#### **TOP PAIRS AND A JET AT THE LHC** [CHARGE ASYMMETRY'S DISCOVERY CHANNEL]

#### Susanne Westhoff



#### University of Pittsburgh, PA

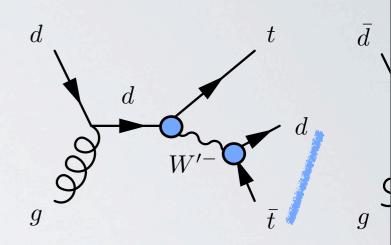
LHC conference --- July 8-12, 2013 --- KITP, Santa Barbara

# A MISTAKE IN THE LITERATURE?

| The Economist Intelligence<br>Unit Top 10 Most Liveable<br>Cities in the U.S. |                 |  |
|-------------------------------------------------------------------------------|-----------------|--|
| 1                                                                             | Pittsburgh      |  |
| 2                                                                             | Honolulu        |  |
| 3                                                                             | Washington D.C. |  |
| 4                                                                             | Chicago         |  |
| 5                                                                             | Atlanta         |  |
| 6                                                                             | Miami           |  |
| 7                                                                             | Detroit         |  |
| 8                                                                             | Boston          |  |
| 9                                                                             | Seattle         |  |
| 10                                                                            | Minneapolis     |  |

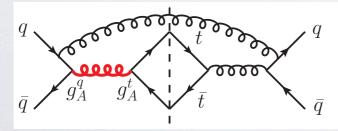


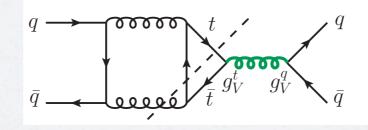
# APPARENTLY CLARIFIED




# TOP PAIRS PLUS JETS AT THE LHC

<u>Top pairs + jets as background</u> to signals with jets, leptons and missing energy (e.g. Higgs and SUSY searches) [see e.g. Rainwater & Zeppenfeld, PRD 60 (1999) 113004]


<u>Top-jet resonances</u> probe new electroweak bosons (à la Z´,W´)


[Gresham et al., PRD 84 (2011) 034025][Knapen, Zhao, Strassler, PRD 86, 014013 (2012)]



[CMS, Phys. Lett. B717, 351 (2012)] [ATLAS-CONF-2012-096]

<u>Charge asymmetry in top pair + jet production</u> probe new massive color octets (e.g. axigluons, colorons)





[Ferrario & Rodrigo, JHEP 1002 (2010) 051] [Berge & Westhoff, PRD 86 (2012) 094036]

# TOP PAIR + JET CROSS SECTIONS

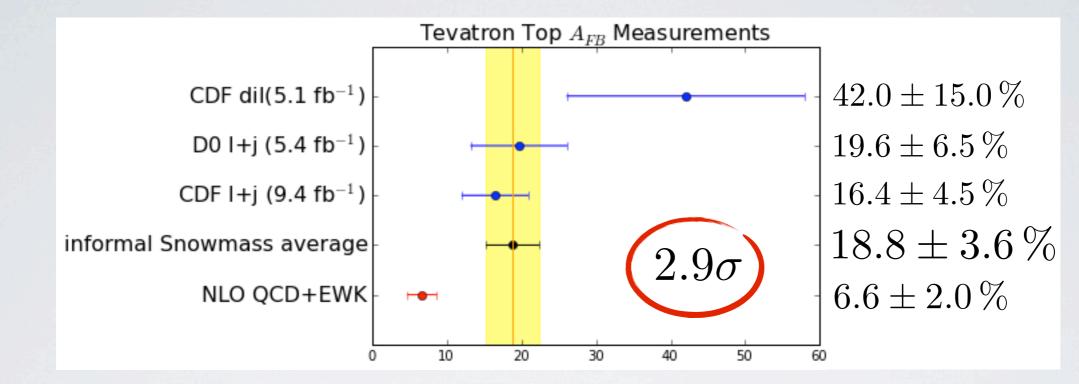
QCD @ NLO[Dittmaier, Uwer, Weinzierl, PRL 98, 262002 (2007) & Eur. Phys. J. C59, 625 (2009)]<br/>[Melnikov & Schulze, Nucl. Phys. B840, 129 (2010)]+ top decay and parton shower effects[Melnikov, Scharf, Schulze, PRD 85, 054002 (2012)]<br/>[Alioli, Moch, Uwer, JHEP 01, 137 (2012)]

Tevatron: little phase space, small production rate

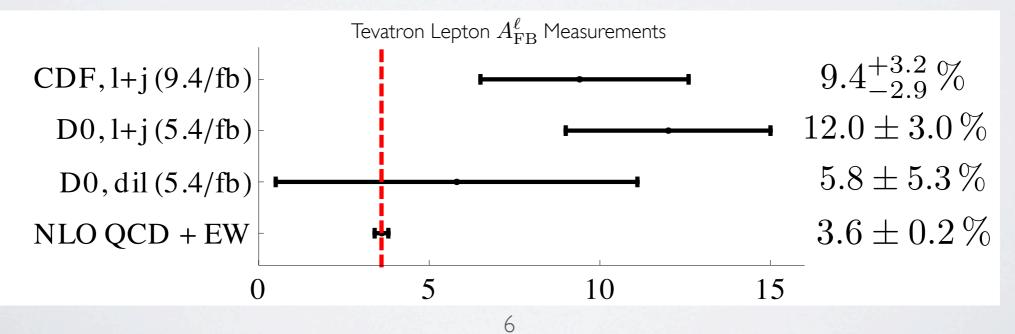
 $\sigma_{t\bar{t}j} = 1.6 \pm 0.2 \pm 0.5 \,\mathrm{pb}$ 

[CDF Public Note 9850 (2009),  $\sqrt{s} = 1.96 \,\text{TeV}, \ p_T^j > 20 \,\text{GeV}, \ \ell j, \ \mathcal{L} = 4.1/\text{fb}$ ]

LHC: ,,top factory'', high production rate


 $\sigma_{t\bar{t}j} = 102 \pm 2^{+23}_{-26} \,\mathrm{pb}$ 

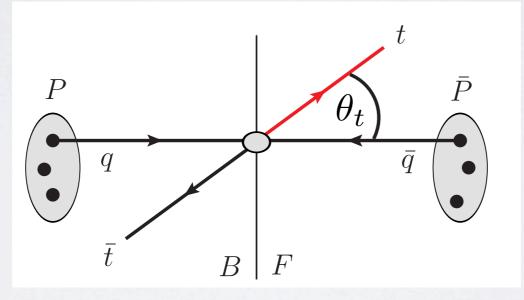
[ATLAS-CONF-2012-083,  $\sqrt{s} = 7 \text{ TeV}, p_T^j > 25 \text{ GeV}, \ell j, \ \mathcal{L} = 4.7/\text{fb}$ ] [s. also CMS-PAS-TOP-12-018]


Sizeable fraction of t<u>t</u> production with at least one hard jet:  $\sigma_{t\bar{t}j}/\sigma_{t\bar{t}} = 0.54 \pm 0.01^{+0.05}_{-0.08}$ 

### CHARGE ASYMMETRY EXCESSES AT TEVATRON

#### Top forward-backward asymmetry $A_{\rm FB}^t$




<u>Lepton asymmetry  $A_{\rm FB}^{\ell}$  (no top reconstruction)</u>



## CHARGE ASYMMETRY DEFINITIONS

Probe charge asymmetry through angular correlations:

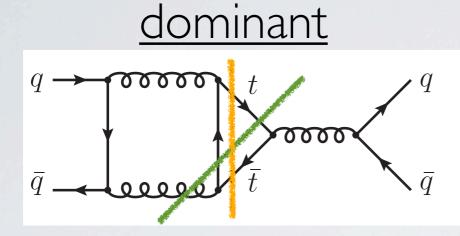
$$A_C = \frac{\sigma_A^{\theta_t}}{\sigma_S}, \quad \sigma_{S,A} = \int_0^1 d\cos\theta_t \, \frac{d\sigma_{t\bar{t}}}{d\cos\theta_t} \pm \frac{d\sigma_{\bar{t}t}}{d\cos\theta_t}$$

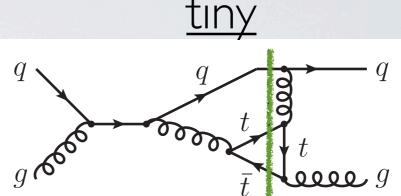


$$A_C^{exp} = \frac{\sigma(\Delta y > 0) - \sigma(\Delta y < 0)}{\sigma(\Delta y > 0) + \sigma(\Delta y < 0)}$$

<u>Tevatron</u>: forward-backward  $A_C^{exp} = A^y = A_C \qquad \Delta y = y_t - y_{\bar{t}}$ <u>LHC</u>: beamward-central  $A_C^{exp} = A_C^{|y|} \ll A_C \quad \Delta y = |y_t| - |y_{\bar{t}}|$ 

### CHARGE ASYMMETRY APPROACHES AT LHC


No observable deviations from SM  $A_C^{\text{LHC7}} = 1.15 \pm 0.06 \%$ .


[Kühn, Rodrigo, JHEP 1201 (2012) 063]

#### Lepton+jets $A_C^{|y|} \begin{bmatrix} CMS \\ 5.0 \text{ fb}^{-1} \text{ at } \sqrt{s} = 7 \text{ TeV} \end{bmatrix}$ CMS: $A_C^{|y|} = 0.4 \pm 1.0 \pm 1.1 \%$ Data EAG [CMS, arXiv:1207.0065] NLO prediction ATLAS: $A_C^{|y|} = -1.9 \pm 2.8 \pm 2.4 \%$ 0.05 [ATLAS, Eur. Phys. J. C72 (2012) 2039] 0 Dilepton CMS: $A_C^{|y|} = 5.0 \pm 4.3^{+1.0}_{-3.9} \%$ -0.05 [CMS-PAS-TOP-12-010] ATLAS: $A_C^{|y|} = 5.7 \pm 2.4 \pm 1.5 \%$ 500 600 700 300 400 800 m<sub>#</sub> [GeV/c<sup>2</sup>] [ATLAS-CONF-2012-057]

Hard to achieve high significance for inclusive asymmetry in SM.

# RAPIDITY ASYMMETRIES IN THE SM

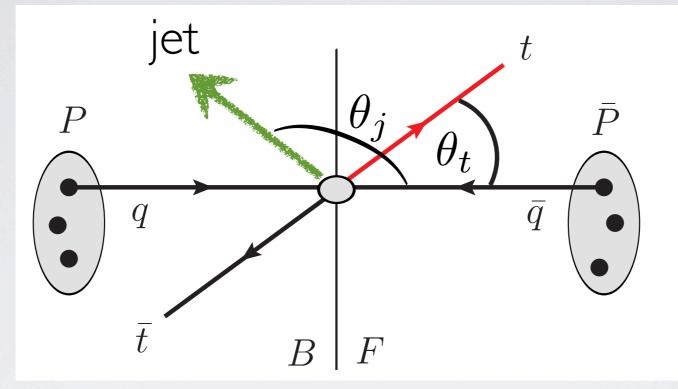




 $t\bar{t}$  inclusive

LO: no asymmetry NLO: virtual + real

#### **Tevatron**


 $A^{y} = (7.16^{+1.05}_{-0.68}\%)_{\text{NLO+NNLL}} \cdot 1.22_{\text{EW}}$ [Ahrens et al., PRD 84 (2011) 074004][Hollik, Pagani, PRD 84 (2011) 093003]

 $A^{|y|} = 1.15 \pm 0.06\%$  (incl. EW) [Kühn, Rodrigo, JHEP 1201 (2012) 063]  $t\bar{t} + jet$  LO: real NLO: virtual + real  $A_{LO}^{y} = -11.1_{-0.1}^{+0.2} \%$   $A_{NLO}^{y} = -4.40 \pm 0.04 \%$ 

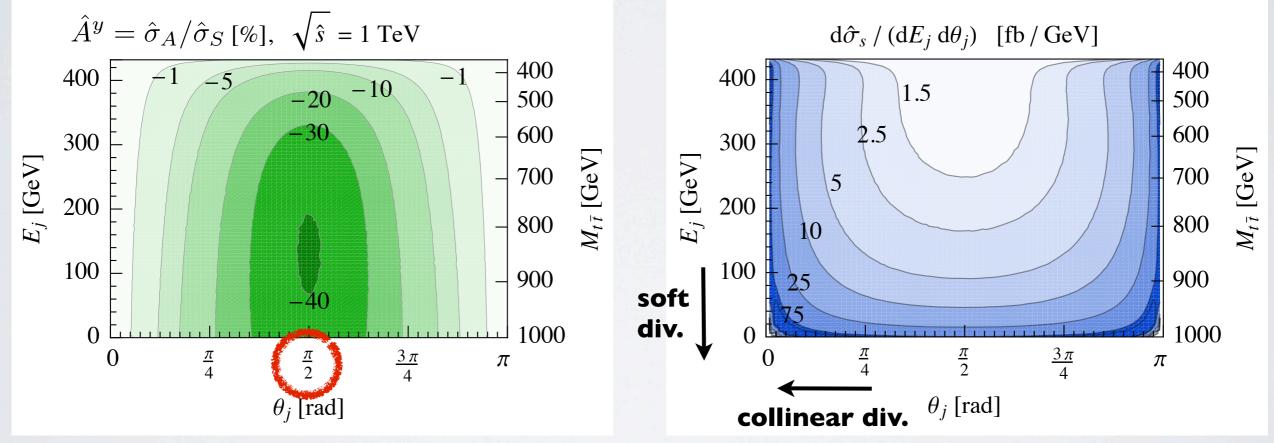
[Alioli, Moch, Uwer, JHEP 1201 (2012) 137, pTj > 20 GeV]

$$A_{
m LO}^{|y|} = -0.47 \pm 0.04 \%$$
  
 $A_{
m NLO}^{|y|} = 0.51 \pm 0.09 \%$   
[Alioli, Moch, Uwer, JHEP 1201 (2012) 137, pTj > 50 GeV

# JET HANDLE IN TOP PAIR PRODUCTION



Cross section divergent in soft and collinear limit:  $\sigma_{t\bar{t}j}(p_T^j \to 0) \sim \ln^2\left(\frac{m_t}{p_T^j}\right)$ 


Cut on jet transverse momentum defines hard jet:

 $p_T^j \ge 20 - 30 \,\mathrm{GeV}$  (also required for experimental reasons)

# JET KINEMATICS MATTER

Partonic channel  $q\bar{q} \rightarrow t\bar{t}g$ , small  $p_T^j = E_j \sin \theta_j$ :

$$\sigma_A \sim \ln\left(\frac{m_t}{p_T^j}\right), \quad \sigma_S \sim \ln^2\left(\frac{m_t}{p_T^j}\right)$$

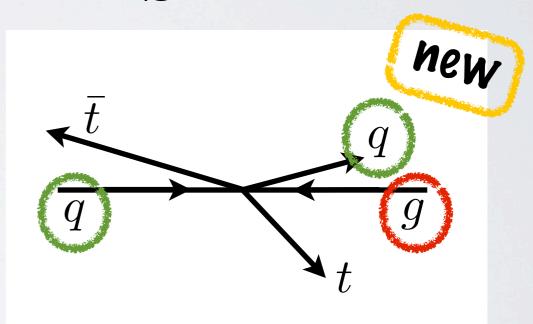


<sup>[</sup>Berge & Westhoff, PRD 86 (2012) 094036]

Asymmetry is maximal for central jet,  $\theta_j = \pi/2$ .

## NEW OBSERVABLES

[Berge, Westhoff, I 305.3272 (accepted by JHEP)]


<u>Based on</u> <u>final-state kinematics</u>:

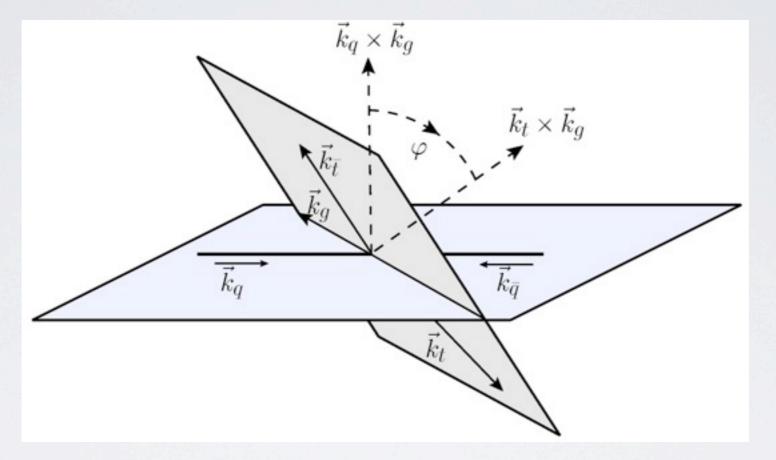
$$\vec{k}_t + \vec{k}_{\bar{t}} + \vec{k}_j = 0$$
$$E_t + E_{\bar{t}} + E_j = \sqrt{s}$$

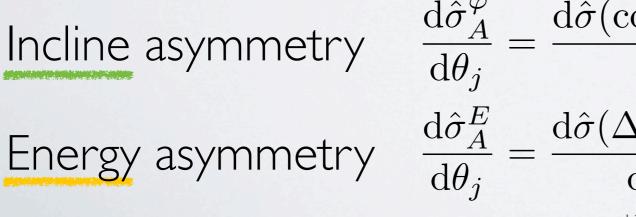
qq channel:

qg channel:



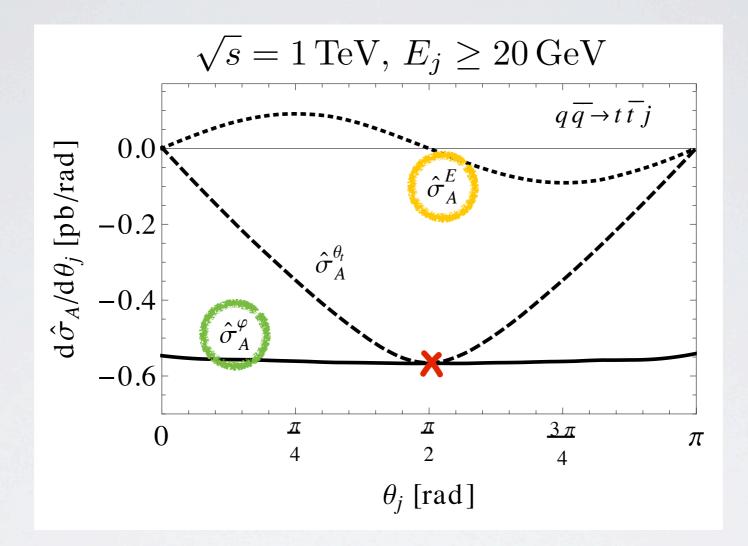



jet distribution symmetric


#### jet distribution asymmetric

#### QQ CHANNEL: COMPLEMENTARY ASYMMETRIES

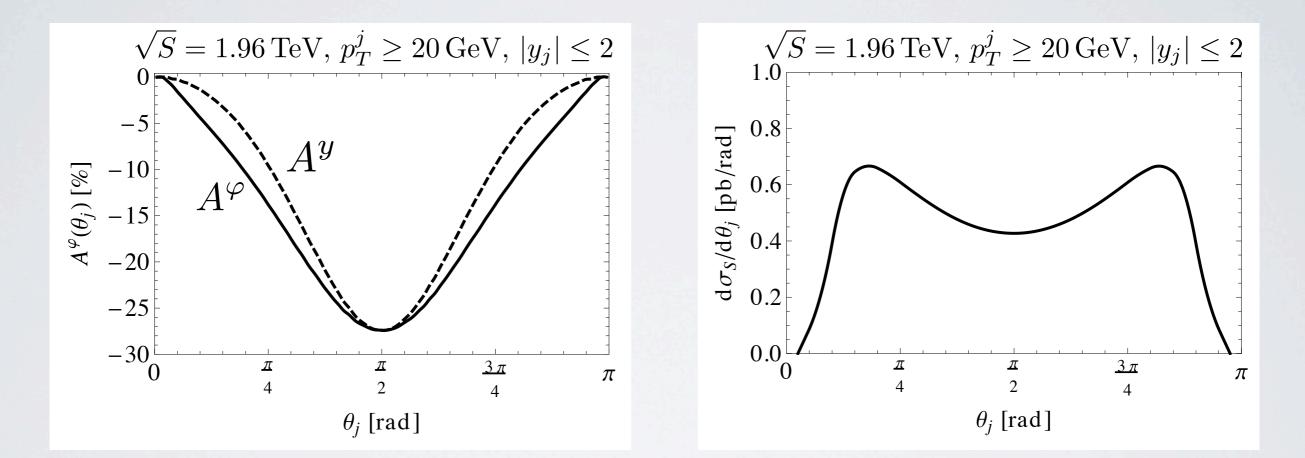
Fully differential charge asymmetry


 $d\hat{\sigma}_A(q\bar{q} \to t\bar{t}j) = \left[d\hat{\sigma}(t\bar{t}) - d\hat{\sigma}(\bar{t}t)\right](\theta_j, E_j, \varphi, \Delta E), \quad \Delta E = E_t - E_{\bar{t}}$ 





$$\frac{\mathrm{d}\hat{\sigma}_{A}^{\varphi}}{\mathrm{d}\theta_{j}} = \frac{\mathrm{d}\hat{\sigma}(\cos\varphi > 0)}{\mathrm{d}\theta_{j}} - \frac{\mathrm{d}\hat{\sigma}(\cos\varphi < 0)}{\mathrm{d}\theta_{j}}$$
$$\frac{\mathrm{d}\hat{\sigma}_{A}^{E}}{\mathrm{d}\theta_{j}} = \frac{\mathrm{d}\hat{\sigma}(\Delta E > 0)}{\mathrm{d}\theta_{j}} - \frac{\mathrm{d}\hat{\sigma}(\Delta E < 0)}{\mathrm{d}\theta_{j}}$$
$$\frac{\mathrm{d}\hat{\sigma}(\Delta E < 0)}{\mathrm{d}\theta_{j}}$$


# QQ: ASYMMETRIES AT PARTON LEVEL



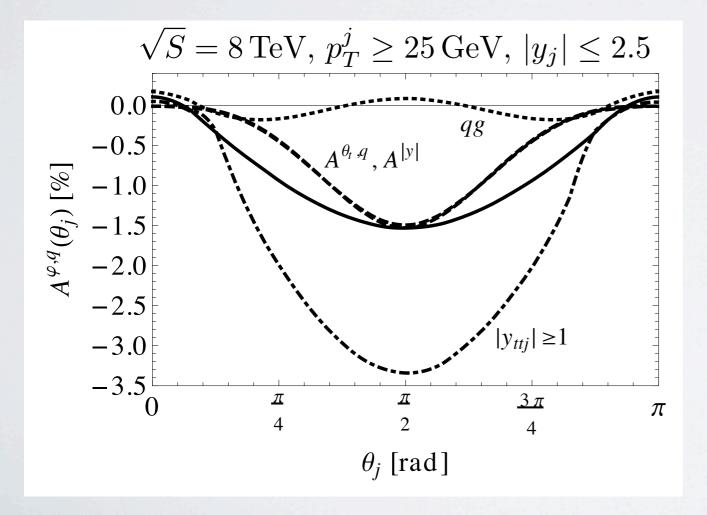
 $\hat{\sigma}_A^{\varphi}$  Incline asymmetry is largely independent from jet direction **x** and equals rapidity asymmetry for central jet emission.  $\hat{\sigma}_A^E$  Energy asymmetry has antisymmetric jet distribution.

# INCLINE ASYMMETRY AT THE TEVATRON

$$A^{\varphi} = \frac{\sigma_A^{\varphi}}{\sigma_S} = \frac{\sigma(\cos\varphi > 0) - \sigma(\cos\varphi < 0)}{\sigma(\cos\varphi > 0) + \sigma(\cos\varphi < 0)}$$



Total incline asymmetry: Statistical significance:


$$A_{\rm LO}^{\varphi} = -15.6 \%$$
  
 $S(10 \,{\rm fb}^{-1}) = 4.2$ 

$$A^{\varphi}/A^y \approx 1.2$$

# INCLINE ASYMMETRY AT THE LHC

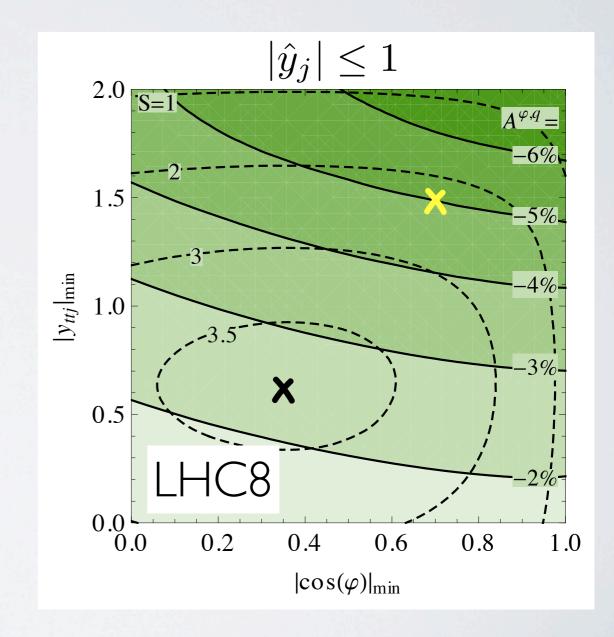
Identify quark direction via final-state boost:  $y_{t\bar{t}j} = \frac{1}{2} \ln \left( \frac{x_1}{x_2} \right)$ 

$$A^{\varphi,q} = \frac{\sigma_A^{\varphi}(y_{t\bar{t}j} > 0) - \sigma_A^{\varphi}(y_{t\bar{t}j} < 0)}{\sigma_S}$$



Total incline asymmetry:  $A^{\varphi,q} = -0.8\,\%$  Need efficient cuts.

### INCLINE ASYMMETRY AT LHC8


$$A^{\varphi,q} = \frac{\sigma_A^{\varphi}(y_{t\bar{t}j} > 0) - \sigma_A^{\varphi}(y_{t\bar{t}j} < 0)}{\sigma_S}$$

#### Cuts

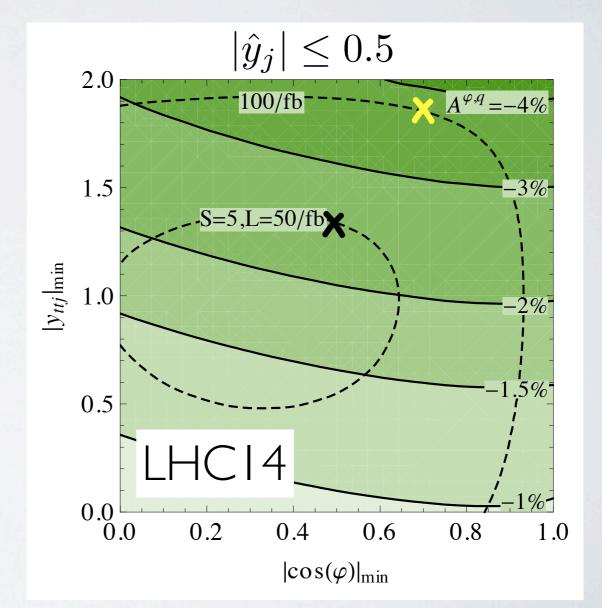
 $|\hat{y}_j|_{\max}$ : suppress collinear region  $|y_{t\bar{t}j}|_{\min}$ : suppress gg background  $|\cos(\varphi)|_{\min}$ : enhance  $\sigma_A^{\varphi}/\sigma_S$ 

#### Significance statistically limited

**X**, S max."  $A^{\varphi,q} = -2.4\%$  X, A max."  $\sigma_S = 20 \text{ pb}$   $\sigma_S = 1.8 \text{ pb}$ S(22/fb) = 3.6 S(22/fb) = 2.3



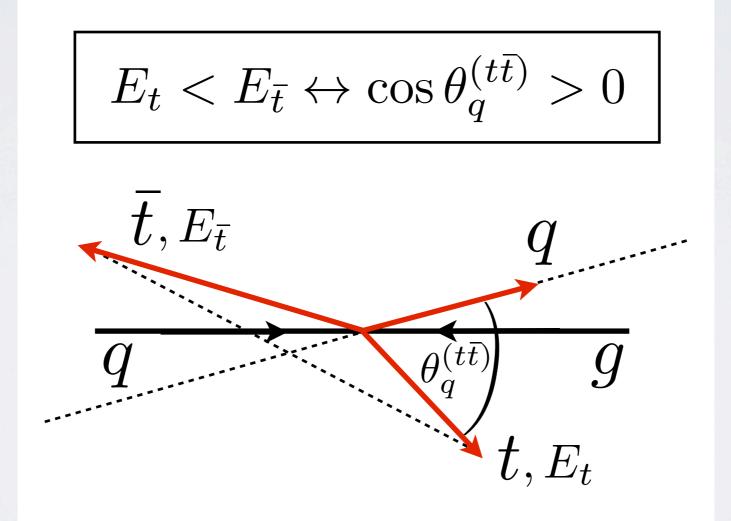
### INCLINE ASYMMETRY AT LHC14


$$A^{\varphi,q} = \frac{\sigma_A^{\varphi}(y_{t\bar{t}j} > 0) - \sigma_A^{\varphi}(y_{t\bar{t}j} < 0)}{\sigma_S}$$

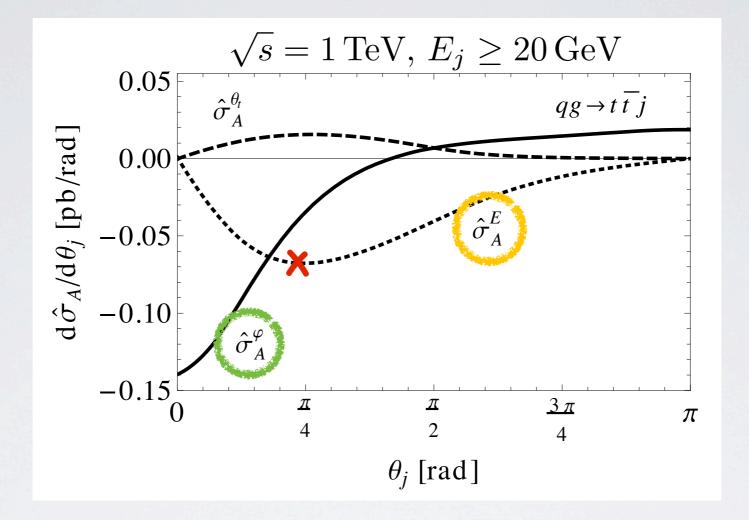
<u>Higher luminosity</u>: stronger cuts, enhanced sensitivity

**x** ,,50/fb''  $A^{\varphi,q} = -2.4 \%$   $\sigma_S = 18 \,\mathrm{pb}$  $\mathcal{S}(50/\mathrm{fb}) = 5$ 

× ,, |00/fb''  


$$A^{\varphi,q} = -3.7\%$$
  
 $\sigma_S = 3.6 \,\mathrm{pb}$   
 $\mathcal{S}(100/\mathrm{fb}) = 5$ 

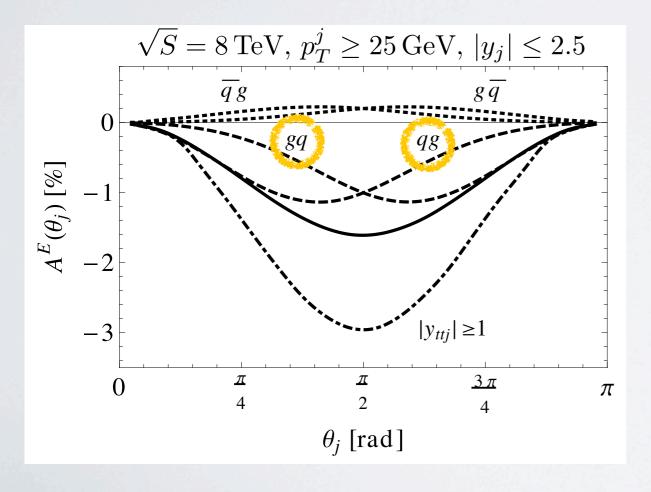



# QG CHANNEL: ENERGY ASYMMETRY

Energy asymmetry

= forward-backward asymmetry of quark-jet in t<u>t</u> frame  $\sim$  incline asymmetry in t<u>t</u> frame




# QG: ASYMMETRIES AT PARTON LEVEL



### ENERGY ASYMMETRY ATTHE LHC

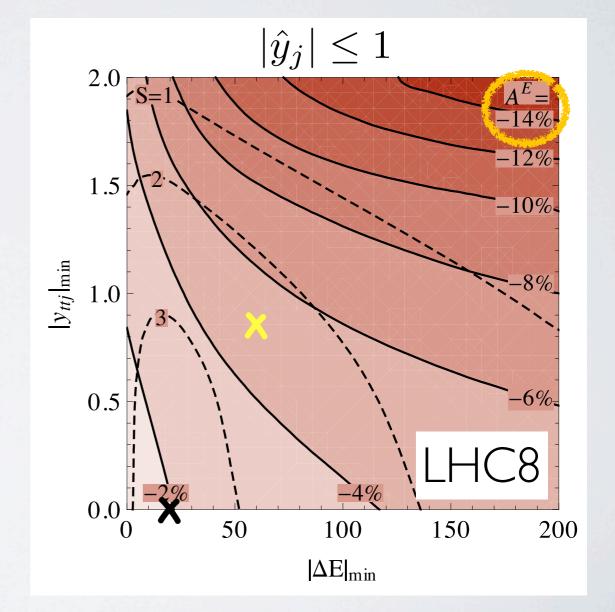
No need to identify the quark direction!

$$A^{E} = \frac{\sigma_{A}^{E}}{\sigma_{S}} = \frac{\sigma(\Delta E > 0) - \sigma(\Delta E < 0)}{\sigma(\Delta E > 0) + \sigma(\Delta E < 0)}$$



Jet distribution is symmetric (qg + gq) and maximal in central region. Good to avoid collinear region.

#### ENERGY ASYMMETRY AT LHC8

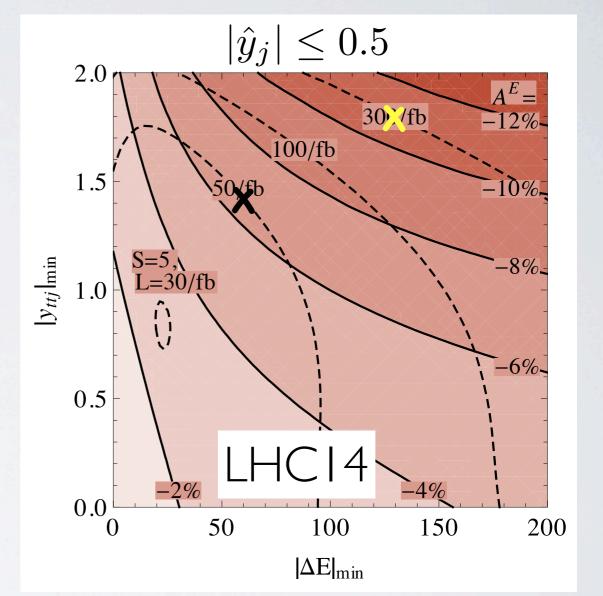

$$\begin{vmatrix} A^E = \frac{\sigma_A^E}{\sigma_S} = \frac{\sigma(\Delta E > 0) - \sigma(\Delta E < 0)}{\sigma(\Delta E > 0) + \sigma(\Delta E < 0)} \end{vmatrix}$$

 $\sigma(qg)/\sigma \approx 25\%$  ( $\sigma(q\bar{q})/\sigma \approx 7\%$ )  $\odot$  large maximal asymmetry, but again: statistical limitations

**X**,,,S max."  $A^E = -1.9\%$   $\sigma_S = 26 \text{ pb}$ S(22/fb) = 3.3

× "A=-5%"  

$$A^E = -5\%$$
  
 $\sigma_S = 2.3 \,\mathrm{pb}$   
 $\mathcal{S}(22/\mathrm{fb}) = 2.5$ 




#### 23

### ENERGY ASYMMETRY AT LHC14

<u>Higher luminosity</u>: stronger cuts, access to maximal asymmetry of up to -12%

| <b>x</b> ,,50/fb''                | ×,,300/fb''                      |
|-----------------------------------|----------------------------------|
| $A^E = -6.5 \%$                   | $A^{E} = -11 \%$                 |
| $\sigma_S = 2.4 \mathrm{pb}$      | $\sigma_S = 0.14 \mathrm{pb}$    |
| $\mathcal{S}(50/\mathrm{fb}) = 5$ | $\mathcal{S}(300/\text{fb}) = 5$ |



Good discovery potential during first run at 14 TeV.

# TAKE HOME: TOP PAIR + JET PROSPECTS

Charge asymmetry in  $t\underline{t}$  + jet in QCD at LO. Optimal observables respect jet kinematics.

Probe charge asymmetry in

- qq channel: incline asymmetry
- qg channel (new): energy asymmetry

Observables at

Tevatron:• incline asymmetry  $A^{\varphi} = -15 \%$ , statistical limitsLHC8:• incline & energy asymmetry, statistical limitsLHC14:• max. incline asymmetry  $A^{\varphi,q} = -5 \%$ • max. energy asymmetry  $A^E = -12 \%$ 

good discovery potential with  $\mathcal{L}\gtrsim 50/\mathrm{fb}$ 

Caveat: NLO corrections are important.