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Higgsless Models and Ideal Delocalization: 

Review of General 
Principles



General Principles :

• massive 4-d gauge bosons arise in the context 
of a 5-d gauge theory with appropriate 
boundary conditions

• WW scattering unitarized through exchange 
of KK modes (instead of Higgs exchange)

• language of Deconstruction allows a 4-d 
“Moose” representation of the model 

Higgsless models are low-energy effective theories 
of dynamical electroweak symmetry breaking 
including the following elements

Csaki/Murayama/Terning  &   Chivukula/He



Massive Gauge Bosons from 
Extra-D Theories

Expand 5-D gauge bosons in eigenmodes:       

e.g. for S1/Z
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• 5th dimension discretized

• SU(2)N x U(1);   general fj and gk encompass 

spatially-dependent couplings, warping

• for fixed v,                    means                  

• In simplest models, Localized fermions sit on 
“branes”  [sites 0 and N+1]
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• by folding, represent SU(2) x SU(2) x U(1) in “bulk”

• modify fermions’ location (brane? bulk?)

Generalizations
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Conflict of S & Unitarity

too large by a factor of a few!

Independent of warping or gauge couplings chosen...

Heavy resonances must unitarize WW scattering
(since there is no Higgs!)   

This bounds lightest KK mode mass:

... and yields a value of the S-parameter that is
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Delocalized Fermions,  .i.e., mixing of “brane” 
and “bulk” modes

Delocalized Fermions

Can Reduce Contribution to S!
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Ideal Fermion Delocalization
• Recall that the light W’s wavefunction is 

orthogonal to wavefunctions of KK modes

• Choose fermion delocalization profile to match 
W wavefunction profile along the 5th dimension:

• No (tree-level) fermion couplings to KK modes!

gixi ∝ v
W
i

Ŝ = T̂ = W = 0

Y = M
2

W (ΣW − ΣZ)

RSC, HJH, MK, MT, EHS hep-ph/0504114Mass Eigenstate



The 3-site Model: 
General Principles in Action 



3-Site Model: basic structure

g0 g1
f2f1

g2
L

R

SU(2) × SU(2) × U(1) g0, g2 ! g1

Gauge boson spectrum:   photon, Z, Z’,   W,  W’   (as in BESS)

Fermion spectrum:  t, T, b, B (    is an SU(2) doublet) 

           and also  c, C, s, S, u, U, d, D  plus the leptons

pR1

ψL1ψL0

ψR1 tR2, bR2

ψ

Chivukula hep-ph/0607124



3-Site Model: fermion details

g0 g1
f2f1

g2
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R

SU(2) × SU(2) × U(1) g0, g2 ! g1

Fermion Structure Motivated by 5-D

“Bulk Fermion”

RH Boundary Fermion

LH Boundary Fermion

Flavor Structure Identical to Standard Model

related to degree of delocalization
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3-Site Ideal Delocalization
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Use WW scattering to see W’:  Birkedal, Matchev, Perelstein hep-ph/0412278

insures W’ and Z’ are fermiophobic!
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3-Site Parameter Space
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Chivukula hep-ph/0607124



 S and T gauge corrections 
at one loop



Electroweak Parameters

Universal Corrections Depend only 
on External Quantum Numbers!

Gauge-Invariant, to all orders, as defined here!

Hagiwara, Matsumoto, Haidt, & Kim:  hep-ph/9409380
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amplitudes for “on-shell’’ 4-fermion processes

(S, T )

S, T:   Peskin &  Takeuchi Altarelli, et. al. and Hagiwara, et. al.

Chivukula, Kurachi, He, EHS & Tanabashi hep-ph/0408262 & 0410154



Propagator,  Vertex and Box 
Corrections

Gauge-invariance of scattering amplitudes arises 
by addition of vertex and box corrections to the 
familiar gauge-boson self-energy corrections 
(which are not gauge-invariant on their own).



Working in `t Hooft-Feynman gauge, the following types 
of corrections to gauge-boson self-energies appear in 

the calculation of S

The gauge-dependence is canceled by...

Gauge-Boson Self-Energies
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universal:

∝ [gT+, gT−] = 2g2T3

Degrassi and Sirlin, 1992

Gauge-Dependent Box and Vertex 
Contributions

Pinch Technique: collect all such contributions in an 
effective self-energy function

Cornwall, 1982 Cornwall and Papavassiliou, 1989



Pinch Contributions to     in 3-site model 

L
′
f = x1 · ψ̄L(iD/ Σ(1)Σ

†
(1))ψL

S

Conventional pinch contributions from 3-point 
vertex in `t Hooft-Feynman gauge

Additional piece from delocalization



S at one loop: results
tree; involves ideal 
delocalization (x1)

one-loop; 
up to W’ mass

counterterms;  cf. L10
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at one loop: results

tree

one-loop; 
up to W’ mass

counterterm;  O(p4)

one-loop; 
up to cutoff
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• We also used RGE techniques to compute the 
one-loop corrections to all O(p4) counter- 
terms in the three-site model in Landau gauge.

• Our RGE results for S and T agree with those 
of our Pinch-Technique calculation in `t Hooft-
Feynman gauge. 

• A subsequent calculation via another approach  
also agrees with the results presented here.

Confirmation

Chivukula  hep-ph/0702218

Matsuzaki  hep-ph/0607191

Dawson  hep-ph/0703299



 LHC Phenomenology
(calculations courtesy of 

CalcHEP, MADGRAPH, and HANLIB)



is crucial



W’ branching fraction to fermion pairs 
• is quite sensitive to deviation from ideal delocalization 
• but is always very small



LHC Signatures:W’ and Z’ bosons at LHC
Production Decay



Vector Boson Fusion (WZ      W’) and
W’Z  Associated Production 

promise large rates and clear signatures          
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Associated Production (signal in WZZ channel)
500 GeV  W’ boson



Background is 
10x larger than 

estimated in 
Birkedal, Matchev & 
Perelstein (2005)

Vector Boson Fusion (signal in WZjj channel)

forward jet tag removes WZ background

500 GeV  W’ boson



Integrated LHC Luminosity required 
to discover W’ in each channel



Conclusions:
The 3-site model yields a viable effective theory of 
electroweak symmetry breaking valid up to 1.5 - 2 TeV    

•  incorporates / illustrates general principles   
[Higgsless models, deconstruction, ideal delocalization]

•  accommodates flavor [e.g. heavy t quark]

•  extra gauge bosons can be relatively light   
[since they are fermiophobic]

•  EW observables calculable at one loop

•  W’ and Z’ promise clean multi-lepton     
signatures at LHC [gauge invariance is key to 
accurate calculation of rate]




