Dilaton Phenomenology

(Inspecting the Higgs for new strongly interacting dynamics)

Jay Hubisz
July 2013

Syracuse University

with: Brando Bellazzini, Csaba Csáki, Javi Serra, John Terning
hep-ph:I209.3299 and hep-ph: I 305.39 I9

Higgs-like

\nsim

The resonance is at $\sim 126 \mathrm{GeV}$ and it is SM-Higgs-like I 0\% -ish deviations still allowed

Non-discovery SUSY

Non-discovery exotics

ATLAS Exotics Searches* - 95\% CL Lower Limits (Status: HCP 2012)

Large ED (ADD) monojet $+E_{T, \text { miss }}$ Large ED (ADD) : monophoton $+E_{T, \text { miss }}$ Large ED (ADD) : diphoton \& dilepton, $m_{y, / \|}$

UED : diphoton $+E_{T \text { miss }}$
S^{1} / Z_{2} ED : dilepton, $m_{\|}$
RS1 : diphoton \& dilepton, $m_{\gamma \gamma / \|}$
RS1: ZZ resonance, $m_{\text {IIII/ III }}$
RS1: WW resonance, m_{T} $R S g_{K K} \rightarrow \mathrm{tt}(\mathrm{BR}=0.925): \mathrm{tt} \rightarrow$ I+jets, m
ADD BH ($\left.M \quad / M_{D}=3\right)$: $S S$ dimuon N ADD BH $\left(M^{\text {TH }} / M_{\mathrm{D}}=3\right)$: leptons + jets,Σp

Quantum black hole : dijet, $\mathrm{F}_{\chi}\left(m_{\mathrm{ij}}{ }^{\top}\right)$
qqq contáct interaction : $\chi\left(\bar{m}_{\mathrm{ji}}\right)$
uutt $\mathrm{Cl}: \mathrm{SS}$ dilepton + ets $+E$,
$Z^{\prime \prime}(S S M): m_{\text {ee/ue }}$
Z' (SSM) : m
W^{\prime} (SSM) : $m^{\tau \pi}$
$W^{\prime}\left(\rightarrow\right.$ tq, $\left.g_{d}=1\right): m_{\text {tq }}$
$\mathrm{W}_{\mathrm{R}}{ }^{\prime}(\rightarrow \mathrm{tb}, \mathrm{SSM}): m_{\mathrm{tb}}$
$\mathrm{W}^{*}: m_{\mathrm{T}, \mathrm{e} / \mathrm{u}}$

- Scalar LQ pair $(\beta=1)$: kin. vars. in eejj, evjj Scalar LQ pair $(\beta=1)$: kin. vars. in $\mu \mu \mathrm{jj}, \mu v \mathrm{jj}$ Scalar LQ pair $(\beta=1)$: kin. vars. in $\tau \tau j \mathrm{j}, ~ \tau v \mathrm{jj}$

4 generation : $t^{\prime} t^{\prime} \rightarrow \mathrm{WbWb}$
$4^{\text {th }}$ generation : $b^{\prime} b^{\prime}\left(T_{5 / 3} T_{5 / 3}\right) \rightarrow \mathrm{WtWt}$
New quark b' : b'bi/h $\rightarrow \mathrm{Zb}+\mathrm{X}, m_{\text {zp }}$
Top partner : TT $\rightarrow \mathrm{tt}+\mathrm{A}_{0} \mathrm{~A}_{0}$ (dilepton, $\mathrm{M}_{\mathrm{T}}{ }^{2 \rho}$) Vector-like quark: CC, $m_{\text {lva }}$ Vector-like quark: NC, m
Excited quarks • dies renance, $m_{\gamma j \text { jet }}$
Excited lepton. dijet resonance, m_{ij} ni-hadrons (Lstc) γ resonance, m i-hadrons (LSTC) : dilepton, $m_{\text {ее }}$ drons (LSTC) : WZ resonance (vili), $m_{T, W z}$ W_{R} (LRSM, no mixing) : 2-lep + jets $\mathrm{H}_{\mathrm{L}^{ \pm \pm}}$(DY prod., $\left.\mathrm{BR}\left(\mathrm{H}^{ \pm \pm} \rightarrow \|\right)=1\right)$: SS ee $(\mu \mu), m_{\|}$
$\mathrm{H}_{\mathrm{L}}^{ \pm \pm}\left(\mathrm{DY}\right.$ prod., $\left.\mathrm{BR}\left(\mathrm{H}_{\mathrm{L}}^{ \pm \pm} \rightarrow \mathrm{e} \mu\right)=1\right): \mathrm{SS} \mathrm{e} \mu, m_{\mathrm{e} \mu}{ }^{\|}$
Color octet scalar : dijet resonance, m_{ij}

ATLAS
Preliminary
$L=1.0 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1203.0718] $L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1208.2880] $L=4.7 \mathrm{fb}^{-1}, 7$ TeV [ATLAS-CONF-2012-136]
$L=1.3 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1111.0080]
$L=1.0 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1204.4646]
$L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}[1210.1718]$
$L=4.8 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [ATLAS-CONF-2012-038]
$L=4.9-5.0 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1211.1150]
$L=1.0 \mathrm{fb}^{-1}, 7 \mathrm{TeV}[1202.5520]$
$L=5.9-6.1 \mathrm{fb}^{-1}, 8$ TeV [ATLAS-CONF-2012-129]
$L=4.7 \mathrm{fb}^{-1} 7 \mathrm{TeV}[1210.6604]$
$L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1210.6604] $L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}[1209.4446]$ $L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1209.6593] $L=1.0 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1205.1016] $L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1209.4446]
$L=1.0 \mathrm{fb}^{-1}, 7 \mathrm{TeV}[1112.4828]$ $L=1.0 \mathrm{fb}^{-1}, 7 \mathrm{TeV}[1203.3172]$ $L=4.7 \mathrm{fb}^{-1} 7 \mathrm{TeV}[P r e 3172]$ $L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1210.5468] $L=4.7 \mathrm{fb}^{-1}, 7$ TeV [ATLAS-CONF-2012-130] $L=2.0 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1204.1265] $L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1209.4186]
$L=4.6 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [ATLAS-CONF-2012-137] $L=4.6 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [ATLAS-CONF-2012-137]
\qquad
483 GeV T mass ($m\left(\mathrm{~A}_{\rho}\right)<100 \mathrm{GeV}$)
1.12 TeV VLQ mass (charge $-1 / 3$, coupling $\kappa_{\mathrm{qQ}}=v / \mathrm{m}_{\mathrm{Q}}$)
$L=2.1 \mathrm{fb}^{-1}, 7 \mathrm{TeV}[1112.3580]$
$L=13.0 \mathrm{fb}^{-1}, 8$ TeV [ATLAS-CONF-2012-148]
$L=13.0 \mathrm{fb}^{-1}, 8$ TeV [ATLAS-CONF-2012-146]
$L=4.9-5.0 \mathrm{fb} \mathrm{fb}^{-1}, 7 \mathrm{TeV}[1209.2535]$
$L=1.0 \mathrm{fb}^{-1}, 7 \operatorname{TeV}[1204.1648]$
$L=2.1 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1203.5420]
$L=2.1 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1203.5420]
$L=4.7 \mathrm{fb}^{-1}, 7 \mathrm{TeV}$ [1210.5070]
$L=4.7 \mathrm{fb} \mathrm{b}^{-1}, 7 \mathrm{TeV}[1210.5070]$

$$
\begin{aligned}
& 2.23 \mathrm{TeV} \\
& \text { viton mass }\left(k / M_{\mathrm{P} 1}=0.1\right)
\end{aligned}
$$

1.23 TeV Graviton mass ($k / M_{P I}=0.1$)
$1.9 \mathrm{TeV} \mathrm{g}_{\mathrm{KK}}$ mass
$1.25 \mathrm{TeV} M_{D}(\delta=6)$
$1.5 \mathrm{TeV} \quad M_{D}(\delta=6)$
$4.11 \mathrm{TeV} \quad M_{D}(\delta=6)$
$7.8 \mathrm{TeV} \Lambda$
1.7 TeV $2.49 \mathrm{TeV} Z^{\prime}$ mass 1.4 TeV Z' mass

		2.55 TeV	W' mass
430 GeV W' mass			
	1.13 TeV	W'mass	
		2.42 TeV	W* mass

$\int L d t=(1.0-13.0) \mathrm{fb}^{-1}$ $\sqrt{\mathrm{s}}=7,8 \mathrm{TeV}$
$3.9 \mathrm{TeV} \Lambda$ (constructive int.)
10^{-1}

[^0]
Status of light scalars

All models seem to be under strain

Strongly coupled EWSB

- Higgsless and pure Technicolor models are dead
- Composite Higgs models fine tuned
- Give up on SC-EWSB?

The Higgs:

- Couplings determined by ~ conformal invariance of SM (e.g. low energy theorems)
- m_{H} is only classical explicit breaking
- VEV breaks conformality spontaneously

Higgs-like dilaton

- Can envision a model of strong dynamics at at conformal fixed point
- To reproduce data need conformal symmetry spontaneously broken at $\mathrm{f} \sim \mathrm{v}$

$$
\kappa_{f} \sim \kappa_{V} \sim \frac{v}{f}
$$

Questions I will discuss:

- Can a dilaton fit the data?
- Can a dilaton be light? (below $\Lambda=4 \pi f$)

More general discussion of (maybe non-higgslike) dilatons

Some recent work:

Csáki, JH, Lee '07
Goldberger, Grinstein, Skiba '07
Fan, Goldberger, Ross, Skiba '09
Csáki, Bellazzini, JH, Serra, Terning 'l2
Chacko, Mishra 'l2
Chacko, Mishra, Franceschini 'l2
Chacko, Mishra, Stolarski 'I3
Csáki, Bellazzini, JH, Serra, Terning 'I3
Coradeschi, Lodone, Pappadopulo, Rattazzi, Vitale 'I3

Scale Transformations

Dilatations:

$$
x \rightarrow x^{\prime}=e^{-\alpha} x
$$

Operators transform:
$\mathcal{O}(x) \rightarrow \mathcal{O}^{\prime}(x)=e^{\alpha \Delta} \mathcal{O}\left(e^{\alpha} x\right)$
Δ is the full quantum operator dimension

Linearized transformation of action:

$$
S \longrightarrow S+\sum_{i} \int d^{4} x \alpha g_{i}\left(\Delta_{i}-4\right) \mathcal{O}_{i}(x)
$$

Spontaneous breaking

CFT operator gets VEV:
 $$
\langle\mathcal{O}(x)\rangle=f^{\Delta}
$$

Single corresponding goldstone boson:

$$
\sigma(x) \rightarrow \sigma\left(e^{\alpha} x\right)+\alpha f
$$

Low, Manohar '0I

Non-linear realization in effective theory:

$$
f \rightarrow f \chi \equiv f e^{\sigma / f}
$$

Restores symmetry to LEEFT

Dilaton Couplings

- Presume have a strongly coupled conformal sector coupled to weak sector
- Strong sector has spont. broken scale invariance
- derive interactions of mass eigenstates with dilaton

Dilaton-Composite Couplings

Longitudinal components of W,Z, 3rd generation

$$
\begin{array}{cc}
\text { UV lagrangian } & \text { Allow explicit breaking } \\
\mathcal{L}_{C F T}^{U V}=\sum g_{i} \mathcal{O}_{i}^{U V} & {\left[g_{i}\right]=4-\Delta_{i}^{U V}}
\end{array}
$$

In IR, different dof

$$
\mathcal{L}_{C F T}^{I R}=\sum_{j} c_{j}\left(\Pi g_{i}^{n_{i}}\right) \mathcal{O}_{j}^{I R} \underbrace{m_{j}}_{\text {compensate }} \quad m_{j}=4-\Delta_{j}^{I R}-\sum_{i} n_{i}\left(4-\Delta_{i}^{U V}\right)
$$

compensate
Single power of exp. breaking: $\mathcal{L}_{\text {breaking }}^{I R}=\sum_{i} c_{j} g_{i}\left(\Delta_{i}^{U V}-\Delta_{j}^{I R}\right) \mathcal{O}_{j}^{I R} \frac{\sigma}{f}$ No exp. breaking: $\quad \mathcal{L}_{s y m m e t r i c}^{I R}={ }_{j}^{j} c_{j}\left(4-\Delta_{j}^{I R}\right) \mathcal{O}_{j}^{I R} \frac{\sigma}{f}$

$$
\frac{\sigma}{f} T_{\mu}^{\mu}=\frac{v}{f} \sigma \overbrace{\left[2 m_{W}^{2} W_{\mu}^{2}+m_{Z}^{2} Z^{2}+m_{\psi} \psi \psi \ldots\right]}^{\text {rescaled tree-evel SM }}+2 \overbrace{\frac{\beta_{s}}{g} G_{\mu \nu}^{2}+2 \frac{\beta}{e} F_{\mu \nu}^{2}}^{\text {SM beta-functions }}
$$

Dilaton-Fermion Couplings

Partial Compsiteness

Exponential running of y's generates large mass hierarchies integrate out heavy composites and compensate:

$$
\begin{gathered}
\mathcal{L}_{e f f}=-M y_{L} y_{R} \psi_{L} \psi_{R} \chi^{m} \quad m=\Delta_{\psi_{L}}^{U V}-\Delta_{\psi_{L}}^{I R}+\Delta_{\psi_{R}}^{U V}-\Delta_{\psi_{R}}^{I R}+\Delta_{\Theta_{L}}^{U V}+\Delta_{\Theta_{R}}^{U V}-4 \\
\hdashline \mathcal{L} \supset m_{\psi} \psi_{L} \psi_{R}\left[1+\frac{\sigma}{f}\left(1+\gamma_{L}+\gamma_{R}\right)\right]
\end{gathered}
$$

Enhancement in couplings to partially composite fermions

ouplings to massless gauge fields

$$
\mathcal{L}_{m i x} \supset-\frac{1}{4 g^{2}} F_{\mu \nu}^{2}+A_{\mu} \mathcal{J}^{\mu}
$$

coupling to CFT and fundamental currents integrate out the CFT: $\quad-\frac{1}{4 g^{2}(\mu)} F_{\mu \nu}^{2}$
 compensate: $f \longrightarrow f \chi=f e^{\sigma / f} \longrightarrow \mathcal{L}=-\frac{1}{2}\left(\frac{\beta_{I R}}{g}-\frac{\beta_{U V}}{g}\right) \frac{\sigma}{v} F_{\mu \nu}^{2}$

Depends on UV contributions to β-function UV completion - embedding of SM gauge group

Couplings - Summary

composite
 $\rho \quad W_{L} \quad t_{R}$
 elementary
 A_{μ}, quarks, leptons

overall rescaling
 anomalous dim.

$S M \times \frac{v}{f}$
$S M \times \frac{v}{f}(1+\gamma)$

$$
\frac{v}{f}\left(\beta_{U V}-\beta_{I R}+\text { loops }\right)
$$

EWP and Flavor

Non-standard couplings = oblique parameters
$\Delta \hat{T}=-\frac{3 \alpha}{16 \pi \cos ^{2} \theta_{W}}\left(1-c_{V}^{2}\right) \log \left(\frac{\Lambda^{2}}{m_{h}^{2}}\right), \Delta \hat{S}=+\frac{\alpha}{48 \pi \sin ^{2} \theta_{W}}\left(1-c_{V}^{2}\right) \log \left(\frac{\Lambda^{2}}{m_{h}^{2}}\right)$
other contributions from strong dynamics expected
Flavor: $y_{L a}^{i} y_{R b}^{j} \Sigma^{a b} \frac{v}{\sqrt{2}} \psi_{L}^{i} \psi_{R}^{j}\left[1+\frac{\sigma}{f}\left(1+\gamma_{L}^{a}+\gamma_{L}^{b}\right)+\ldots\right]$ dilaton interactions \& masses not diagonalized simultaneously - tree level FCNC
$\psi_{L}^{i} \psi_{R}^{j}\left[m_{i}\left(1+\frac{\sigma}{f}\right) \delta_{i j}+a_{i j} \sqrt{m_{i} m_{j}} \frac{\sigma}{f}+\ldots\right] \quad$ 4F ops: $\sim a_{i j} \sqrt{m_{i n} m_{j}} /\left(m_{d i l}^{2} f^{2}\right)$.
require flavor symmetry: $\quad S U(3)_{q} \times S U(3)_{d} \times S U(2)_{u}$

Can it be light?

The Dilaton Quartic

Most general terms invariant under dilatations:

$$
\begin{aligned}
& \mathcal{L}_{e f f}=\sum_{n, m \geqslant 0} \frac{a_{n, m}}{(4 \pi)^{2(n-1)} f^{2(n-2)}} \frac{\partial^{2 n} \chi^{m}}{\chi^{2 n+m-4}} \\
& =-a_{0,0}(4 \pi)^{2} f^{4} \chi^{4}+\frac{f^{2}}{2}\left(\partial_{\mu} \chi\right)^{2}+\frac{a_{2,4}}{(4 \pi)^{2}} \frac{(\partial \chi)^{4}}{\chi^{4}}+\ldots \\
& \text { dilaton quartic } \\
& S=\int d^{4} x \frac{f^{2}}{2}(\partial \chi)^{2}-a f^{4} \chi^{4}+\text { higher derivatives } \\
& \text { Obstruction to SBSI: } \\
& \text { - } \mathrm{a}>0 \rightarrow \mathrm{f}=0 \text { (no breaking) }
\end{aligned}
$$

Fubini '76

- $\mathrm{a}<0 \rightarrow \mathrm{f}=\boldsymbol{\infty}$ (runaway)
- $a=0 \rightarrow f=$ anything (flat direction)

Near-Marginal Deformation

$$
\delta S=\int d^{4} x \lambda(\mu) \mathcal{O}
$$

Quartic has dependence on near marginal coupling:

$$
V(\chi)=a \chi^{4} \longrightarrow V=\chi^{4} F(\lambda(\chi))
$$

Deformation can stabilize f away from origin

$$
V^{\prime}=f^{3}\left[4 F(\lambda(f))+\beta F^{\prime}(\lambda(f))\right]=0
$$

The Dilaton Mass

Expanding the potential:

$$
m_{d i l}^{2}=f^{2} \beta\left[\beta F^{\prime \prime}+4 F^{\prime}+\beta^{\prime} F^{\prime}\right] \simeq 4 f^{2} \beta F^{\prime}(\lambda(f))=-16 f^{2} F(\lambda(f))
$$

small, so dilaton is light, right?
F is the cosmological constant in f units:

$$
F_{N D A} \sim \frac{\Lambda^{4}}{16 \pi^{2} f^{4}} \sim 16 \pi^{2}
$$

Need large β to find minimum $V^{\prime}=f^{3}\left[4 F(\lambda(f))+\beta F^{\prime}(\lambda(f))\right]=0$
Theory not conformal at scale f - no light dilaton

$$
m_{d i l}^{2} \sim 256 \pi^{2} f^{2} \sim \Lambda^{2} \mathbf{3} \text { TeV not } \mathbf{I} 25 \mathbf{G e V}
$$

OR we can tune away the quartic to get a near flat-direction

Higgslike Radion?

What about f?

$$
f^{(R S)}=\frac{1}{R^{\prime}} \sqrt{12\left(M_{*} R\right)^{3}}=\frac{N_{\mathrm{CFT}}}{R^{\prime}}
$$

Higgsless dilaton:
$\frac{v}{f^{(R S)}}=\frac{2}{g} \frac{1}{N \sqrt{\log \frac{R^{\prime}}{R}}}$
Far too small to be consistent with LHC data

It does suppress mass (once quartic tuning imposed):

$$
m_{d i}^{2}=\frac{16}{N R^{\prime 2}}\left(v_{1} \sqrt{-\delta a}-\frac{\delta a}{2}\right) \epsilon
$$

Light Dilaton?

Non-SUSY light dilaton:

$$
F(\lambda)=a+\delta F(\lambda)
$$

- Generically, dilaton is not light unless the quartic is suppressed relative to NDA
- To get a light dilaton, need flat direction in vicinity of near-zero in β-function or large \mathbf{N}
- While this is natural in SUSY theories, it is not usually the case in non-supersymmetric ones
- When dilaton is light, does not seem very Higgslike

The EWSB line-up

dilaton and composite Higgs seem to be similarly strained

A way out?

CPR idea

- $F(\lambda)$ generically large, but if λ near marginal for range of λ, theory will scan over F with scale

$$
\frac{d \lambda}{d \log \mu}=\beta(\mu) \equiv \epsilon \ll 1
$$

- large F will not generate SBSI - minimum when F ~ 0
- dilaton mass proportional to ε

Holography and light dilatons

$$
S=\int d^{5} x \sqrt{g}\left(-\frac{1}{2 \kappa^{2}} \mathcal{R}+\frac{1}{2} g^{M N} \partial_{M} \phi \partial_{N} \phi-V(\phi)\right)+\int d^{4} x \sqrt{g_{0}} V_{0}(\phi)+\int d^{4} x \sqrt{g_{1}} V_{1}(\phi)
$$

AdS/CFT:

 small $\beta \Leftrightarrow$ nearly constant $\mathrm{V}(\Phi)$$$
V(\phi)=\Lambda_{5}+\epsilon f(\phi)
$$

Metric Ansatz - flat 4D slices ID of scale - warping

$$
d s^{2}=e^{-2 A(y)} d x^{2}-d y^{2} \quad \quad \mu=A^{\prime}(y=0) e^{-A(y)}=\frac{1}{R} e^{-A(y)}
$$

Bulk EOM

$$
\begin{aligned}
4 A^{\prime 2}-A^{\prime \prime} & =-\frac{2 \kappa^{2}}{3} V(\phi) \\
A^{\prime 2} & =\frac{\kappa^{2} \phi^{\prime 2}}{12}-\frac{\kappa^{2}}{6} V(\phi) \\
\phi^{\prime \prime} & =4 A^{\prime} \phi^{\prime}+\frac{\partial V}{\partial \phi}
\end{aligned}
$$

Boundary conditions:

$$
\begin{aligned}
\left.2 A^{\prime}\right|_{y=y_{0}, y_{1}} & = \pm\left.\frac{\kappa^{2}}{3} V_{1}(\phi)\right|_{y=y_{0}, y_{1}} \\
\left.2 \phi^{\prime}\right|_{y=y_{0}, y_{1}} & = \pm\left.\frac{\partial V_{1}}{\partial \phi}\right|_{y=y_{0}, y_{1}}
\end{aligned}
$$

Holography and light dilatons

Imposing bulk eom on $\mathrm{V}_{\text {bulk }}$ gives pure boundary term

$$
V_{\text {bulk }}=\frac{2}{\kappa^{2}} \int_{y_{0}}^{y_{1}} d y e^{-4 A(y)}\left(4 A^{\prime 2}-A^{\prime \prime}\right)=-\left[\sqrt{g} \frac{2}{\kappa^{2}} A^{\prime}\right]_{0}^{1}
$$

Other similar terms from brane potentials and metric jump conditions

$$
\chi \equiv e^{-A\left(y_{1}\right)}
$$

Dilaton effective potential:
$V_{I R}=\chi^{4}\left[V_{1}\left(\phi\left(A^{-1}(-\log \chi)\right)\right)+\frac{6}{\kappa^{2}} A^{\prime}\left(A^{-1}(-\log \chi)\right)\right]=\chi^{4} F(\lambda(\chi))$
Automatically minimized when BC's satisfied

Precisely of form quartic modulated by chi dep. of F

Constant Bulk Potential

$$
\begin{gathered}
V(\phi)=\Lambda_{(5)}=-\frac{6 k^{2}}{\kappa^{2}} \\
\text { Solvable: } \\
A(y)=-\frac{1}{4} \log \left[\frac{\sinh 4 k\left(y_{c}-y\right)}{\sinh 4 k y_{c}}\right] \quad \text { Singularity at } y_{c} \\
\phi(y)=-\frac{\sqrt{3}}{2 k} \log \tanh \left[2 k\left(y_{c}-y\right)\right]+\phi_{0} \\
\text { Impose } \cup V \text { Boundary Conditions: fix } y_{c} \text { and } \Phi_{0} \\
V_{i}(\phi)=\Lambda_{i}+\lambda_{i}\left(\phi-v_{i}\right)^{2}
\end{gathered}
$$

Boundary conditions generically satisfied for finite y_{c} Large AdS deformation!

$$
d s^{2}=\sqrt{\frac{\sinh 4 k\left(y_{c}-y\right)}{\sinh 4 k y_{c}}} d x^{2}-d y^{2}
$$

But Still Scale Invariant

explicitly broken by dynamical gravity - finite μ_{0}

$$
V_{U V}=\mu_{0}^{4}\left(\Delta_{0}+\mathcal{O}\left(\chi^{8} / \mu_{0}^{8}\right)\right)
$$

Pure UV Contribution to CC term

$$
V_{I R}=\chi^{4}\left(a\left(v_{0}\right)+\mathcal{O}\left(\chi^{4} / \mu_{0}^{4}\right)\right)
$$

Pure dilaton quartic
Singularity at y_{c} corresponds to condensate of marginal operator in CFT - spont. breaking of SI
Dilaton quartic is from composite condensates (IR tension) and the condensate of this operator

$$
a\left(v_{0}\right)=\Lambda_{1}+\frac{6 k}{\kappa^{2}} \cosh \left(\frac{2 \kappa}{\sqrt{3}}\left(v_{1}-v_{0}\right)\right) \begin{gathered}
\text { can tune this away by } \\
\text { adjusting } v_{0}
\end{gathered}
$$

If $\beta=0$, no scanning, have to tune condensates against each other - special value of coupling

Including a bulk mass

CFT coordinates

$$
t=\log \mu R=-A(y)
$$

Use bulk eom to eliminate $\mathrm{A}(\mathrm{y})$:

$$
\ddot{\phi}+\left[4 \dot{\phi}+\frac{6}{\kappa^{2}} \frac{\partial \log V}{\partial \phi}\right]\left[1-\frac{\kappa^{2}}{12} \dot{\phi}^{2}\right]=0
$$

neglecting non-linear terms (small back-reaction):

$$
\ddot{\phi}+4 \dot{\phi}-4 \epsilon \phi=0 \quad \begin{gathered}
\phi(t) \approx A e^{-(4+\epsilon) t}+B e^{\epsilon t} \\
\text { slowly running piece }
\end{gathered}
$$

now Φ_{0} scans - finds minimum when quartic small

Boudary layer theory - asymptotic matching

Figure 2: Left, bulk scalar profile: $\phi_{\text {full }}$ (solid black), ϕ_{r} (dashed red), and ϕ_{b} (dotted blue).
Right, effective AdS curvature, $A^{\prime}(y)$: same color code.

Two regions

$$
\ddot{\phi}+\left[4 \dot{\phi}+\frac{6}{\kappa^{2}} \frac{\partial \log V}{\partial \phi}\right]\left[1-\frac{\kappa^{2}}{12} \dot{\phi}^{2}\right]=0
$$

Backreaction term

Eventually, back-reaction comes to dominate
IR Universality - condensate of $d \sim 4$ operator
(IR region has same behavior as constant bulk potential)
Full matched solution
(boundary layer theory/asymptotic matching)

$$
\phi_{\text {full }}=v_{0} e^{\epsilon k\left(y-y_{0}\right)}-\frac{\sqrt{3}}{2 \kappa} \log \left(\tanh \left(2 k\left(y_{c}-y\right)\right)\right)
$$

Including a bulk mass

You get a hierarchy:

$$
\frac{\langle\chi\rangle}{\mu_{0}}=\left(\frac{v_{0}}{v_{1}-\operatorname{sign}(\epsilon) \frac{\sqrt{3}}{2 \kappa} \operatorname{arcsech}\left(-6 k / \kappa^{2} \Lambda_{1}\right)}\right)^{1 / \epsilon}+O(\epsilon)
$$

Condensate balances other contributions naturally (IR brane tension mistune)
Dilaton comes out light with suppressed CC:

$$
m_{\text {dilaton }}^{2} \sim \epsilon f^{2} \quad \Lambda_{\mathrm{CC}} \sim \epsilon f^{4}
$$

UV value still tuned to be small

- only erase condensate contributions

Conclusions

- If the 126 GeV resonance is a dilaton, it must be very Higgslike indeed
- Tensions: EWP, Flavor, mass tuning, Higgs fits
- crucial to pin down properties with more data
- General considerations for light dilatons:
- theory might be able to scan landscape of quartics to achieve SBSI (CPR)
- non-supersymmetric models with light dilatons seem very special - constant and small β for large range of strong coupling

[^0]: *Only a selection of the available mass limits on new states or phenomena shown

