde{r} \tilde{r}] & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \lambda_{23}^{\prime} \lambda_{23} & \lambda_{33}^{\prime} \lambda_{23} \\
0 & \lambda_{23}^{\prime} \lambda_{33} & \lambda_{33}^{\prime} \lambda_{33}
\end{array}\right) \lambda_{33}^{\prime} \lambda_{33} m_{t} \epsilon_{\tilde{r}}^{(2)} \\
m_{c} & =\lambda_{23}^{\prime} \lambda_{23} m_{\tau} \frac{1}{16 \pi^{2}} \log \frac{\Lambda^{2}}{M_{\tilde{r}}^{2}}
\end{aligned}
$$

$\lambda_{23} \lambda_{23}^{\prime} \approx(3.3)^{2}$ for correct m_{c} / m_{τ} ratio

北Fermilab

Two loop charm mass - a "rainbow" diagram

$$
\begin{aligned}
M_{u}[\tilde{r} \tilde{r}] & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \lambda_{23}^{\prime} \lambda_{23} & \lambda_{33}^{\prime} \lambda_{23} \\
0 & \lambda_{23}^{\prime} \lambda_{33} & \lambda_{33}^{\prime} \lambda_{33}
\end{array}\right) \lambda_{33}^{\prime} \lambda_{33} m_{t} \epsilon_{\tilde{r}}^{(2)} \\
m_{c} & =\lambda_{23}^{\prime} \lambda_{23} m_{\tau} \frac{1}{16 \pi^{2}} \log \frac{\Lambda^{2}}{M_{\tilde{r}}^{2}}
\end{aligned}
$$

$\lambda_{23} \lambda_{23}^{\prime} \approx(3.3)^{2}$ for correct m_{c} / m_{τ} ratio

北Fermilab

Two loop charm mass - a "rainbow" diagram

$$
\begin{aligned}
M_{u}[\tilde{r} \tilde{r}] & =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \lambda_{23}^{\prime} \lambda_{23} & \lambda_{33}^{\prime} \lambda_{23} \\
0 & \lambda_{23}^{\prime} \lambda_{33} & \lambda_{33}^{\prime} \lambda_{33}
\end{array}\right) \lambda_{33}^{\prime} \lambda_{33} m_{t} \epsilon_{\tilde{r}}^{(2)} \\
m_{c} & =\lambda_{23}^{\prime} \lambda_{23} m_{\tau} \frac{1}{16 \pi^{2}} \log \frac{\Lambda^{2}}{M_{\tilde{r}}^{2}}
\end{aligned}
$$

$\lambda_{23} \lambda_{23}^{\prime} \approx(3.3)^{2}$ for correct m_{c} / m_{τ} ratio

北Fermilab

带 Fermilab

Three loop muon mass

The diagram with no name $\sim N_{C}$

Three loop muon mass

The diagram with no name $\sim N_{C}$

Three loop muon mass

$$
m_{\mu} \approx \lambda_{22}^{\prime} \lambda_{22} m_{c}(1+x) \frac{N_{c}}{16 \pi^{2}} \log \frac{\Lambda^{2}}{M_{\bar{r}}^{2}}
$$

$\lambda_{22} \lambda_{22}^{\prime}(1+x) \approx(1.5)^{2}$ for correct m_{μ} / m_{c} ratio

Three loop muon mass

$$
m_{\mu} \approx \lambda_{22}^{\prime} \lambda_{22} m_{c}(1+x) \frac{N_{c}}{16 \pi^{2}} \log \frac{\Lambda^{2}}{M_{\bar{r}}^{2}}
$$

$\lambda_{22} \lambda_{22}^{\prime}(1+x) \approx(1.5)^{2}$ for correct m_{μ} / m_{c} ratio

Four loop up quark mass

+4 other diagrams

Muon mass implies: $\quad \# \lambda_{12} \lambda_{12}^{\prime} \approx(0.6)^{2}$

Four loop up quark mass

Three loop muon mass

+4 other diagrams

Muon mass implies: $\quad \# \lambda_{12} \lambda_{12}^{\prime} \approx(0.6)^{2}$

Five loop electron mass
If only source of electron mass will determine $\lambda_{11} \lambda_{11}^{\prime}$

$$
\text { Only input: } \tilde{r}:(3,2,+7 / 6) \quad \lambda_{i j} \tilde{r} \bar{u}_{R}^{i} L_{L}^{j}+\lambda_{i j}^{\prime} \tilde{r} \bar{Q}_{L}^{i} e_{R}^{j}+\text { H.c. }
$$

Loop-level where mass is generated

Down quark masses

Need to break the remaining chiral symmetries

$$
U(3)_{d} \times U(1)_{u} \times U(1)_{L}
$$

Have choices diquarks, leptoquarks...

$$
\begin{aligned}
H_{8}: & (8,2,-1 / 2) \\
\tilde{q}: & (3,2,1 / 6) \\
\tilde{d}_{6}: & (\overline{6}, 1,-1 / 3) \\
\tilde{d}: & (3,1,-1 / 3)
\end{aligned}
$$

New field content

	ϕ	ψ_{L}, ψ_{R}	H	r	r^{\prime}	H_{8}	H_{8}^{\prime}	Φ_{3}
$S U(3)$	1	3	1	3	3	8	8	$\overline{3}$
$S U(2)$	1	2	2	2	2	2	2	2
$U(1)_{Y}$	0	$1 / 6$	$1 / 2$	$7 / 6$	$7 / 6$	$1 / 2$	$-1 / 2$	$-1 / 6$
$U(1)^{\prime}$	-1	-1	1	0	2	1	1	0
\uparrow								
							\uparrow	

Up quarks and leptons
Down quarks

Most general couplings

$$
\begin{array}{r}
\kappa_{i} \Phi_{8} \bar{u}_{R}^{i} \Psi_{L}+\kappa^{\prime} \Phi_{8}^{\prime} \bar{d}_{R}^{3} \Psi_{L} \\
\quad \eta_{i j} \Phi_{3} \bar{d}_{R}^{i} L_{L}^{j}+\text { h.c. }
\end{array}
$$

break the remaining chiral symmetries

$$
U(3)_{d} \times U(1)_{u} \times U(1)_{L} \rightarrow U(1)_{L} \times U(1)_{Q}
$$

Most general couplings

$$
\begin{aligned}
& \kappa_{i} \Phi_{8} \bar{u}_{R}^{i} \Psi_{L}+\kappa^{\prime} \Phi_{8}^{\prime} \bar{d}_{R}^{3} \Psi_{L} \\
& \quad \eta_{i j} \Phi_{3} \bar{d}_{R}^{i} L_{L}^{j}+\text { h.c. }
\end{aligned}
$$

break the remaining chiral symmetries

$$
U(3)_{d} \times U(1)_{u} \times U(1)_{L} \rightarrow U(1)_{L} \times U(1)_{Q}
$$

Without altering up type and leptons have the freedom to rotate such that,

$$
\begin{gathered}
\eta=\left(\begin{array}{ccc}
\eta_{11} & \eta_{12} & 0 \\
\eta_{21} & \eta_{22} & \eta_{23} \\
\eta_{31} & \eta_{32} & \eta_{33}
\end{array}\right) \\
\kappa=\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)
\end{gathered}
$$

Without altering up type and leptons have the freedom to rotate such that,

$$
\eta=\left(\begin{array}{ccc}
\eta_{11} & \eta_{12} & 0 \\
\eta_{21} & \eta_{22} & \eta_{23} \\
\eta_{31} & \eta_{32} & \eta_{33}
\end{array}\right)
$$

Diagonal entries can be made real and positive

$$
\kappa=\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)
$$

Without altering up type and leptons have the freedom to rotate such that,

$$
\eta=\left(\begin{array}{ccc}
\eta_{11} & \eta_{12} & 0 \\
\eta_{21} & \eta_{22} & \eta_{23} \\
\eta_{31} & \eta_{32} & \eta_{33}
\end{array}\right)
$$

Diagonal entries can be made real and positive

$$
\kappa=\left(\kappa_{1}, \kappa_{2}, \kappa_{3}\right)
$$

Entries can be made real and positive

One loop bottom mass

$$
m_{b} \approx m_{t} \kappa^{\prime} \frac{N_{C}}{16 \pi^{2}}\left(\frac{\langle\phi\rangle}{M_{8}}\right)^{2} \log \frac{\Lambda^{2}}{M_{8}^{2}}
$$

One loop bottom mass

$$
m_{b} \approx m_{t} \kappa^{\prime} \frac{N_{C}}{16 \pi^{2}}\left(\frac{\langle\phi\rangle}{M_{8}}\right)^{2} \log \frac{\Lambda^{2}}{M_{8}^{2}}
$$

One loop bottom mass

Three loop strange mass

Four loop down masses

The down has a 4 loop mixed diagram (exercise for reader)

"Cross Talk"

There are also corrections to some of the states that have mass:

Charm gets a two loop correction
Up gets a four loop correction

Muon gets a three loop correction
Electron gets a five loop correction

Lepton and Quark masses at 1 TeV

苃Fermilab

CKM

$m_{u} \approx m_{t}\left(\begin{array}{ccc}\epsilon^{4} & \epsilon^{2} & \epsilon^{2} \\ \epsilon^{4} & \epsilon^{2} & \epsilon^{2} \\ \epsilon^{4} & \epsilon^{2} & 1\end{array}\right) \quad m_{d} \approx m_{t}\left(\begin{array}{ccc}\epsilon^{4} & \epsilon^{4} & \epsilon^{4} \\ \epsilon^{4} & \epsilon^{3} & \epsilon^{3} \\ \epsilon^{4} & \epsilon^{3} & \epsilon\end{array}\right)$

Resulting in

$$
V_{C K M} \approx\left(\begin{array}{ccc}
1-\epsilon^{2} & \epsilon & \epsilon^{3} \\
-\epsilon & 1-\epsilon^{2} & \epsilon^{2} \\
\epsilon^{3} & \epsilon^{2} & 1
\end{array}\right)
$$

Still to think about phases...

James Wells:

Q:What sucks in the Standard Model??

A:The Higgs

James Wells:

$\mathrm{Q}:$ What sucks in the Standard Model??

A:The Higgs

Q:Does the solution predict LHC physics?

The model contains extra fermions and scalar Leptoquarks
(Alternative realisation contains diquarks - easier to see at LHC than TeVatron)

Constraints

Tree level exchange of leptoquark can lead to flavour changing processes e.g.

$$
\begin{aligned}
K^{+} & \rightarrow \pi^{0} \mu^{+} \mu^{-} \\
\tau^{+} & \rightarrow K^{0} e^{+} \\
\pi^{+} & \rightarrow e^{+} \nu \text { versus } \pi^{+} \rightarrow \mu^{+} \nu \\
\mu & \rightarrow e \text { conversion }
\end{aligned}
$$

$$
M_{\tilde{r}} \gtrsim 5-50 \mathrm{TeV}
$$

Conclusions

-Fermions have complicated mass hierarchy

- Many attempts exist to explain it
- Top is probably special, perhaps only top mass has a tree level Yukawa
-With extra scalars coupling to fermions top mass is communicated at loop level
- Interesting structure of fermion mass spectrum arises
-Predicts flavour changing processes

Conclusions

-Fermions have complicated mass hierarchy

- Many attempts exist to explain it
- Top is probably special, perhaps only top mass has a tree level Yukawa
-With extra scalars coupling to fermions top mass is communicated at loop level
- Interesting structure of fermion mass spectrum arises
-Predicts flavour changing processes
-Project X?

带 Fermilab

