The Higgs boson and the scale of new physics

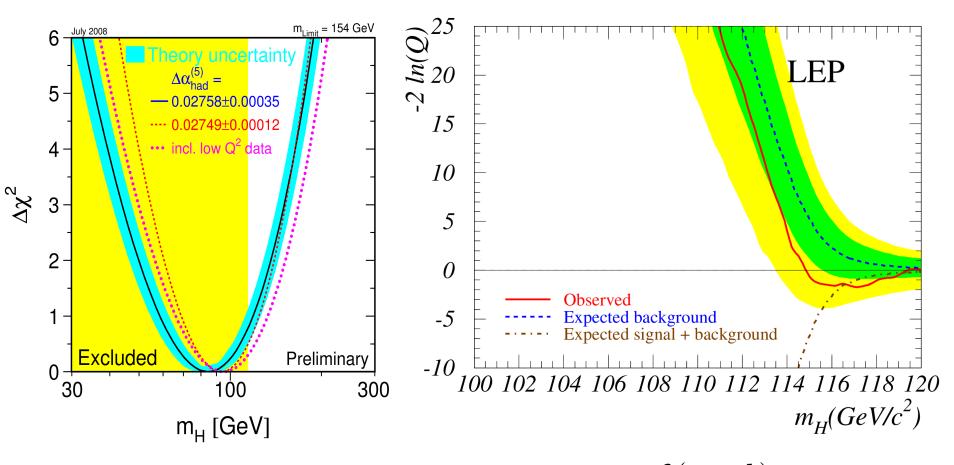
Giuseppe Degrassi Dipartimento di Matematica e Fisica, Università di Roma Tre, I.N.F.N. Sezione di Roma Tre

LHC- The First Part of the Journey Santa Barbara, 8-12 July 2013

Outline

- Past and present informations on the Higgs boson
- Implications of $M_h \sim 125\,$ GeV for New Physics: vacuum stability, MSSM
- Conclusions

The past: LEP



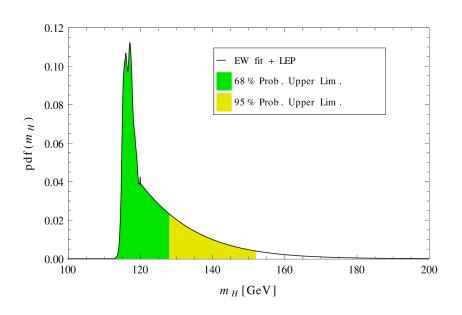
$$Q = \frac{\mathcal{L}(s+b)}{\mathcal{L}(b)}$$

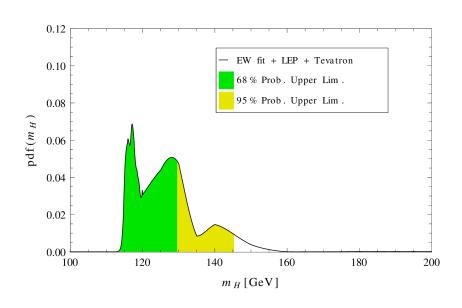
The past: LEP+ Tevatron

Combining direct and indirect information:

D'Agostini, G.D.1999

$$\operatorname{pdf}(M_h) \propto \frac{Q(M_h)e^{-(\chi^2/2)}}{M_h}$$

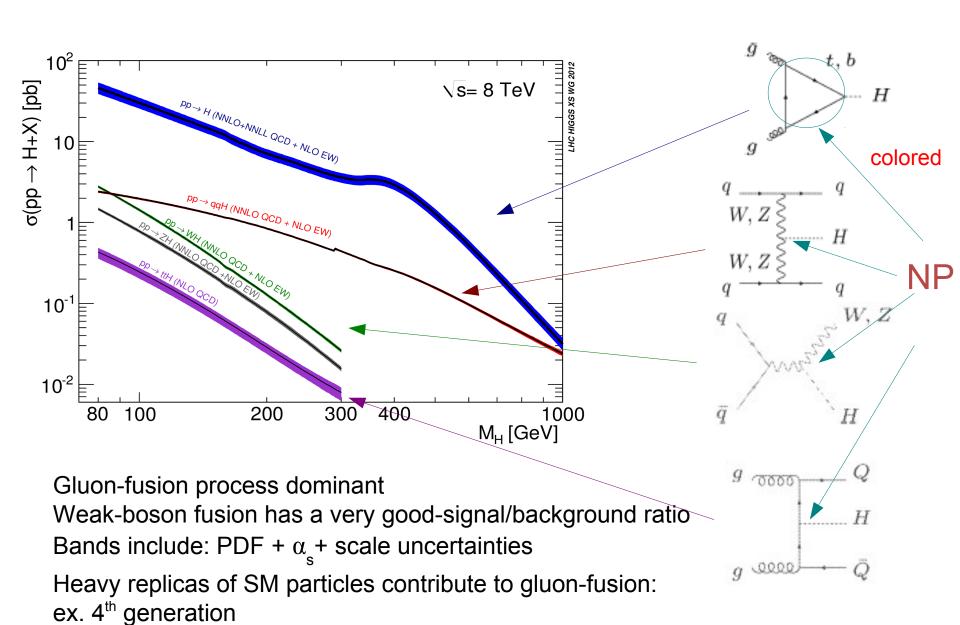




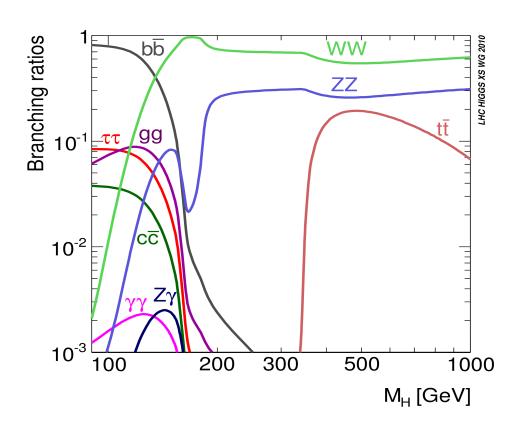
courtesy of S. Di Vita

The consistency of the (minimal) SM at the quantum level predicts a Higgs boss with mass between 110 and 160 GeV

The present: LHC Higgs Production



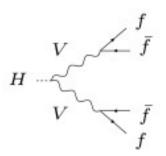
The present: LHC Higgs Decays



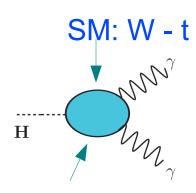
A NP increase in gluon-fusion X-sect. often corresponds to a decrease of ${\rm BR}(H\to\gamma\gamma)$

The ${\rm BR}\,(H\to\gamma\gamma)$ can increase if NP reduces the other BR's

Golden Channel V=Z

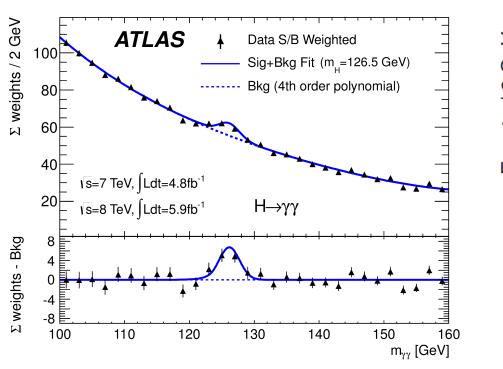


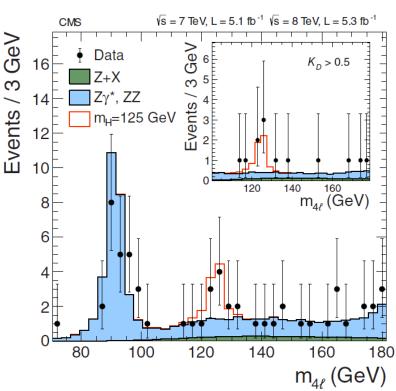
Low Higgs mass



NP: white + colored

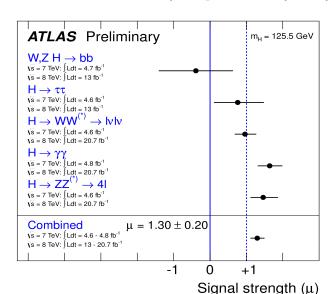
The present: LHC 4th of July 2012 news

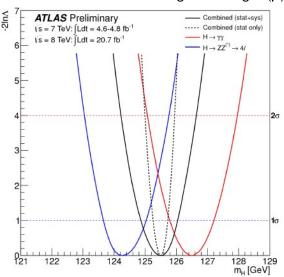




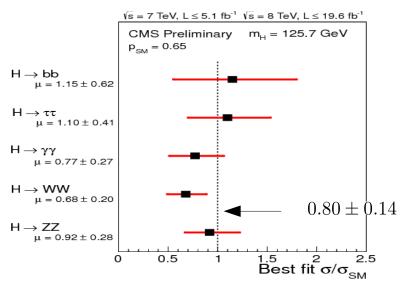
Clear evidence of a new particle with properties compatible with those of the SM Higgs boson

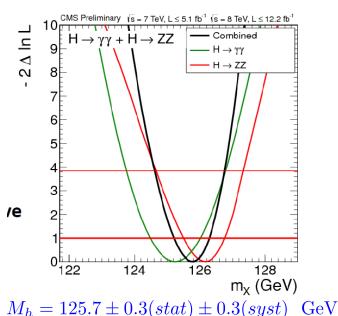
The present: LHC Studying the properties of the new particle



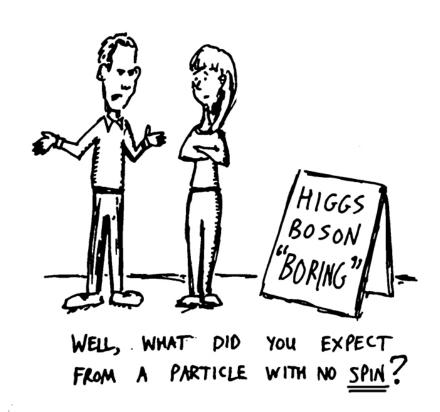


 $M_h = 125.5 \pm 0.2(stat) ^{+0.5}_{-0.6}(syst)$ GeV





Implications of M_h ~ 125 GeV



Reversing the heavy Higgs argument

Specific type of NP could allow a heavy Higgs in the EW fit ("conspiracy"). Take

$$\hat{\rho} = \rho_0 + \delta\rho \left(\rho_0^{\rm SM} = 1, \delta\rho \leftrightarrow (\epsilon_1, T)\right)$$

$$\Delta \hat{r}_w \leftrightarrow (\epsilon_3, S)$$

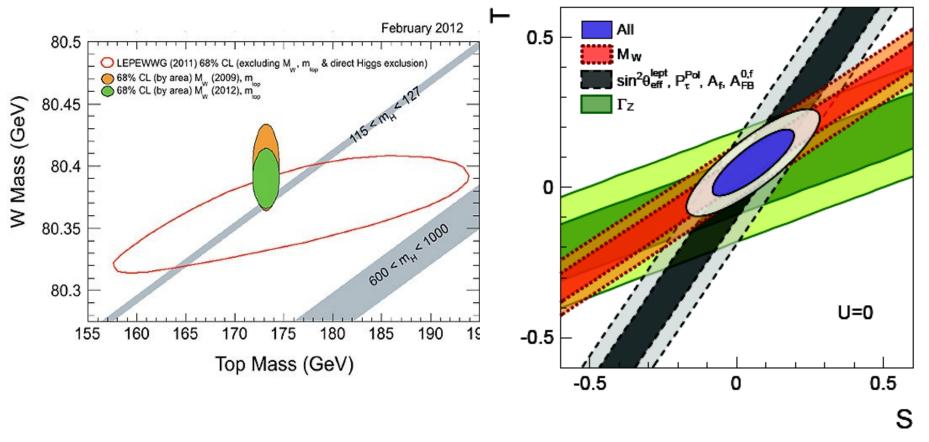
$$\sin^2\theta_{eff}^{lept} \sim \frac{1}{2} \left\{ 1 - \left[1 - \frac{4A^2}{M_Z^2 \, \hat{\rho} \, (1 - \Delta \hat{r}_w)} \right]^{1/2} \right\}$$

$$\sim \left(\sin^2\theta_{eff}^{lept} \right)^\circ + c_1 \, \ln\left(\frac{M_{\rm H}}{M_{\rm H}^\circ}\right) + c_2 \left[\frac{(\Delta\alpha)_h}{(\Delta\alpha)_h^\circ} - 1 \right] - c_3 \left[\left(\frac{M_t}{M_t^\circ}\right)^2 - 1 \right] + \dots$$

$$c_i > 0$$
 To increase the fitted $\mathbf{M}_{\rm H}$:
$$\left\{ \begin{array}{c} \hat{\rho} > 1 \rightarrow \\ \Delta \hat{r}_w < 0 \end{array} \right.$$

$$\left\{ \begin{array}{c} \rho_0 > 1 \leftarrow \\ \delta\rho > 0 \end{array} \right.$$
 Extra Z Isosplitt (s)fermions, Multi Higgs models,

NP (if there) seems to be of the decoupling type



Ciuchini, Franco, Mishima, Silvestrini (13)

(Meta)Stability bound

Quantum corrections to the classical Higgs potential can modify its shape

$$\frac{d\lambda}{d\ln\mu} = \frac{1}{16\pi^2} \left[+24\lambda^2 + \lambda \left(4N_c Y_t - 9g^2 - 3g'^2 \right) - 2N_c Y_t^4 + \frac{9}{8}g^4 + \frac{3}{8}g'^4 + \frac{3}{4}g^2 g'^2 + \dots \right]$$

 λY^2

$$M_{\perp}$$
 large: λ^2 wins

$$\lambda(M_t) \to \lambda(\mu) \gg 1$$

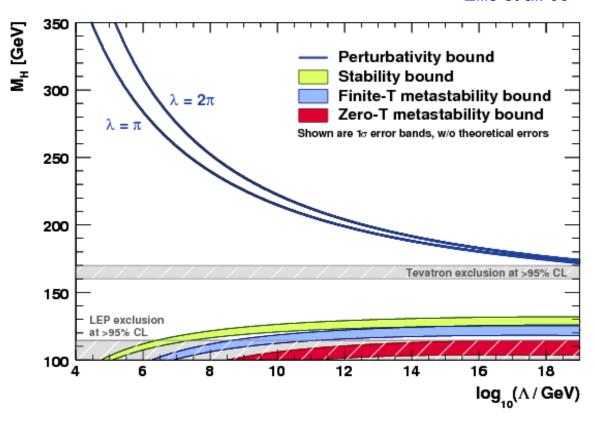
non-perturbative regime, Landau pole

 Y^4

$$M_{H}$$
 small: $-Y_{t}^{4}$ wins

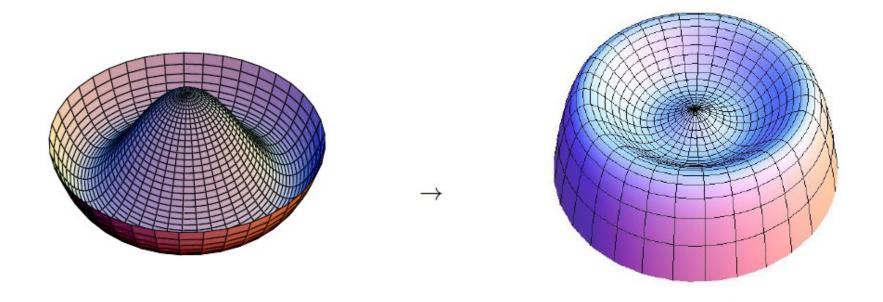
 $M_H \sim 125-126$ GeV: $-Y_t^4$ wins no problem with the Landau pole

Running depends on M_t , α_s



 $M_H \sim 125-126~$ GeV: $-Y_t^4$ wins: $\lambda(M_t) \sim 0.14$ runs towards smaller values and can eventually become negative. If so the potential is either unbounded from below or can develop a second (deeper) minimum at large field values

Illustrative

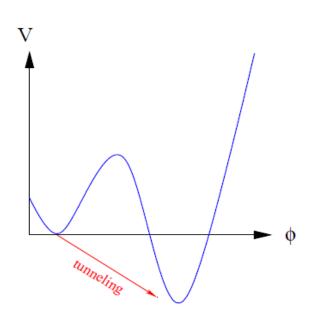


If your mexican hat turns out to be a dog bowl you have a problem...

from A. Strumia

The problem

There is a transition probability between the false and true vacua



It is really a problem?

It is a problem that must be cured via the appearance of New Physics at a scale below that where the potential become unstable ONLY if the transition probability is smaller than the life of the universe.

Metastability condition: if λ becomes negative provided it remains small in absolute magnitude the SM vacuum is unstable but sufficiently long-lived compared to the age of the Universe

Transition probability:
$$p \sim e^{-\frac{8\pi^2}{3|\lambda|}}$$

Vacuum stability at NNLO

Two-loop effective potential

(complete) Ford, Jack, Jones 92,97; Martin (02)

Three-loop beta functions

gauge Mihaila, Salomon, Steinhauser (12)

Yukawa, Higgs Chetyrkin, Zoller (12, 13,); Bednyakov et al. (13)

Two-loop threshold corrections at the weak scale

y.: gauge x QCD Bezrukov, Kalmykov, Kniehl, Shaposhnikov (12)

λ: Yuk x QCD, Bezrukov et al. (12), Di Vita et al. (12)

SM gaugeless Di Vita, Elias-Miro', Espinosa, Giudice, Isidori, Strumia, G.D. (12)

Dominant theory uncertainty on the Higgs mass value that ensures vacuum stability comes from the residual missing two-loop threshold corrections for λ at the weak scale

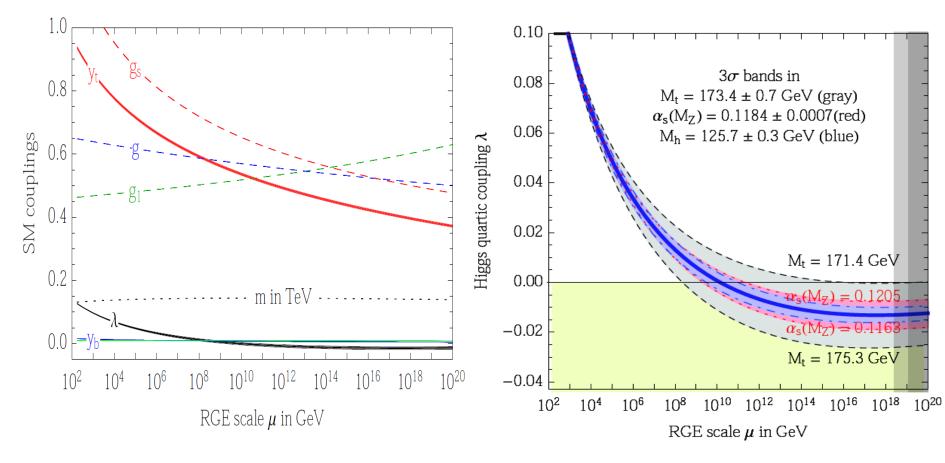
Full SM two-loop threshold corrections to λ, y, and m

Buttazzo, Giardino, Giudice, Sala, Salvio, Strumia, G.D. (13)

$\lambda(\mu)$ in terms of G_{μ} , $\alpha(M_{_{Z}})$, $M_{_{h}}$, $M_{_{t}}$, $M_{_{z}}$, $M_{_{w}}$ (pole masses)

$$\lambda(\mu) = \frac{G_{\mu}}{\sqrt{2}} M_h^2 - \delta \lambda^{(1)}(\mu) - \delta \lambda^{(2)}(\mu)$$
 Sirlin, Zucchini (86)
$$\frac{G_{\mu}}{\sqrt{2}} = \frac{1}{2v_0^2} (1 + \Delta r_0)$$
 Sirlin, Zucchini (86)
$$\delta \lambda^{(2)}(\mu) = \frac{G_{\mu}}{\sqrt{2}} M_h^2 \left\{ -\frac{\Delta r_0^{(1)}}{M_h^2} \left[M_h^2 \Delta r_0^{(1)} + \frac{3}{2} \frac{T^{(1)}}{v_{\text{ten}}} + \text{Re} \, \Pi_{hh}^{(1)}(M_h^2) \right] + \Delta r_0^{(2)} + \frac{1}{M_h^2} \left[\frac{T^{(2)}}{v_{\text{ten}}} + \text{Re} \, \Pi_{hh}^{(2)}(M_h^2) \right] \right\}_{\text{fin}} + \Delta \lambda$$
 analytical analytical analytical Martin's loop functions Martin (02,03)
$$\delta \lambda_{SM}^{(2)}(\mu = M_t) = -\frac{9.545}{(4\pi)^4}, \qquad \delta \lambda_{G.L.}^{(2)}(\mu = M_t) = -\frac{9.605}{(4\pi)^4}$$

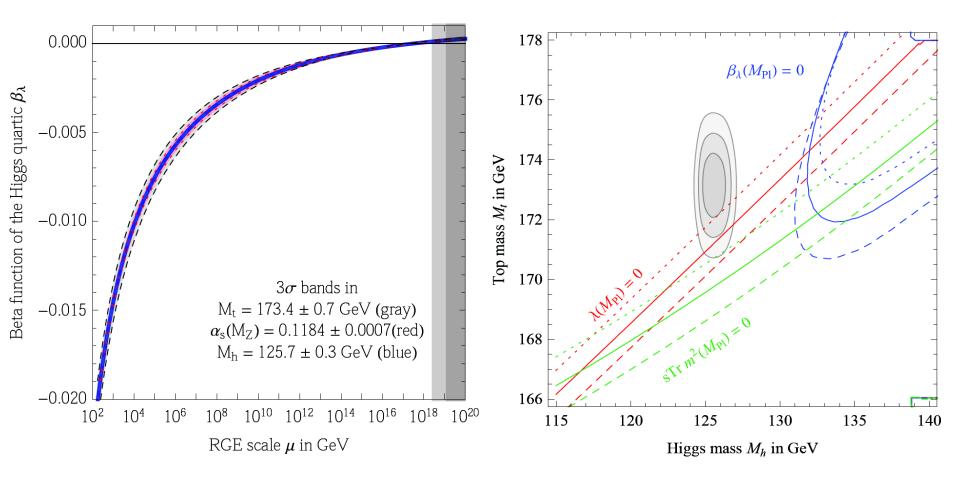
$$\lambda(\mu = M_t) = 0.12709 + 0.00206 \left(\frac{M_h}{\text{GeV}} - 125.66\right) - 0.00004 \left(\frac{M_t}{\text{GeV}} - 173.15\right) \pm 0.00035_{\text{th}}$$



Full stability is lost at $\Lambda \sim 10^{10}$ - 10^{11} GeV but λ never becomes too negative

$$\lambda(M_{Pl.}) = -0.0128 + 0.0010 \left(\frac{M_h - 125.66 \,\text{GeV}}{0.34 \,\text{GeV}} \right) - 0.0043 \left(\frac{M_t - 173.35 \,\text{GeV}}{0.65 \,\text{GeV}} \right) + 0.0018 \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007} \right)$$

Both λ and β_{λ} are very close to zero around the Planck mass Are they vanishing there?



$$\lambda(M_{Pl})=0 \rightarrow M_{t} \sim 171 \text{ GeV}$$
Veltman's condition $\rightarrow M_{t} \sim 169 \text{ GeV}$

$$M_{t} = 173.4 \pm 0.7 \text{ GeV}$$
Pole mass

Top pole vs. MS mass

Is the Tevatron number really the "pole" (what is?) mass?

Monte Carlo are used to reconstruct the top pole mass form its decays products that contain jets, missing energy and initial state radiation.

 $M_t^{\overline{MS}}$ can be extracted from total production cross section

$$M_t^{\overline{MS}}(M_t) = 163.3 \pm 2.7 \,\text{GeV} \rightarrow M_t = 173.3 \pm 2.8 \,\text{GeV}$$

Alekhin, Djouadi, Moch, 12

Consistent with the standard value albeit with a larger error.

N.B.

Fermion masses are parameters of the QCD Lagrangian, not of the EW one, Yukawas are.

MS masses are gauge invariant objects in QCD, not in EW, Yukawas are.

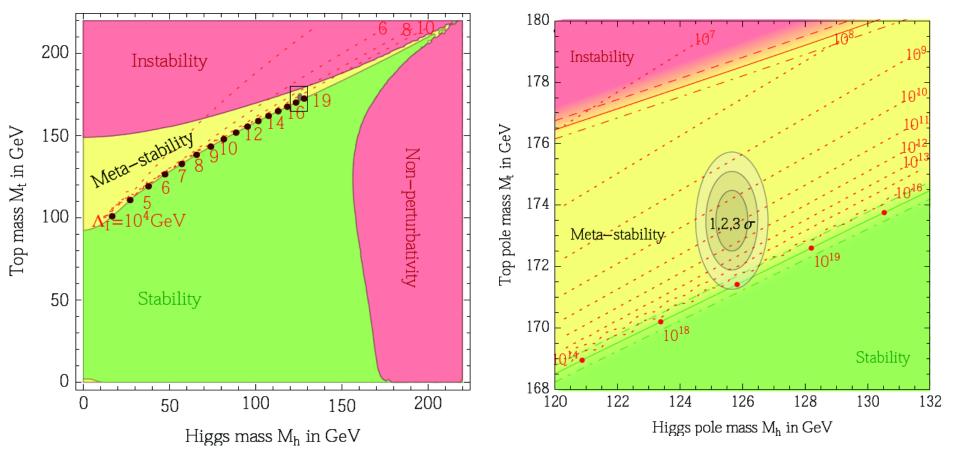
The vacuum is not a parameter of the EW Lagrangian. Its definition is not unique:

- Minimum of the tree-level potential
 - $\to M_t^{\overline{MS}}$ g.i. but large EW corrections in the relation pole- $\overline{\rm MS}$ mass (~ $\rm M_t^4$) Jegerlehner, Kalmykov, Kniehl, 12

But direct extraction of $M_t^{\overline{MS}}$ requires EW correction

- Minimum of the radiatively corrected potential
- $\to M_t^{\overline{MS}}$ not g.i. (problem? $\overline{\rm MS}$ mass is not a physical quantity) no large EW corrections in the relation pole- $\overline{\rm MS}$ mass

SM phase diagram



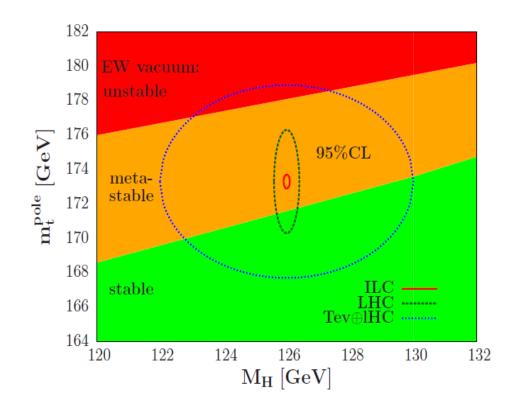
We live in a metastable universe close to the border with the stability region.

Stability condition:

$$\frac{M_h}{\text{GeV}} > 129.6 + 1.3 \left(\frac{M_t - 173.35 \,\text{GeV}}{0.65 \,\text{GeV}}\right) - 0.5 \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 0.3_{\text{pert.}} \pm 0.6_{\text{non-pert.}}$$

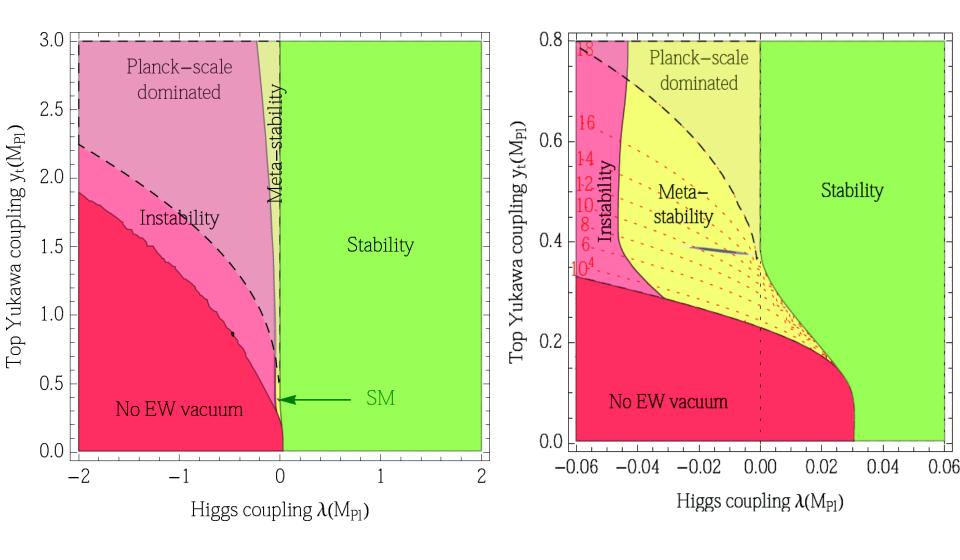
$$M_t < \left(171.36 \pm 0.15_{\text{pert.}} \pm 0.30_{\text{non-pert.}} \pm 0.25_{\alpha_s} \pm 0.17_{M_h}\right) \text{GeV}$$
 reduced

Type of error	Estimate of the error	Impact on M_h
M_t	experimental uncertainty in M_t	$\pm 1.4 \text{ GeV}$
$lpha_{ ext{s}}$	experimental uncertainty in $\alpha_{\rm s}$	$\pm 0.5~{\rm GeV}$
Experiment	Total combined in quadrature	$\pm 1.5~{\rm GeV}$
λ	scale variation in λ	<u></u> ±0.7 GeV
h_t	$\mathcal{O}(\Lambda_{ ext{QCD}})$ correction to M_t	$\pm 0.6~{\rm GeV}$
h_t	QCD threshold at 4 loops	$\pm 0.3~{\rm GeV}$
RGE	EW at 3 loops + QCD at 4 loops	±0.2 GeV
Theory	Total combined in quadrature	$\pm 1.0 \mathrm{GeV}$



Alekhin, Djouadi, Moch, 12

±0.7 GeV



 $\lambda(M_{_{Pl}})$ and $y_{_t}(M_{_{Pl}})$ almost at the minimum of the funnel An accident or deep meaning?

The MSSM Higgs sector

Higgs sector:
$$H_1=\left(\begin{array}{c}H_1^0\\H_1^-\end{array}\right),\;\;H_2=\left(\begin{array}{c}H_2^+\\H_2^0\end{array}\right)\Longrightarrow h,H,A,H^\pm$$

Higgs masses: predicted at the tree level in terms of M_A , tan β , $M_h < M_Z$ Including radiative corrections: dependence on all SUSY(-breaking) parameters $(A_t, A_b, \mu \dots)$

$$M_h \lesssim 135\,\mathrm{GeV}$$
 decoupling h SM-like $M_{A,H,H^\pm} \sim 100\ldots\mathrm{TeV}$ $M_A \sim M_H \sim M_H^\pm > \mathcal{O}(200\mathrm{GeV})$

ϕ	$g^\phi_{uar{u}}$	$g^\phi_{dar{d}}$	g_{VV}^{ϕ}
$\mid h \mid$	$\cos \alpha / \sin \beta \rightarrow 1$	$-\sin \alpha /\cos \beta \rightarrow 1$	$\sin(\beta - \alpha) \to 1$
$\mid H \mid$	$\sin \alpha / \sin \beta \rightarrow 1/\tan \beta$	$\cos \alpha / \cos \beta \rightarrow \tan \beta$	$\cos(\beta - \alpha) \to 0$
$\mid A \mid$	$1/\tan eta$	aneta	0

Large tanß

$$g_{d\bar{d}}^{\phi} \oint \operatorname{decoupling} g_{d\bar{d}}^{\phi} \to \frac{0}{0}$$

delayed decoupling

How easy is to get $M_H \sim 125$ GeV in the MSSM?

$$M_h^2 \simeq M_Z c_{2\beta}^2 + \frac{3\,m_t^4}{4\,\pi^2 v^2} \left[\ln\left(\frac{M_S^2}{m_t^2}\right) + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12\,M_S^2}\right) \right] + \dots$$

$$\uparrow \quad \text{SUSY breaking parameters}$$

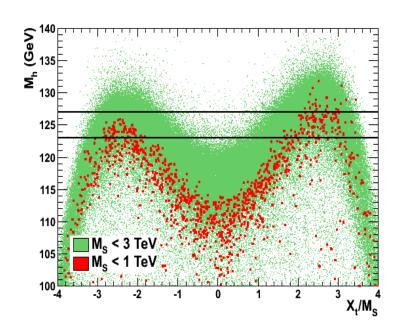
$$X_t = A_t - \mu \cot\beta, \ M_S = \sqrt{M_{\tilde{t}_1} M_{\tilde{t}_2}}$$

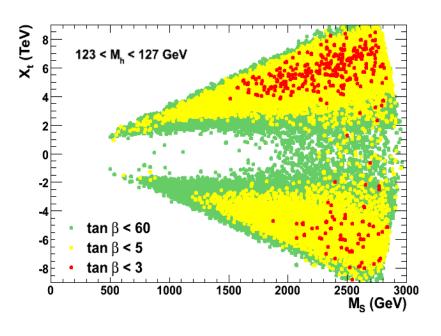
To get $M_{\perp} \sim 125$ GeV:

- Large tan β , tan β > 10 (increase the tree-level)
- Heavy stops, i.e. large M_s (increase the In)
- Large stop mixing, i.e. large X_t

The more assumptions we take on the mechanism of SUSY-breaking, the more difficult becomes to get $M_{_{\rm H}} \sim 125~{\rm GeV}$

pMSSM: minimal assumptions on SUSY-breaking parameters

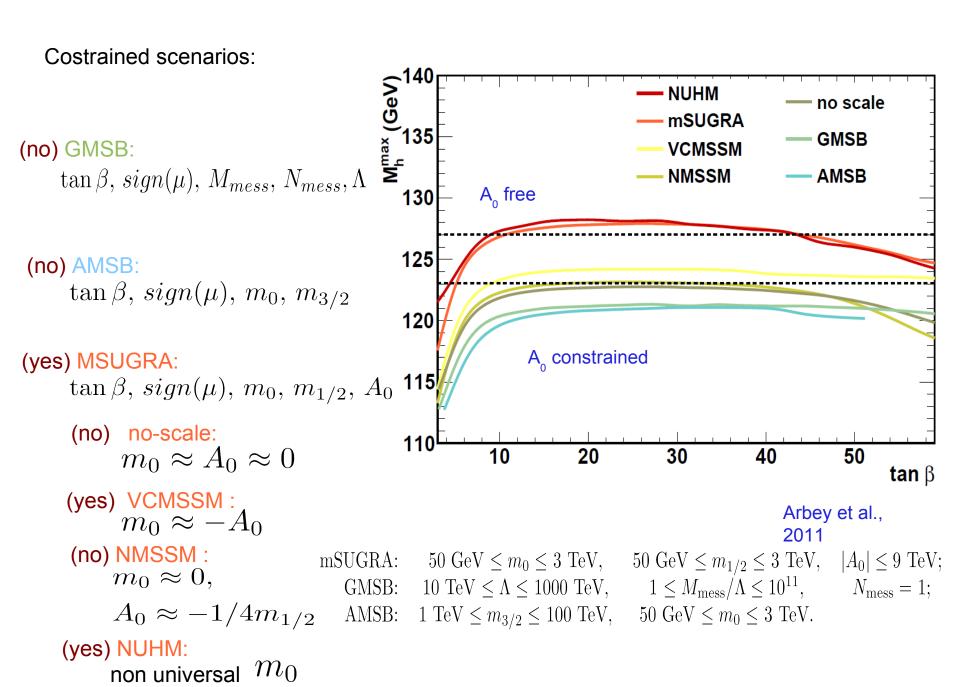




Arbey et al., 2011

22 input parameters varying in the domains:

 $1 \le \tan \beta \le 60$, $50 \text{ GeV} \le M_A \le 3 \text{ TeV}$, $-9 \text{ TeV} \le A_f \le 9 \text{ TeV}$, $50 \text{ GeV} \le m_{\tilde{f}_L}, m_{\tilde{f}_R}, M_3 \le 3 \text{ TeV}$, $50 \text{ GeV} \le M_1, M_2, |\mu| \le 1.5 \text{ TeV}$.



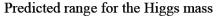
$M_h \sim 125$ GeV and the SUSY breaking scale

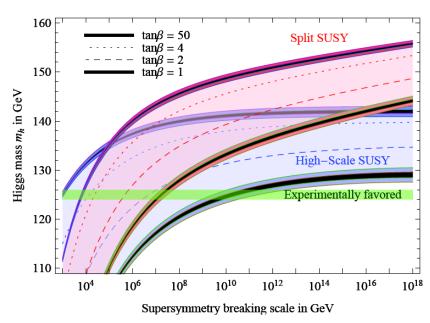
MSSM variant: (m: Supersymmetry breaking scale)

High-Scale Supersymmetry Split SUSY:

All SUSY particle with mass \widetilde{m} Susy fermions at the weak scale Susy scalars with mass \widetilde{m}

$$\lambda(\tilde{m}) = \frac{1}{8} \left[g^2(\tilde{m}) + g'^2(\tilde{m}) \right] \cos^2 2\beta$$





Supersymmetry broken at a very large scale is disfavored

Conclusions

SM is quite OK

 M_h -125/6 GeV is a very intriguing value.

The SM potential is metastable, at the "border" of the stability region. Model-independent conclusion about the scale of NP cannot be derived. λ is small at high energy: NP (if exists) should have a $weakly\ interacting$ Higgs particle

 λ and β_{λ} are very close to zero around the Planck mass: deep meaning or coincidence?

In the MSSM M_h –125/6 it is at the "border" of the mass-predicted region. CMSSM models suffer. However, if SUSY exists its scale of breaking cannot be too high.