Composite Higgs Physics

based on works in collaboration with

G. Giudice, A. Pomarol and R. Rattazzi hep-ph/0703164 = JHEP06(2007)045 R. Contino, M. Moretti, F. Puccinini and R. Rattazzi work in progress

> Christophe Grojean CERN-TH & CEA-Saclay-IPhT (Christophe.Grojean[at]cern.ch)

EWSB from a Strongly Coupled Sector

A strong sector, around few TeV, driving EW symmetry breaking is a plausible/conservative scenario

a technical challenge: how to evade EW precision data

The resonance that unitarizes the WW scattering amplitudes

 $W^{-} \sum_{w+1}^{W^{-}} TC = \sum_{w+1}^{W^{-}} \sum_{w+1}^{W^{-}} TC \sum_{w+1}^{W^{-}} W^{-} \sum_{w+1}^{W^{-}} \sum_{w+1}^$

How to obtain a light composite Higgs? Higgs=Pseudo-Goldstone boson of the strong sector

mHiggs=0 when gSM=0

611

residual global symmetry residual

KITP, Santa Barbara, June 4st 2008

UV completion $4\pi f$ $-10 \,\,\mathrm{TeV}$

 $m_{\rho} = g_{\rho}f$ usual resonances of the strong sector

 $246~{
m GeV}$ Higgs = light resonance of the strong sector

strong sector broadly characterized by 2 parameters $m_{
ho}$ = mass of the resonances $g_{
ho}$ = coupling of the strong sector or decay cst of strong sector $f=rac{m_{
ho}}{g_{
ho}}$

Christophe Grojean

Testing the composite nature of the Higgs?

if LHC sees a Higgs and nothing else*:

evidence for string landscape?

it will be more important then ever to figure out whether the Higgs is a fundamental or a composite scalar!

Model-dependent: production of resonances at m_{ρ}

Model-independent: study of Higgs properties & W scattering

- strong WW scattering
- Higgs anomalous coupling
- strong HH production

Christophe Grojean

(gauge bosons self-couplings)

not covered in this talk

* a likely possibility that precision data seems to point to, at least in strongly coupled models

KITP, Santa Barbara, June 4st 2008

What distinguishes a composite Higgs?

Giudice, Grojean, Pomarol, Rattazzi '07

 $\mathcal{L} \supset \frac{\mathcal{C}_{H}}{2f^{2}} \partial^{\mu} \left(|H|^{2} \right) \partial_{\mu} \left(|H|^{2} \right) \qquad c_{H} \sim \mathcal{O}(1)$ $U = e^{i \left(\begin{array}{c} H^{\dagger}/f \end{array} \right)_{U_{0}} \qquad U_{0}$

 $f^{2}\operatorname{tr}\left(\partial_{\mu}U^{\dagger}\partial^{\mu}U\right) = |\partial_{\mu}H|^{2} + \frac{\sharp}{f^{2}}\left(\partial|H|^{2}\right)^{2} + \frac{\sharp}{f^{2}}|H|^{2}\left|\partial H|^{2} + \frac{\sharp}{f^{2}}\left|H^{\dagger}\partial H\right|^{2}$

Christophe Grojean

KITP, Santa Barbara, June 4st 2008

What distinguishes a composite Higgs?

Giudice, Grojean, Pomarol, Rattazzi '07

$$\mathcal{L} \supset \frac{c_H}{2f^2} \partial^{\mu} \left(|H|^2 \right) \partial_{\mu} \left(|H|^2 \right) \qquad c_H \sim \mathcal{O}(1)$$
$$H = \begin{pmatrix} 0 \\ \frac{v+h}{\sqrt{2}} \end{pmatrix} \longrightarrow \mathcal{L} = \frac{1}{2} \left(1 + c_H \frac{v^2}{f^2} \right) (\partial^{\mu} h)^2 + \dots$$

Modified Higgs propagator Higgs couplings rescaled by

 $\frac{1}{\sqrt{1 + c_H \frac{v^2}{f^2}}} \sim 1 - c_H \frac{v^2}{2f^2}$

$$\overset{W}{\sim} \overset{Higgs}{\sim} \overset{W}{\sim} = -\left(1 - c_H \frac{v^2}{f^2}\right) g^2 \frac{E^2}{M_W^2}$$

$$\overset{W^+}{\sim} \overset{W^+}{\sim} \overset{W^+}$$

no exact cancellation of the growing amplitudes

unitarization restored by heavy resonances

Falkowski, Pokorski, Roberts '07

KITP, Santa Barbara, June 4st 2008

Strong W scattering below m_{ρ} ?

Christophe Grojean

Strong W scattering

Even with a light Higgs, growing amplitudes (at least up to m_{ρ}) $\mathcal{A}\left(Z_{L}^{0}Z_{L}^{0} \rightarrow W_{L}^{+}W_{L}^{-}\right) = \mathcal{A}\left(W_{L}^{+}W_{L}^{-} \rightarrow Z_{L}^{0}Z_{L}^{0}\right) = -\mathcal{A}\left(W_{L}^{\pm}W_{L}^{\pm} \rightarrow W_{L}^{\pm}W_{L}^{\pm}\right) = \frac{c_{H}s}{f^{2}}$ $\mathcal{A}\left(W^{\pm}Z_{L}^{0} \rightarrow W^{\pm}Z_{L}^{0}\right) = \frac{c_{H}t}{f^{2}}, \quad \mathcal{A}\left(W_{L}^{+}W_{L}^{-} \rightarrow W_{L}^{+}W_{L}^{-}\right) = \frac{c_{H}(s+t)}{f^{2}}$ $\mathcal{A}\left(Z_{L}^{0}Z_{L}^{0} \rightarrow Z_{L}^{0}Z_{L}^{0}\right) = 0$

leptonic vector decay channels forward jet-tag, back-to-back lepton, central jet-veto with 300 fb⁻¹ 30 signal-events and 10 background-events

Bagger et al '95 Butterworth et al. '02 $c_H \frac{v^2}{f^2}$ bigger than 0.5 ~ 0.7

Christophe Grojean

KITP, Santa Barbara, June 4st 2008

$$\begin{array}{c} \text{SILH Effective Lagrangian} \\ \text{(strongly-interacting light Higgs)} \\ \frac{c_{\pi}}{2f^2} \left(\partial_{\mu} \left(|H|^2 \right) \right)^2 \left(\frac{c_T}{2f_c^2} \left(H^{\dagger} \widehat{D}^{\mu} H \right)^2 \right) \left(\frac{c_y y_f}{f^2} |H|^2 \overline{f}_L H f_R + h.c. \right) \left(\frac{c_6 \lambda}{f^2} |H|^6 \right) \\ \text{(strongly-interacting light Higgs)} \\ \frac{ic_{W}}{2m_{\rho}^2} \left(H^{\dagger} \sigma^i \widehat{D}^{\mu} H \right) (D^{\nu} W_{\mu\nu})^3 \right) \left(\frac{ic_B}{2m_{\rho}^2} \left(H^{\dagger} \widehat{D}^{\mu} H \right) (\partial^{\nu} B_{\mu\nu}) \right) \\ \frac{ic_{HW}}{m_{\rho}^2} \left(\overline{16\pi^2} \left(\frac{g^2}{g^2} \right) H^{\dagger} H B_{\mu\nu} B^{\mu\nu} \right) \\ \text{(softstone sym.)} \\ \text{(softstone sym.)} \\ \text{(strongly-interacting light Higgs)} \\ \text{(strongly-interacting light Higgs)} \\ \text{(strongly-interacting light Higgs)} \\ \frac{ic_{HW}}{2f^2} \left(\frac{g^2}{g^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} \right) \\ \text{(strongly-interacting light Higgs)} \\ \text{(strongly-interacting light Higgs)} \\ \text{(strongly-interacting light Higgs)} \\ \text{(strongly-interacting light Higgs)} \\ \frac{ic_{HW}}{2g^2} \left(\frac{g^2}{g^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} \right) \\ \text{(strongly-interacting light Higgs)} \\ \text{(strongly-interacting light Higgs)} \\ \text{(strongly-interacting light Higgs)} \\ \text{(strongly-interacting light Higgs)} \\ \frac{ic_{HW}}{2g^2} \left(\frac{g^2}{g^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} \right) \\ \text{(strongly-interacting light Higgs)} \\ \text{(strongly-interacting light Higgs)} \\ \text{(strongly-interacting light Higgs)} \\ \frac{ic_{HW}}{2g^2} \left(\frac{g^2}{g^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} \right) \\ \text{(strongly-interacting light Higgs)} \\ \frac{ic_{HW}}{2g^2} \left(\frac{g^2}{g^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} \right) \\ \text{(strongly-intera$$

Composite Higgs Physics

Christophe Grojean

KITP, Santa Barbara, June 4st 2008

EWPT constraints

removed by custodial symmetry

KITP, Santa Barbara, June 4st 2008

There are also some 1-loop IR effects

 $\hat{S} = (c_W + c_B) \frac{m_W^2}{m^2} \implies \qquad (m_\rho \ge (c_W + c_B)^{1/2} \ 2.5 \ \text{TeV}$

Barbieri, Bellazzini, Rychkov, Varagnolo '07

 $\hat{S}, \hat{T} = a \log m_h + b$

 $\hat{T} = c_T \frac{v^2}{f^2} \implies |c_T \frac{v^2}{f^2}| < 2 \times 10^{-3}$

modified Higgs couplings to matter

$$\hat{S}, \hat{T} = a \left((1 - c_H v^2 / f^2) \log m_h + c_H v^2 / f^2 \log \Lambda \right) + b$$

effective $m_h^{eff} = m_h \left(\frac{\Lambda}{m_h}\right)^{c_H v / f} > m_h$ Higgs mass

LEPII, for m_h~115 GeV: $(c_H v^2/f^2 < 1/3 \sim 1/2)$

IR effects can be cancelled by heavy fermions (model dependent)

Christophe Grojean

Flavor Constraints

 $\left(1 + \frac{c_{ij}|H|^2}{f^2}\right) y_{ij}\bar{f}_{Li}Hf_{Rj} = \left(1 + \frac{c_{ij}v^2}{2f^2}\right) \frac{y_{ij}v}{\sqrt{2}}\bar{f}_{Li}f_{Rj}$ $+\left(1+\frac{3c_{ij}v^2}{2f^2}\right)\frac{y_{ij}}{\sqrt{2}}h\bar{f}_{Li}f_{Rj}$

mass terms

Higgs fermion interactions

mass and interaction matrices are not diagonalizable simultaneously if c_{ii} are arbitrary

 \Rightarrow FCNC

SILH: cy is flavor universal

⇒ Minimal flavor violation built in

Christophe Grojean

KITP, Santa Barbara, June 4st 2008

Higgs anomalous couplings

Lagrangian in unitary gauge

 $\mathcal{L} = \mathcal{L}_{SM} + \left(-\frac{m_H^2}{2v} (c_6 - 3c_H/2)h^3 + \frac{m_f}{v} \bar{f} f(c_y + c_H/2)h - c_H \frac{m_W^2}{v} h W_{\mu}^+ W^{-\mu} - c_H \frac{m_Z^2}{v} h Z_{\mu} Z^{\mu} \right) \frac{v^2}{f^2} + \dots$

 $\overline{g_{SM}} \left(1 - (c_y + c_H/2) v^2 / f^2 \right)$

 $g_{SM} \left(1 - c_H v^2 / f^2 \right)$

 W^+

 $\Gamma \left(h \to f\bar{f} \right)_{\text{SILH}} = \Gamma \left(h \to f\bar{f} \right)_{\text{SM}} \left[1 - \left(2c_y + c_H \right) v^2 / f^2 \right]$

 $\Gamma (h \to gg)_{\text{SILH}} = \Gamma (h \to gg)_{\text{SM}} \left[1 - (2c_y + c_H) v^2 / f^2 \right]$

Christophe Grojean

KITP, Santa Barbara, June 4st 2008

Higgs anomalous couplings

 $\Gamma \left(h \to f\bar{f} \right)_{\text{SILH}} = \Gamma \left(h \to f\bar{f} \right)_{\text{SM}} \left[1 - \left(2c_y + c_H \right) v^2 / f^2 \right]$ $\Gamma (h \to gg)_{\text{SILH}} = \Gamma (h \to gg)_{\text{SM}} \left[1 - (2c_y + c_H) v^2 / f^2 \right]$

observable @ LHC?

KITP, Santa Barbara, June 4st 2008

Higgs anomalous couplings for large v/f

The SILH Lagrangian is an expansion for small v/f The 5D MCHM gives a completion for large v/f

 $m_W^2 = \frac{1}{4}g^2 f^2 \sin^2 v / f \implies g_{hWW} = \sqrt{1-\xi} g_{hWW}^{SM}$

Fermions embedded in spinorial of SO(5)

 $m_f = M \sin v / f$ \Downarrow $g_{hff} = \sqrt{1 - \xi} g_{hff}^{\rm SM}$

universal shift of the couplings no modifications of BRs Fermions embedded in 5+10 of SO(5) $m_f = M \sin 2v/f$ \Downarrow $g_{hff} = \frac{1-2\xi}{\sqrt{1-\xi}} g_{hff}^{SM}$

BRs now depends on v/f

$$\left(\xi = v^2/f^2 \right)$$

Christophe Grojean

KITP, Santa Barbara, June 4st 2008

Higgs BRs

Fermions embedded in 5+10 of SO(5)

h→WW can dominate even for low Higgs mass

BRs remain SM like even for large values of v/f

Christophe Grojean

KITP, Santa Barbara, June 4st 2008

Sum rule (with cuts $|\Delta \eta| < \delta$ and $s < M^2$)

 $2\sigma_{\delta,M}\left(pp \to hhX\right)_{c_H} = \sigma_{\delta,M}\left(pp \to W_L^+ W_L^- X\right)_{c_H} + \frac{1}{6}\left(9 - \tanh^2 \frac{\delta}{2}\right)\sigma_{\delta,M}\left(pp \to Z_L^0 Z_L^0 X\right)_{c_H}$

Christophe Grojean

Composite Higgs Physics

KITP, Santa Barbara, June 4st 2008

Strong Higgs production: (3L+jets) analysis

 $m_h = 180 \text{ GeV}$

 W^{+}

acceptance cuts

jets	leptons
$p_T \ge 30 \text{ GeV}$	$p_T \ge 20 \text{ GeV}$
$\delta R_{jj} > 0.7$	$\delta R_{lj(ll)} > 0.4(0.2)$
$ \eta_j \le 5$	$ \eta_j \le 2.4$
# events after ac	cent cuts (with 300 fb-1)

Ū	v/f = 1	v/f = .8	v/f = .5	v/f = 0
ets →	14.5	9.8	4.3	0.5
ets→	19.5	13.2	5.9	0.8

 W^+

jets with p_>30 GeV

most of the time, a W jet is lost

Christophe Grojean

Composite Higgs Physics

4 3

KITP, Santa Barbara, June 4st 2008

Strong Higgs production: (3L+jets) analysis

 W^+

 $m_h = 180 \text{ GeV}$

acceptance cuts

v/f = 0

0.5

0.8

jets	leptons		
$p_T \ge 30 \text{ GeV}$	$p_T \ge 20 \text{ GeV}$		
$\delta R_{jj} > 0.7$	$\delta R_{lj(ll)} > 0.4(0.2)$		
$ \eta_j \le 5$	$ \eta_j \le 2.4$		
# events after accept. cuts (with 300 fb-1)			

 $v/f = \sqrt{.8}$

9.8

13.2

4jets → <u>3jets</u> →

Dominant backgrounds

- $t \bar{t} 2W \to b \bar{b} 4W \to 3l 3\nu 2b 2j$
- $\textcircled{O} \quad 3W4j \rightarrow 3l3\nu 4j$
- $O WZ4j \rightarrow 3l1\nu 4j$

<u>4jets</u>	<u> 3jets</u>
104 evts	223 evts
121 evts	230 evts
26 evts	94 evts
580 evts	1580 evts

v/f =

14.5

19.5

Christophe Grojean

Composite Higgs Physics

KITP, Santa Barbara, June 4st 2008

 $v/f = \sqrt{.5}$

4.3

5.9

1 identify the "external" jets:

- get the most forward jet
- Construct the pair with the largest M_{inv} or $\delta\eta$

 $|\eta|_{\rm max} \ge 1.8$

$M_{ij} \geq 330 \text{ GeV}$

$|\delta\eta_{jj}| \ge 3.0$

Christophe Grojean

KITP, Santa Barbara, June 4st 2008

2 reconstruction of hadronic W

 $|\overline{M_{jj} - M_W}| < 40 \text{ GeV}$

Christophe Grojean

KITP, Santa Barbara, June 4st 2008

3 identify the $\ell^+\ell^-$ pair coming

from the same Higgs

the pair with the smallest angle

 $M_{l^+l^-(\phi \min)} \le 110 \text{ GeV}$

Christophe Grojean

KITP, Santa Barbara, June 4st 2008

4 left with a ℓ^{\pm} jj triplet

cut on its inv. mass

 $M_{jjl^{\pm}} \leq 230 \text{ GeV}$

Christophe Grojean

KITP, Santa Barbara, June 4st 2008

After optimized cuts (with 300 fb⁻¹)

events in signal

v/f = 1	$v/f = \sqrt{.8}$	$v/f = \sqrt{.5}$	v/f = 0
7.4	4.9	2.2	0.2

events in backgroundtWWttWjj3W4jWZ4j

	00	J	J	
.01	.14	.10	1.20	
	14.18 B. C.			

v/f	1	$\sqrt{.8}$	$\sqrt{.5}$
significance (300 fb^{-1})	4.0	2.9	1.3
luminosity for 5σ	450	850	3500

KITP, Santa Barbara, June 4st 2008

EW interactions need a UV moderator/new physics to unitarize WW scattering amplitude

Oblique corrections provide a guide to the scale of new physics

We need observables to distinguish whether the EWSB sector is strongly or weakly coupled: WW scattering, WW HH, Higgs anomalous couplings

If the LHC sees a Higgs and nothing else, it will be a challenging time to deciphering the true nature of the Higgs

> LHC and ILC are complementary in the exploration of the TeV scale population

Christophe Grojean

KITP, Santa Barbara, June 4st 2008