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Heavy Quark Fragmentation

Let Q be a heavy quark. Consider the production of aQ-flavored hadron
HQ in a hard scattering process.

Example: B-meson production ine+e−.

Such a process is characterized by two very different scales:

Q >> m

From the factorization theorem, the energy spectrum forHQ reads:

dσH

dz
(Q, m, z) =

dσQ

dz
(Q, m, z) ⊗ Dn.p.

Q→H(z)

where:

• z - the energy of the observed hadron (0 ≤ z ≤ 1).

• dσQ(Q, m, z) - describes the perturbative production of massive quark
Q.

• Dn.p.
Q→H(z) - describes the transitionQ → HQ at scale∼ m.
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Let’s look closer atdσQ(Q, m, z) :

ForQ >> m that function contains large logs:

αn
s lnk

(
m2

Q2

)
; k ≤ n

to all orders inαs!

One resums classes of such logs by writing:

dσQ(Q, m, z) =
∑

a

d̂σa(Q, µ, z) ⊗ Da→Q(µ, m, z)

where:

• d̂σa - usual coefficient function for producing partona,

• Da→Q(µ, m, z) - Perturbative Fragmentation Function,

• PFF is a process independent solution of the DGLAP equation.
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• PFF satisfy the initial condition:

Da→Q(µ = µ0, m, z) = Dini
a→Q(µ0, m, z)

Note: if µ0 ∼ m, thenDini can be computed perturbatively:

Dini
a→Q(µ0, m, z) = δaQδ(1 − z) +

αs

2π
d
(1)
a→Q

+
(αs

2π

)2

d
(2)
a→Q

+ . . .

= LL + NLL + NNLL + . . .

• d(1) - computed by Mele and Nason (1991)

• We have evaluatedd(2)
a→Q

for a = Q, Q, q, q.

• The casea = gluon in progress.
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How to computeDini?

Recall: It is a process independent (but prescription dependent) quantity.

Approach 1:Dini can be extracted from any process from the relation:

dσf.o.
Q (Q, m, z) =

∑

a

d̂σ
MS

a (Q, µ0, z) ⊗ Dini
a→Q(µ0, m, z) + O(m2/Q2)

where:

• dσQ(Q, m, z) - F.O. distribution for a particle with massm,

• d̂σ
MS

a (Q, µ0, z) - for a particle with zero mass.Note: the collinear

divergences are subtracted inMS scheme,

However:Such derivation is impractical beyond NLO.

Remark:if Dini is known, then one can obtaindσf.o.(m) from d̂σ
MS

up to power correctionsm2/Q2.
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Approach 2:A process independent derivation ofDini

Previously applied to NLO by Keller and Laenen; Cacciari andCatani.

From the factorization of short- and long-distance physics, one can write:

dσ(m, Q, z) = d̃σ(Q, µ0, z) ⊗ D̃H(µ0, m, z)

dσ(Q, ǫ, z) = d̃σ(Q, µ0, z) ⊗ D̃L(µ0, ǫ, z)

Where:

• dσ(m, Q, z) - finite as long asm > 0

• dσ(Q, ǫ, z) = d̂σ
MS

b (Q, µ0, z) ⊗ ΓMS
ba (ǫ, µ0, z)

• d̃σ(Q, µ0, z) - describes radiation at large transverse momentum>>

m. Therefore is the same for bothm 6= 0 andm = 0 case.

• D̃L,H - radiation at low transverse momentum from massless (mas-
sive) particle.
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One can combine the previous results to get:

D̃H = D̃L ⊗
(
ΓMS

)−1

⊗ Dini

Note: The above equation contains only process independent quantities.
Therefore to compute the initial condition one needs the factorsD̃L,H .

Recall:Both D̃L,H describe radiation of transverse energy atpT ∼ m.

In the limit of smallpT the collinear kinematics dominates.

Therefore:Consider a hard-scattering processΠ where particles with momenta
k1, . . . , kn, q1, q2, q3 are produced.

k1

kn

p
q1

q3
q2Π

The momentaq1,2,3 are collinear i.e.q1 + q2 + q3 = p + O(qT )

A. Mitov Loopfest III 04/03/2004



We work in physical gaugeAµnµ = 0. In such case no contribution from

interference diagrams.As a resultthe collinear splitting effectively decou-

ples from the rest of the process.

To deriveD̃L,H one also uses the factorization of both matrix elements

and phase space in the collinear limit :

|M (n+3)(k1, . . . , kn, q1, q2, q3)|
2 = |M (n+1)(k1, . . . , kn, p)|2W (q1, q2, q3)

and

dPS(n+3)(k1, . . . , kn, q1, q2, q3) = dPS(n+1)(k1, . . . , kn, p) dΦcoll(q2, q3)

The functionsD̃L,H can now be obtained from integration of the factorW

over the momenta of the unobserved collinear partons, i.e.dΦcoll(q2, q3).
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Evaluation of the functionW .

We are interested in the spin-averaged case. Then, for:

• final heavy quarkQ with momentumq1, and

• decaying fermion of any flavor,

we have:

W ∼ Tr [6 nV ]

where V is a matrix in spinor indexes; it is obtained from the squares of

the following three types of diagrams (evaluated in a physical gauge):

q1

q3

q20-loop

q1

q2

1-loop q12-loop
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The functionsW are often referred to as ”splitting” functions. For the

tree-levelzero masscase they have been derived by Campbell and Glover;

Catani and Grazzini.

We generalized their results in order to include the massm of the heavy

quarkQ.

Comments:

We haveW ∼ Tr [6 nV ] :

• n is the light-like gauge vector (it also enters the Sudakov parametriza-

tion),

• Tr [6 n . . . ] is a projector that extracts the leading behavior of the tensor

V in the collinear limit. The form of that projector follows from power

counting arguments in the collinear limit.
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To obtain the functions̃DL,H one has to integrateW over the momenta of
the collinear particles:

• the tree-level case:

D̃L,H(µ0, m, z) ∼

∫ µ0

[dq2][dq3]W
(tree)δ[1 − z − (nq2) − (nq3)]

• The one-loop case:

D̃L,H(µ0, m, z) ∼

∫ µ0

[dq2]W
(1−loop)δ[1 − z − (nq2)]

• The two-loop case is∼ δ(1 − z). The (ǫ-dependent) constant can be
fixed from the fermion number conservation condition:

∫ 1

0

dz
(
Dini

Q/Q(z) − Dini
Q/Q

)
= 1.

We use that condition at orderO(α2
s) but, as a check, we have evalu-

ated the pure virtual contributions at orderO(αs).
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Practical issues in the evaluation ofD̃L,H .

• Many integrals have to be evaluated in the casem = 0 sinceD̃L
a→b

with a, b = Q,Q, q, q, g.

• Asymmetric real and virtual integrations (the upper limitsare respec-

tively µ0 and∞).

One can solve both problems if oneextends to infinity the upper limit of

the integration over the transverse momenta.

One gains a lot from that:

• D̃L
a→b = δabδ(1 − z) to all orders inαs.

Reason: all integrals for the casem = 0 are scaleless i.e. vanish.

• Now complete symmetry between real and virtual integrations .

Thereforeone can evaluate them simultaneously .
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Final working expressions forDini :

Using the previous results we get:

Dini
a→Q(µ0, m, z) =

∑

b

ΓMS
ab (µ0, ǫ, z) ⊗ D̃H

b→Q(µ0, m, ǫ, z)

and the contributions tõDH
b→Q(µ0, m, ǫ, z) are of the form:

• Tree-level:

D̃H ∼

∫ ∞

[dq2][dq3]W
(tree)δ[1 − z − (nq2) − (nq3)]

• One-loop:

D̃H ∼

∫ ∞

[dq2][dk]W (1−loop)δ[1 − z − (nq2)]

Above,q2,3 are real momenta, whilek is virtual.

A. Mitov Loopfest III 04/03/2004



Various components to PFF and the participating sub-processes at tree-

level:

I. Dini
Q→Q :

• Q → Q + g + g,

• Q → Q + q + q,

• Q → Q + Q + Q.

II. Dini
Q→Q

:

• Q → Q + Q + Q.

III. Dini
q(q)→Q

:

• q(q) → Q + Q + q(q).

IV. Dini
g→Q (In progress) :

• g → Q + Q + g .
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Evaluation of the integrals

• We evaluate separately the contributions with different masses in the

final state.

• Within each group, we apply IBP identities.

• Algebraically reduce the contributions from all diagrams to∼ 20 Mas-

ter Integrals.

• MI’s contain a single scale (m) and are functions of a single variable

(z).

• We also rederived the known results at orderαs to orderǫ

• perform the usual UV renormalization

• Perform collinear subtraction
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General form of the result:

Dini
a (µ0, m, z) =

∑

n=0

(
αs(µ0)

2π

)n

d(n)
a

(
z,

µ0

m

)
.

Since PFF is a solution of the DGLAP equation, the general form of the

log-terms is known:

d(2)
a

(
z,

µ0

m

)
=

[
1

2
P

(0)
ba ⊗ P

(0)
Qb (z) + πβ0P

(0)
Qa (z)

]
ln2

(
µ2

0

m2

)

+
[
P

(1)
Qa (z) + P

(0)
ba ⊗ C

(1)
b (z) + 2πβ0C

(1)
a (z)

]
ln

(
µ2

0

m2

)

+ C(2)
a (z)

Note C
(1)
a and C

(2)
a are integration constants for the DGLAP. Must be

evaluated explicitly. They control respectively the NLL and NNLL logs.
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Properties of the results:

• The result satisfy the fermion number conservation condition (by con-

struction): ∫ 1

0

dz
(
Dini

Q/Q(z) − Dini
Q/Q

)
= 1.

However the two functions are not separately integrable dueto 1/z

terms.

• The Non-Singlet term∼ nf coincides with the known result in the

largeβ0-limit (Cacciari and Gardi).

• The limitz → 1 : our result reproduces the NLL ”soft-logs”α2
s lnk(1−

z)/(1 − z) for k = 3, 2, 1 andm = µ0 from the known result for the

soft-gluon resumed initial condition (Cacciari and Catani). Also from

our result one can extract the constantH(2) that is needed to promote

the soft-resummation to NNLL accuracy.
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Applications forDini : (It is a universal result ...)

I. Fixed order results:one can compute spectra of massive fermions

at NNLO (and up to termsO(m2/Q2)) from massless calculations.

Great simplification beyond NLO!Examples:

• b-spectrum in top decay. Currently known at NLO. Important for

precise top-mass measurement at LHC.

• electron spectrum inµ-decay. Currently being measured with high

precision.

II. All order resummationsof quasi-collinear logsln(m2/Q2) with NNLL

accuracy.

• For that the time-like splitting functions will be needed.

• Particularly relevant for the extraction of the non-perturbative frag-

mentation function (likeb → B) for bottom and charm. Recall

recent analysis of theb-production at the Tevatron.

• Our result will help to significantly reduce the theoreticaluncer-

tainty in the extraction of NP fragmentation function.
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Conclusions:

• We have calculated all fermion initiated components of the initial con-

dition for the perturbative fragmentation function at order α2
s (NNLO),

thus extending the PFF formalism to NNLL level.

• We followed a process independent approach for the computation of

Dini that exploits the universal behavior of the collinear radiation.

• To evaluate the two-loop integrals we made use of ”hot” techniques

for multi-loop calculations: IBP, reduction to MI’s and their solving.

• I discussed the general properties of our result as well as the checks

with partial results existing in the literature.

• I discussed some of the many possible applications of our result:

• Fixed order spectra for heavy particles from massless results,

• Resummations of quasi-collinear logs with NNLL accuracy and accu-

rate extraction of non-perturbative fragmentation function from data.
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