

Electroweak gauge boson rapidity distributions at NNLO

Frank Petriello

C. Anastasiou, K. Melnikov, L. Dixon, F. P.

- Physics motivations
- Description of the calculation
- Results: LHC, Tevatron, fixed target
- Conclusions

Physics motivations

Why Drell-Yan at NNLO?

- Extraction of parton distribution functions
 - At fixed target energies, where α_s is large
 - At high luminosities (LHC), where $\Delta \sigma_{stat}$ is small
- LHC luminosity monitor Dittmar et. al.
- Measurement of precision EW parameters: M_W , s_W^2
- ⇒ These require percent-level precision

Physics motivations

Why differential distributions at NNLO?

For pdf extraction

$$\frac{d\sigma}{dY} = f_q \left(\sqrt{\frac{m_V^2}{s}} e^Y\right) f_{\bar{q}} \left(\sqrt{\frac{m_V^2}{s}} e^{-Y}\right) + \mathcal{O}(\alpha_S)$$

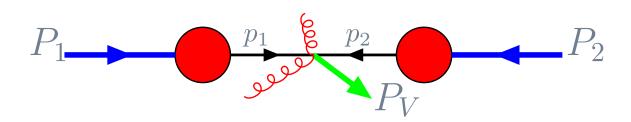
• Partonic energy fractions fixed by M^2 , Y

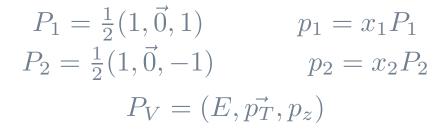
$$m_V^2 = x_1 x_2 s, Y = \ln(x_1/x_2)/2$$

⇒ Need rapidity to reconstruct pdfs

⇒ Need distributions for most applications

Drell-Yan rapidity distribution

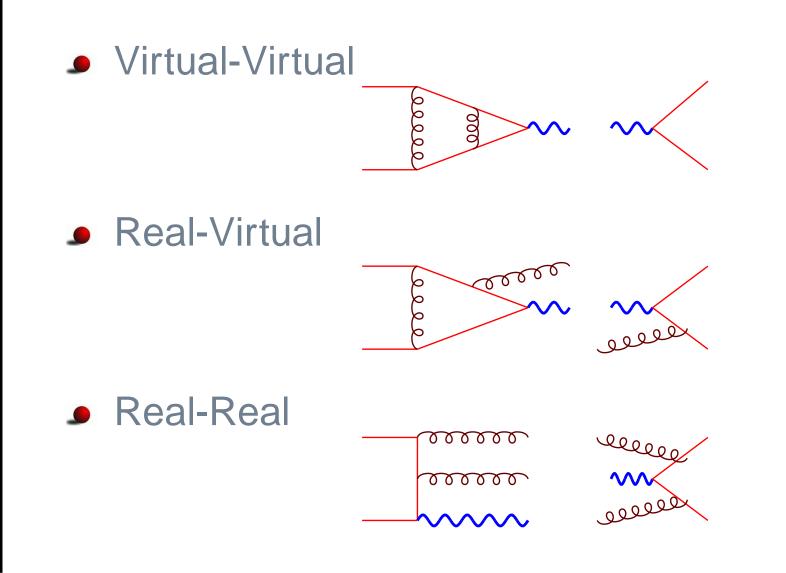




Rapidity:
$$Y = \frac{1}{2} \log \left(\frac{E + p_z}{E - p_z} \right)$$
$$u = \frac{x_1}{x_2} e^{-2Y} = \frac{p_1 \cdot p_V}{p_2 \cdot p_V}$$

Electroweak gauge boson rapidity distributions at NNLO – p. 4/

Anatomy of a NNLO calculation



Anatomy of a NNLO calculation

Real-Virtual

• One-loop \times 2-particle PS \Rightarrow simple

Virtual-Virtual

- Two-loop integrals \Rightarrow not simple, but well studied
- Loop integrals satisfy recurrence relations arising from Poincare invariance
- Can reduce to a small set of independent master integrals
- Can calculate using differential equations

Anatomy of a NNLO calculation

Real-Real

- Difficult and not well studied
- Can we adapt multi-loop techniques to PS integrals?
- Yes- use unitarity C. Anastasiou, K. Melnikov

$$\sigma_{\alpha\beta\to1...n} \propto \int \left[\prod_{i=1}^{n} d^{d}q_{i}\delta\left(q_{i}^{2}-m_{i}^{2}\right)\right]\delta\left(p_{\alpha\beta}-q_{1...n}\right)$$
$$\times \left|\mathcal{M}_{\alpha\beta\to1...n}\right|^{2}$$

• Cutkosky rules: $\delta(q_i^2 - m_i^2) \Rightarrow \frac{1}{q_i^2 - m_i^2 - i\epsilon} - \frac{1}{q_i^2 - m_i^2 + i\epsilon}$

 \Rightarrow Maps phase space integrals \Rightarrow cut loop integrals

Electroweak gauge boson rapidity distributions at NNLO - p. 7/

Differential distributions

Can extend to differential quantities

$$\frac{d\sigma}{dY} \propto u \int \left[\prod_{i=1}^{n} d^{d}q_{i}\delta\left(q_{i}^{2}-m_{i}^{2}\right) \right] \delta\left(u-\frac{p_{1}\cdot P_{h}}{p_{2}\cdot P_{h}}\right) \\ \times \delta\left(p_{\alpha\beta}-q_{1...n}\right) \left|\mathcal{M}_{\alpha\beta\rightarrow1...n}\right|^{2}$$

• Replace the $\delta \left(q_i^2 - m_i^2 \right)$ as before; also replace

$$\delta(u - \frac{p_1 \cdot P_h}{p_2 \cdot P_h}) \Rightarrow \frac{p_2 \cdot P_h}{(p_1 - up_2) \cdot P_h - i\epsilon} - (+i\epsilon)$$

 \bullet mass-shell condition \rightarrow rapidity constraint

Electroweak gauge boson rapidity distributions at NNLO – p. 8/

Extraction of singularities

Matrix elements contains terms which behave as

$$\mathcal{M}|^2 \propto rac{1}{u-z}, \ |\mathcal{M}|^2 \propto rac{1}{1-uz} \ \left(z = M^2/\hat{s}
ight)$$

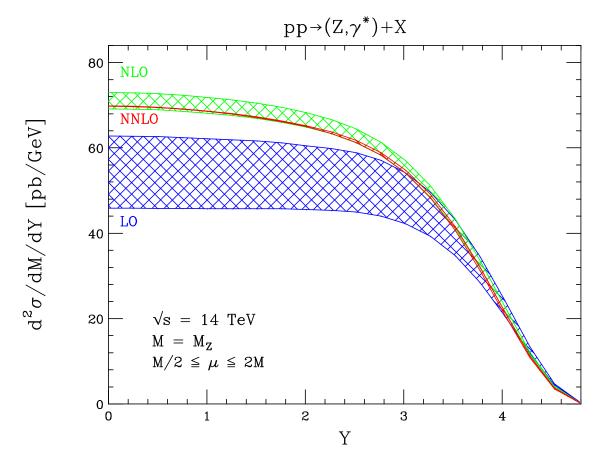
Phase space contains the factor $[(u-z)(1-uz)]^{-2\epsilon}$

• Can separate singularities in u, z by setting

$$y = \frac{u-z}{(1-z)(1+u)}$$

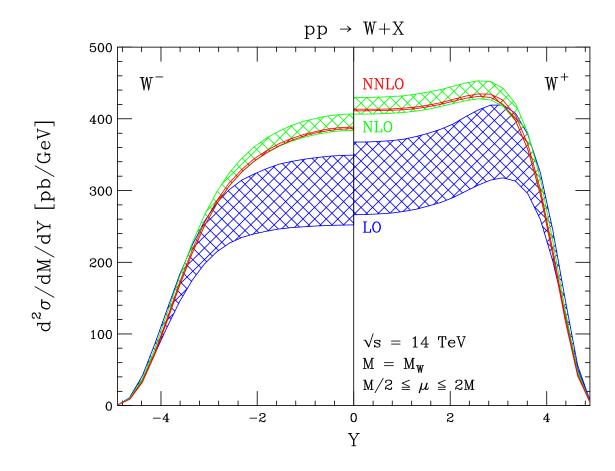
- Phase space becomes $[y(1-y)(1-z)^2 f(y,z)]^{-2\epsilon}$
- ⇒ Can extend to more differential quantities

Z production at the LHC



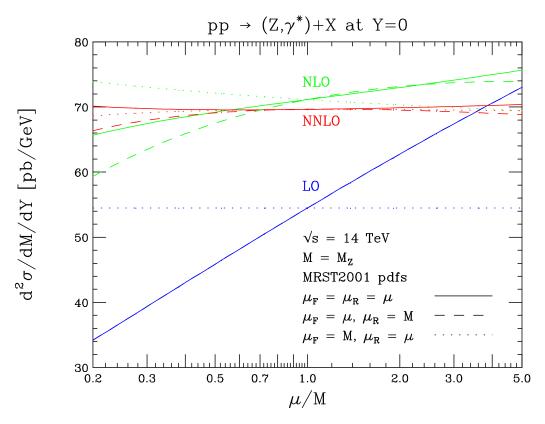
- Result completely stable against μ variation at NNLO
- \Rightarrow 25 30% at LO; 6% at NLO; 0.1 1% at NNLO

W production at the LHC



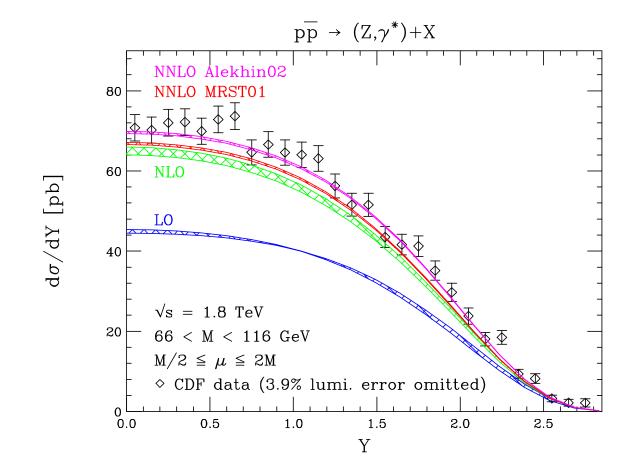
- Similar scale dependences as Z production
- \Rightarrow 25 30% at LO; 6% at NLO; 0.1 1% at NNLO

Scale variations at the LHC



- Varying both μ_R and μ_F : $\leq 1\%$
- Varying μ_F alone: $\leq 1\%$ for $M/2 \leq \mu_F \leq 2M, \leq 5\%$ for $M/5 \leq \mu_F \leq 5M$

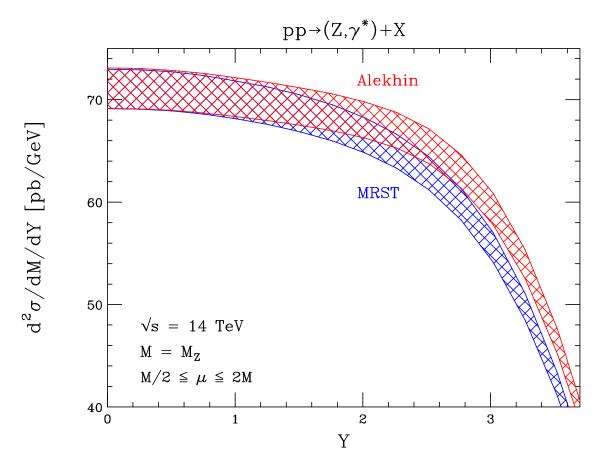
Z production at the Tevatron



Scale variations 3 - 6% at NLO, < 1% at NNLO

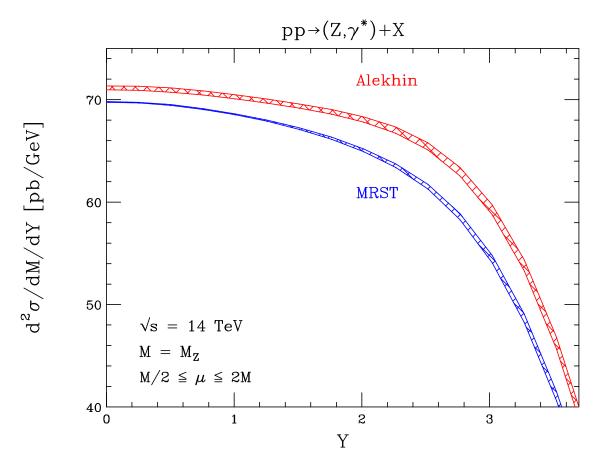
NNLO corrections increase cross section by 3-5%

PDF comparisons



- Alekhin parameterization fits only to DIS data; MRST fits to DIS, DY, jets
- Scale variations render undistinguishable at NLO

PDF comparisons

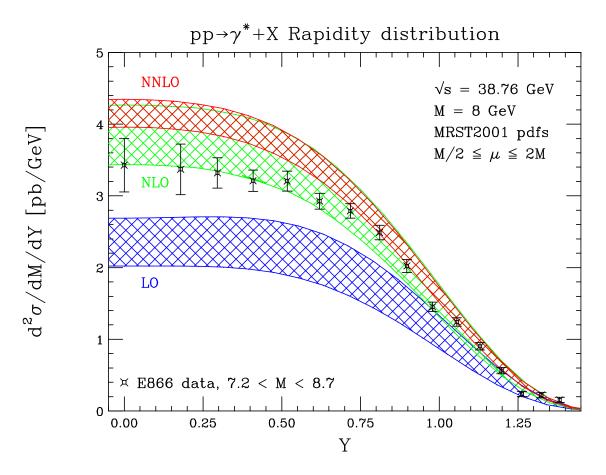


Alekhin parameterization fits only to DIS data; MRST fits to DIS, DY, jets

Scale variations render undistinguishable at NLO

Resolved at NNLO

Fixed target DY (E866)

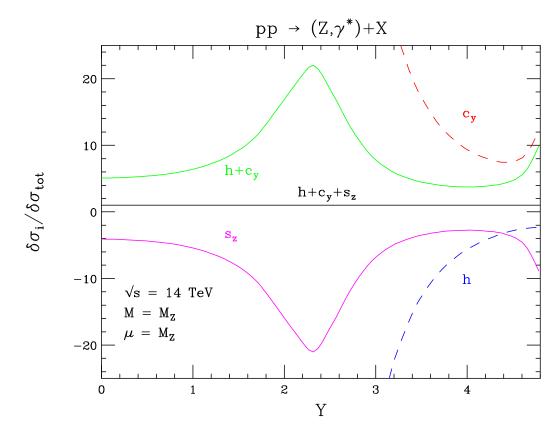


Strong constraint on \bar{q} and $x \to 1 q_{val}$ distribution functions

Similar Reduced μ dependence at NNLO reveals discrepancy with data

 \Rightarrow Tune \bar{q} pdfs

Soft and collinear approximations



- Split $\mathcal{O}(\alpha_s^2)$ corrections into hard, soft, and collinear pieces
- \Rightarrow denotes behavior of additional partons in final state
- No reasonable approximation to the full result; persists until very high energies

Conclusions

- Have presented a calculation of the Drell-Yan rapidity distribution at NNLO
- Have described a new method for computing real radiation contributions at higher orders
 - Maps real radiation \Rightarrow cut loop integrals
 - Can apply machinery developed for reduction, calculation of virtual corrections
 - Useful for "semi-inclusive" quantities
- Residual scale variations are less than 1% at the LHC
- \Rightarrow Drell-Yan is now a high precision probe of QCD