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Heavy Quark Fragmentation

Let O be a heavy quark. Consider the production @-dlavored hadron
Ho in a hard scattering process.

Example B-meson production iate™

Such a process is characterized by two very different scales
Q>>m

From the factorization theorgrthe energy spectrum fd o reads:

dO‘Q
dz

dO‘H

(Qam z) = ——(Q,m,2) ®DQ—>H( z)

where:
e 2 - the energy of the observed hadron< z < 1).

e doo(Q,m,z)-describes the perturbative production of massive quark
Q.
e D5, (2) - describes the transitio@ — Ho at scale~ m.
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Let’s look closer atioo (Q, m, 2) :

For Q) >> m that function contains large logs:

2
oz?lnk (%) ; kgn

One resums classes of such logs by writing:

to all orders ino,!

doo(Q,m, z) Zd% Q, 1, 2) @ Dy—o(p,m, 2)

where:
o c/l;a - usual coefficient function for producing partan

e D, o(u,m,z)-Perturbative Fragmentation Function,

e PFF is a process independent solution of the DGLAP equation.
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e PFF satisfy the initial condition:

111

Da—>Q(,u:,u07m7Z) — a—>Q(:u07m Z)

Note:if puo ~ m, thenD™! can be computed perturbatively:

111

_ s (1) S (2)
CHQ(,LLO,m z) = 0,00(1 — )—I—27Td (27T> d;

= LL. 4+ NLL 4+ NNLL +...

e dV - computed by Mele and Nason (1991)
e We have evaluatea]fflg fora =0, O, ¢.7.

e The case: = gluon In progress.
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How to computeD™?

Recall: It is a process independent (but prescription dependeat)tay.

Approach 1:D™ can be extracted from any process from the relation:

s -
o' (Q,m,z) =Y do, (Q,po,2)® D™ o(ko,m,z) + O(m?/Q?)

where:

e doo(Q,m,z) - F.O. distribution for a particle with mass,

—MS : : :
e do, (Q,uo,z) - for a particle with zero massiNote: the collinear

divergences are subtractedNi scheme,
However:Such derivation is impractical beyond NLO.

Remark:if Dt is known, then one can obtaifart-°: () from do
up to power corrections:? / Q2.
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Approach 2:A process independent derivation bf*
Previously applied to NLO by Keller and Laenen; Cacciari @adani.

From the factorization of short- and long-distance physog can write:

~

do(m,Q.z) = do(Q,po,z) ® D (ug,m, 2)

~

do(Q.e,2) = do(Q,po,2)® D" (o, e 2)

Where:

e do(m,Q, z) - finite as long asn > 0

—~MS ~
¢ dU(Qa ¢, Z) — dab (Q7 2008 Z) ® Fll;/clzs(@ 2008 Z)

o E&(Q, 1o, z) - describes radiation at large transverse momentum
m. Therefore is the same for both # 0 andm = 0 case.

o DIH _radiation at low transverse momentum from massless (mas-
sive) particle.
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One can combine the previous results to get:

~

~ —=\ —1 -
DH _ DL ® (FMS) ® Dlnl
Note: The above equation contains only process independentitiesnt
Therefore to compute the initial condition one needs thofad .
Recall:Both DE-H describe radiation of transverse energyat~ m.

In the limit of smallp the collinear kinematics dominates.

Therefore:Consider a hard-scattering procékw/here particles with momenta
ki,...,kn,q1,q2,q3 are produced.

The momenta, » 5 are collineari.eq; + ¢ + g3 = p+ O(qr)
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We work in physical gaugd*n, = 0. In such case no contribution from
Interference diagramg\s a resulthe collinear splitting effectively decou-
ples from the rest of the process.

To derive DL one also uses the factorization of both matrix elements
and phase space in the collinear limit :

|M(n+3) (kla SR knv d1,42, Q3)|2 — ’M(n+1) (kla SR knap)|2W(q17 q2; QS)
and

APS ) (ky. . ks g1y g2, q3) = APSTTD (kL K p) dBN (go, g3)

The functionsDZ# can now be obtained from Integration of the fadtior
over the momenta of the unobserved collinear partonsd®&2!!(gs, g3).

A. Mitov

Loopfest Il 04/03/2004



Evaluation of the functiomV’.
We are interested in the spin-averaged case. Then, for:
e final heavy quarkQ with momentumy,, and
e decaying fermion of any flavor,

we have:
W ~Tr|[AV]

where V is a matrix in spinor indexes; it is obtained from tj@ares of
the following three types of diagrams (evaluated in a pratgiauge):

d1 qdi

0-loop a2 q1

43 q2

A. Mitov Loopfest lli 04/03/2004



The functionsi¥ are often referred to as "splitting” functions. For the

tree-levelzero masgase they have been derived by Campbell and Glover;
Catani and Grazzini.

We generalized their results in order to include the massf the heavy
guarkQ.

Comments:

We haveWW ~ Tr[AV] :

e nisthe light-like gauge vector (it also enters the Sudakoampetriza-
tion),

e Tr|[n...]isaprojector that extracts the leading behavior of thedens
V' in the collinear limit. The form of that projector followsdim power
counting arguments in the collinear limit.
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To obtain the function®Z-H one has to integratd” over the momenta of
the collinear particles:

e the tree-level case:

~ Mo

D™ (g, m, 2) N/ [dqo][dgs)W e)§[1 — 2 — (nga) — (ng3)]
e The one-loop case:

. Ko
D" (o, m, z) ~ / [dgo]W P61 — 2 — (ngg))

e The two-loop case is- §(1 — z). The -dependent) constant can be
fixed from the fermion number conservation condition:

1
/Odz( So(2) — D) =1

We use that condition at ordé}(a?) but, as a check, we have evalu-
ated the pure virtual contributions at ord@(a).
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Practical issues in the evaluationDf .

e Many integrals have to be evaluated in the case= 0 sincefjgﬁb
with a,b = Q, Q,¢,7, 9.

e Asymmetric real and virtual integrations (the upper linaite respec-
tively 1o andoo).

One can solve both problems if oegtends to infinity the upper limit of
the integration over the transverse momenta

One gains a lot from that:

e DL . =5,,6(1— z) to all orders ina,.

a—b

Reasonall integrals for the case: = 0 are scaleless i.e. vanish.

e Now complete symmetry between real and virtual integration

Thereforeone can evaluate them simultaneously .
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Final working expressions fap'™! :

Using the previous results we get:

izriQ(:an m, Z) — Zrlc\;[bs(ﬂ(b €, Z) %Y ﬁg{HQ(IL[/O7m7 €, Z)
b

and the contributions tﬁ)gig(uo, m, €, z) are of the form:

e Tree-level:

~

D~ [ daslldas W11 2 — () — ()
e One-loop:

D~ / Oo[dq2][dk]W(1_1°°p)5 1 =2 — (ng)]

Above, g, 3 are real momenta, while is virtual.
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Various components to PFF and the participating sub-pseseat tree-

level:

. D§Lo
e Q- 0Q+g+g,
e Q- Q+q+7,
e Q- Q+0Q0+0Q.

1ni
I D

e O~ Q9+ 9+ 0.

. Dy o

° q(7) — 2+ Q+4q(q).
V. Dlnl %o (Inprogresy:
e g—Q+Q+g.
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Evaluation of the integrals

We evaluate separately the contributions with differenssesa in the
final state.

Within each group, we apply IBP identities.

Algebraically reduce the contributions from all diagrams-t20 Mas-
ter Integrals.

MI’s contain a single scalen{) and are functions of a single variable

(2).
We also rederived the known results at orderto ordere

perform the usual UV renormalization

Perform collinear subtraction
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General form of the result:

ini Qs " n H
Da (M()amaz):Z( 2(71_0)) dé)(zago)

n=0

Since PFF is a solution of the DGLAP equation, the generahfof the
log-terms is known:

o 10 0 0
i? (222) = |SPY @ PG () + mhPS)(2)

2
2 [ Mo
ln (W)

] 2
+ PG + P @ CP(2) + 2m 50 (2)| (%)

+ CP(2)

Note C{" and C? are Integration constants for the DGLAP. Must be
evaluated explicitly. They control respectively the NLLdANNLL logs.
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Properties of the results:

e The result satisfy the fermion number conservation comlitby con-

struction):

1
/0 dz ( 0/0(2) — D%”/Q) = 1.
However the two functions are not separately integrabletdue’ z
terms.

The Non-Singlet termv n; coincides with the known result in the
large 3y -limit (Cacciari and Gardi).

The limitz — 1: our result reproduces the NLL "soft-loga® In" (1—
2)/(1 — z) for k = 3,2,1 andm = ugy from the known result for the
soft-gluon resumed initial condition (Cacciari and CafaAiso from
our result one can extract the constafi®) that is needed to promote
the soft-resummation to NNLL accuracy.
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Applications forD™ : (It is a universal result ...)

|. Fixed order results:one can compute spectra of massive fermions
at NNLO (and up to term&(m?/Q?)) from massless calculations.
Great simplification beyond NLCExamples:

e bh-spectrum in top decay. Currently known at NLO. Importamt fo
precise top-mass measurement at LHC.

e electron spectrum ip-decay. Currently being measured with high
precision.

. All order resummationef quasi-collinear logi (m? /Q?#) with NNLL
accuracy.

e For that the time-like splitting functions will be needed.

e Particularly relevant for the extraction of the non-pdoative frag-
mentation function (likeh — B) for bottom and charm. Recall
recent analysis of thieproduction at the Tevatron.

e Our result will help to significantly reduce the theoreticalcer-
tainty in the extraction of NP fragmentation function.

A. Mitov Loopfest lli 04/03/2004



Conclusions:

We have calculated all fermion initiated components of gl con-
dition for the perturbative fragmentation function at ardé (NNLO),
thus extending the PFF formalism to NNLL level

We followed a process independent approach for the computat
D™ that exploits the universal behavior of the collinear réidia

To evaluate the two-loop integrals we made use of "hot” texines
for multi-loop calculations: IBP, reduction to MI's and thebplving.

| discussed the general properties of our result as well@asltecks
with partial results existing in the literature.

| discussed some of the many possible applications of oultres
Fixed order spectra for heavy particles from masslesstsesul

Resummations of quasi-collinear logs with NNLL accuracgt ancu-
rate extraction of non-perturbative fragmentation fumctirom data.
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