# Blackbox A: Analysis, Unveiling, and kT/cone Jet Comparison

Jonathan Walsh University of Washington Analysis: Kyle Armour, Matt Bowen, Amanda Gray, Andrew Larkowski, Rob Schabinger, Dan Ventura Advisers: Steve Ellis and Matt Strassler Blackbox Author: Matt Strassler



#### **Motivations behind Blackbox A**

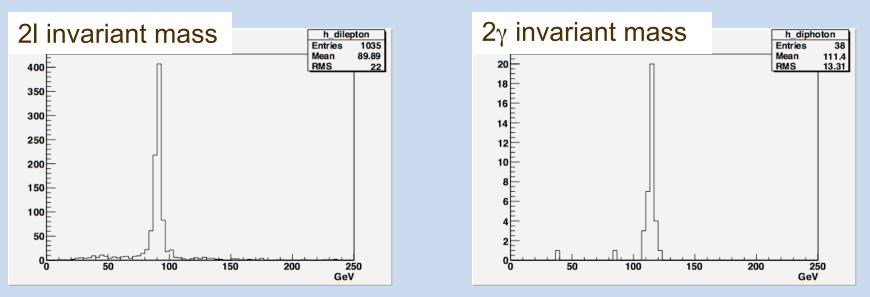
- A simple model with interesting features
- Ideal for novices
- Motivates development of analysis techniques
- Allows for investigation of detector effects and reconstruction algorithms



### **The First Look: Cuts**

- Objects in the detector below a PT cut have low resolution and may be inaccurate, so are excluded from analysis
- For our analysis, the following cuts were applied:
  - MET: no cut
  - Leptons, Photons: 25 GeV
  - Jets: 50 GeV




#### **Basic Lepton and Photon Counters**

| Dilepton Events   |    |    |       |                  |     |    | number of | number of |        |
|-------------------|----|----|-------|------------------|-----|----|-----------|-----------|--------|
|                   | 21 | e- | e+    | μ-               | μ+  | τ- | τ+        | leptons   | events |
|                   | e- | 0  | 450   | 3                | 24  | 3  | 14        | 0         | 15480  |
|                   | e+ |    | 1     | 20               | 1   | 9  | 2         | 0         | 13400  |
|                   | μ- |    |       | 2                | 471 | 1  | 11        | 1         | 1436   |
|                   | μ+ |    |       |                  | 0   | 17 | 0         | 2         | 1035   |
|                   | τ- |    |       |                  |     | 0  | 6         | 3         | 37     |
|                   | τ+ |    |       |                  |     |    | 0         | 0         | 57     |
| number of photons |    |    |       | number of events |     |    | 4         | 20        |        |
| 0                 |    |    | 17744 |                  |     | 5  | 0         |           |        |
| 1                 |    |    | 226   |                  |     |    | I         |           |        |
| 2                 |    |    | 38    |                  |     |    |           |           |        |
| WASHINGTON        |    |    |       |                  |     |    |           | 3 of 29   |        |

#### Standard Model products from the basic counters

Ζ


#### h: mass near 115 GeV



## Note: transverse mass plots and the dilepton counters do not indicate evidence of W production



#### We can see the higgs and Z in jets



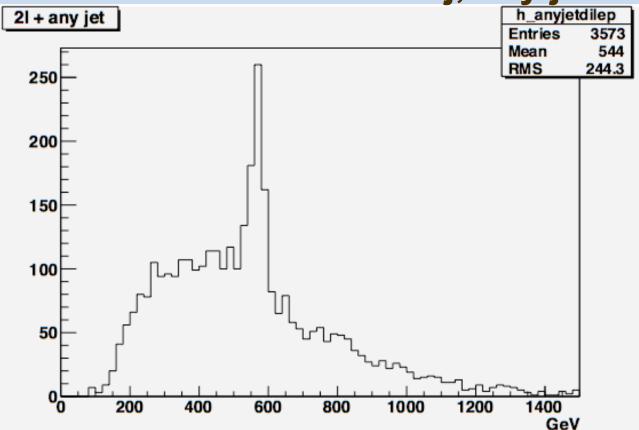
From this plot, the rate of higgs and Z production is roughly the same



#### Let's look at the jets

|                                             | number<br>of objects | b-tagged<br>jets | non b-jets |
|---------------------------------------------|----------------------|------------------|------------|
|                                             | 0                    | 7590             | 141        |
| <ul> <li>Large number of jets in</li> </ul> | 1                    | 7013             | 1208       |
| the box (average of 1                       | 2                    | 2797             | 3777       |
| b-tagged and 3                              | 3                    | 543              | 5359       |
| untagged per event)                         | 4                    | 58               | 4305       |
| <ul> <li>Many events with</li> </ul>        | 5                    | 7                | 2250       |
| multiple jets                               | 6                    | 0                | 711        |
|                                             | 7                    | 0                | 210        |
|                                             | 8                    | 0                | 39         |
|                                             |                      |                  |            |

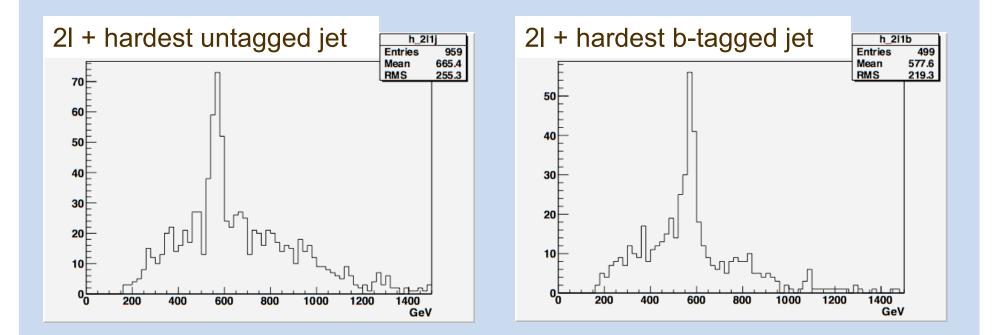
#### **Features to look for**


- A new physics signal could involve standard model decay products, so we should look for features in ZZ, hZ, Z + jets, h + jets, and in combinations of jets
- For example, we could look at the invariant mass of Z + jets, a higgs and Z, etc.

- We see no features in these plots except...



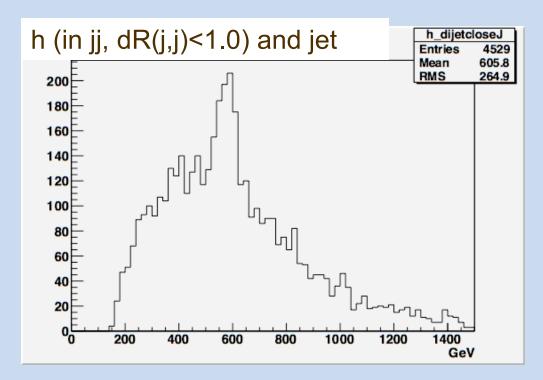
#### A new physics signal! Resonance near 575 GeV


Invariant mass of 2I + j, any jet



WASHINGTON

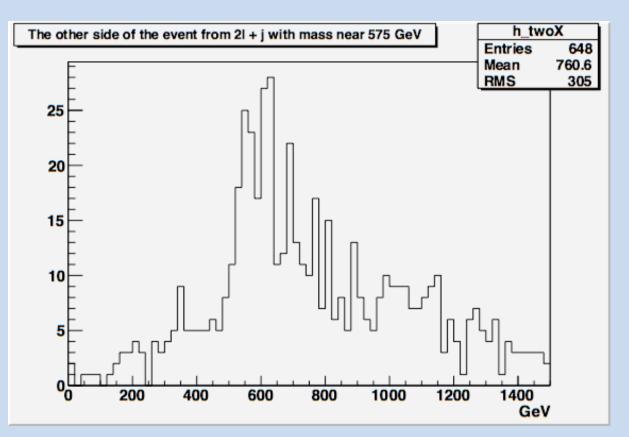
#### $X \rightarrow 2I + b$ gives a clearer peak


## This leads us to believe the X has the decay $X \rightarrow Z + b$ , where the b jet may not be tagged



WASHINGTON

### $X \rightarrow h + j$ is also seen


- The higgs is from 2 jets within dR = 1.0 and 10 GeV of the higgs mass
- These jets + any other jet gives a resonance at the X mass



WASHINGTON

#### **X** pair production

# When we see $X \rightarrow Z(2I) + b$ , the invariant mass of the rest of the event has a peak at the X mass



WASHINGTON

### So, we have a basic model

- X pair production with  $m_X = 575 \pm 15$  GeV
- X decays seen:  $X \rightarrow Z + b$  and  $X \rightarrow h + b$
- This could be everything in the box
   No other resonances are seen (SM or
  - otherwise)
- The next steps are to come up with a model for what the X is, estimate the X branching ratios, and simulate this process to compare to the box



### What is the X?

- We know X decays into a b quark plus a colorless and neutral object, so the X must carry b quantum numbers
- The dilepton counters indicate that the decay X → W<sup>-</sup> + t is suppressed

 If multi W events were in the box, we would see events with structures like eµ, I<sup>+</sup>I<sup>+</sup>, or 3I

• The simplest model is that in which the X is a new quark, which we will call the b'



#### What features does this model have?

| quark                                      | SU(2) | U(1)           | SU(3) |
|--------------------------------------------|-------|----------------|-------|
| $\begin{pmatrix} t_L \\ b_L \end{pmatrix}$ | 2     | $+\frac{1}{6}$ | 3     |
| $\overline{b}_{\!\scriptscriptstyle L}$    | 1     | $+\frac{1}{3}$ | 3     |
| $ar{t}_L$                                  | 1     | $-\frac{2}{3}$ | 3     |



#### What features does this model have?

| quark                                      | SU(2) | U(1)           | SU(3)    |  |  |
|--------------------------------------------|-------|----------------|----------|--|--|
| $\begin{pmatrix} t_L \\ b_L \end{pmatrix}$ | 2     | $+\frac{1}{6}$ | 3        |  |  |
| $\overline{b}_L$                           | 1     | $+\frac{1}{3}$ | 3        |  |  |
| $\overline{t}_L$                           | 1     | $-\frac{2}{3}$ | 3        |  |  |
| $b'_L$                                     | 1     | $-\frac{1}{3}$ | 3        |  |  |
| $\overline{b_L'}$                          | 1     | $+\frac{1}{3}$ | 3        |  |  |
| WASHINGTON                                 |       |                | 15 of 29 |  |  |

#### Method to estimate the b' branching ratio

- h→γγ is easily distinguishable, but very sensitive to new physics
- h→bb is less sensitive to new physics, so it is ideal for determining the branching ratios of the b'
- The decay Z → 2I gives a lower bound on the rate b' → Z + b
- The ratio of the hadronic decays of the Z and h provide an upper bound on the b' → Z + b rate



#### A lower bound on b' $\rightarrow$ Z + b

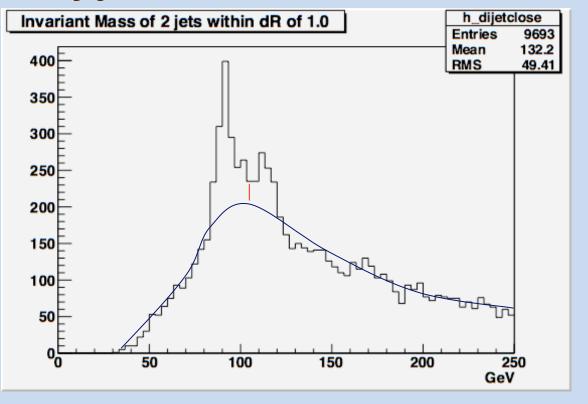
We can use:

- the number of events (18008)
- the number of dilepton Z's (686)
- the decay rate of  $Z \rightarrow 2I$  (.077)
- and the probability for missing a lepton (.39)

- Derived from the ratio of 11 to 21 events: 
$$\frac{N_{1l}}{N_{2l}} = \frac{2p_{1l}}{1-p_{2l}}$$

to get a lower bound on the rate  $r_z$  of b'  $\rightarrow$  Z + b:

 $r_{Z} > .70 \pm .19$ 




### X branching ratio estimates

#### Z and h in 2 jet events, any jets with delta R < 1.0

Events in the Z peak: 530

Events in the higgs peak: 270





#### An upper bound on b' $\rightarrow$ Z + b

 Assuming Br(h→jj) = 100%, the ratio of higgs to Zs in the 2j events gives an upper bound on the rate r<sub>z</sub>:

 $r_{Z} < 0.78 \pm 0.10$ 



### **b' branching fractions**

- We have Br(b'→Z+b) between 51% and 88%
- The primary conclusion is that the branching fractions of the b' to Zs and higgs are on the same order
- The best way to test our model is through a simulation in PYTHIA and PGS



#### The Blackbox A PYTHIA card

Available at: staff.washington.edu/jrwalsh/BlackboxA/card



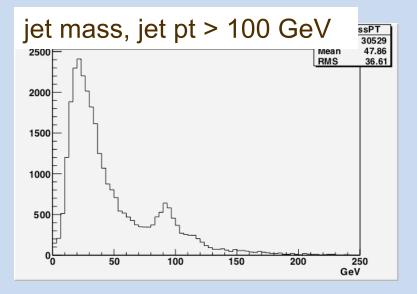
### Blackbox A as a study tool

- Now that we understand the model in the box, we can utilize it to study differences between kT and cone jet algorithms
- These kinds of comparisons are needed to characterize the difficulties we may encounter at the LHC with the different jet algorithms

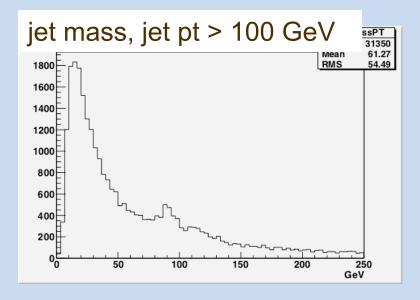


#### kT and cone jet algorithm comparison

- This box is the perfect setting to test differences between the two algorithms as it provides 3 things:
  - Events with many jets
  - Hard jets (from the b' decay)
  - Softer jets (from h and Z hadronic decays)
- PGS 3 uses the cone jet algorithm, while PGS 4 implements the kT jet algorithm



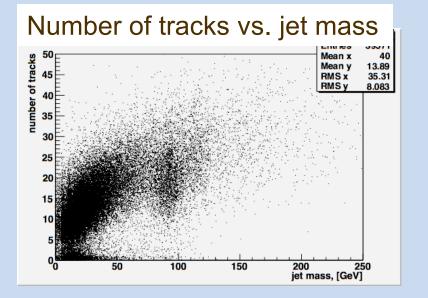

Caveat! The transition from PGS 3 to 4 must be kept in mind in considering this analysis!


# Single jet invariant mass spectrum shows the kT smearing

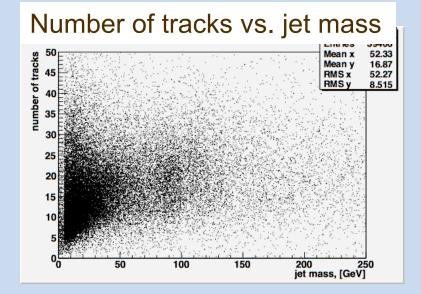
• The kT algorithm smears the jet mass distribution higher, increasing the background at larger mass and making the Z (and higgs shoulder) less visible

cone jet algorithm resolution parameter R = 0.7




kT jet algorithm resolution parameter D = 0.5



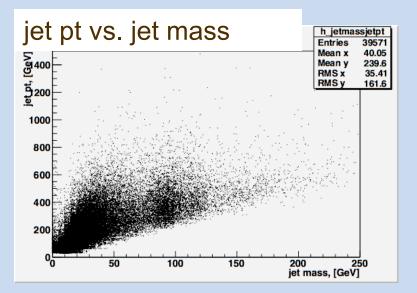



# Number of tracks in the cone and kT algorithms

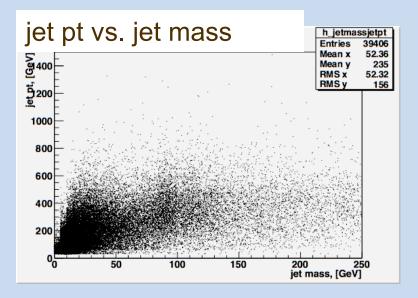
#### cone jet algorithm



#### kT jet algorithm




Many more high track jets in the kT algorithm



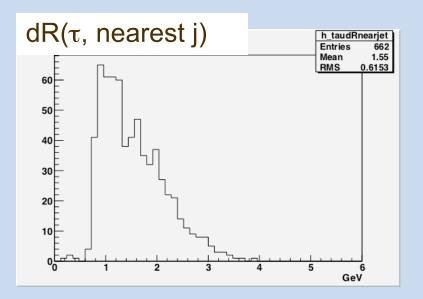

#### Jet resolution decrease can lead to missing a physics signal

cone jet algorithm with identifiable Z and higgs

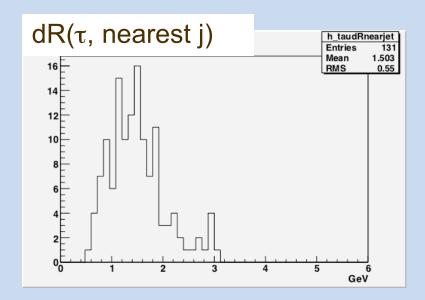


kT jet algorithm with a less identifiable Z and a smeared out higgs




WASHINGTON

#### cone and kT jet algorithm differences


|                      | 11        | number   |   | 1                     | number     |         |          |  |
|----------------------|-----------|----------|---|-----------------------|------------|---------|----------|--|
|                      | e-        | 133      |   | e-                    | 171        |         |          |  |
|                      | e+        | 127      |   | e+                    | 169        | kT jets |          |  |
| cone jets            | μ-        | 131      |   | μ-                    | 171        |         |          |  |
| (PGS 3)              | μ+        | 107      |   | μ+                    | 165        |         | (PGS 4)  |  |
|                      | τ-        | 228      |   | τ-                    | 43         |         |          |  |
|                      | τ+        | 228      |   | τ+                    | 46         |         |          |  |
| total numb           | per of je | ts 3957  | 1 | total nu              | mber of je | ets     | 39406    |  |
| total numb           | er of bje | ets 1149 | 9 | total number of bjets |            | 7796    |          |  |
| WASHINGTON NUMber of |           |          |   | events = 95           | 582        |         | 27 of 29 |  |

#### Are the taus not lonely enough?

cone jet algorithm (PGS 3) resolution parameter R = 0.7



#### kT jet algorithm (PGS 4) resolution parameter D = 0.5





# Conclusions about the kT and cone algorithm comparison study

- kT jet characteristics tend to vary much more than cone jet
  - kT jets can have low pT and high mass (over merging)
  - Expect a larger number of tracks per jet with the kT algorithm, and very few jets with low numbers of tracks
  - Expect poor reconstruction of resonances and other features
- Jet pT and mass spectra are smeared out more in the kT algorithm than the cone
- Tau reconstruction may be very poor in the kT algorithm due to pencil jet absorption into jets
  - Is this is a PGS 3→4 effect or a kT algorithm effect? More study is needed



