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Physics motivations

Why Drell-Yan at NNLO?

Extraction of parton distribution functions

At fixed target energies, where αs is large

At high luminosities (LHC), where ∆σstat is small

LHC luminosity monitor Dittmar et. al.

Measurement of precision EW parameters: MW , s2
W

⇒ These require percent-level precision
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Physics motivations

Why differential distributions at NNLO?
For pdf extraction
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Partonic energy fractions fixed by M 2, Y

m2
V = x1x2s, Y = ln(x1/x2)/2

⇒ Need rapidity to reconstruct pdfs

⇒ Need distributions for most applications
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Drell-Yan rapidity distribution
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Anatomy of a NNLO calculation

Virtual-Virtual

Real-Virtual

Real-Real
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Anatomy of a NNLO calculation

Real-Virtual
One-loop × 2-particle PS ⇒ simple

Virtual-Virtual
Two-loop integrals ⇒ not simple, but well studied

Loop integrals satisfy recurrence relations arising
from Poincare invariance

Can reduce to a small set of independent master
integrals

Can calculate using differential equations
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Anatomy of a NNLO calculation

Real-Real
Difficult and not well studied

Can we adapt multi-loop techniques to PS
integrals?

Yes- use unitarity C. Anastasiou, K. Melnikov
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⇒ Maps phase space integrals ⇒ cut loop integrals
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Differential distributions

Can extend to differential quantities
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∝ u
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Replace the δ (q2
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i ) as before; also replace

δ(u −
p1 · Ph

p2 · Ph
) ⇒

p2 · Ph

(p1 − up2) · Ph−iε
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mass-shell condition → rapidity constraint
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Extraction of singularities

Matrix elements contains terms which behave as

|M|2 ∝
1

u − z
, |M|2 ∝

1

1 − uz

(

z = M 2/ŝ
)

Phase space contains the factor [(u − z) (1 − uz)]−2ε

Can separate singularities in u, z by setting

y =
u − z

(1 − z)(1 + u)

Phase space becomes [y(1 − y)(1 − z)2f(y, z)]
−2ε

⇒ Can extend to more differential quantities
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Z production at the LHC

Result completely stable against µ variation at NNLO

⇒ 25 − 30% at LO; 6% at NLO; 0.1 − 1% at NNLO
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W production at the LHC

Similar scale dependences as Z production

⇒ 25 − 30% at LO; 6% at NLO; 0.1 − 1% at NNLO
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Scale variations at the LHC

Varying µR alone: ≤ 0.5%

Varying both µR and µF : ≤ 1%

Varying µF alone: ≤ 1% for M/2 ≤ µF ≤ 2M , ≤ 5% for M/5 ≤ µF ≤ 5M
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Z production at the Tevatron

Scale variations 3 − 6% at NLO, < 1% at NNLO

NNLO corrections increase cross section by 3 − 5%
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PDF comparisons

Alekhin parameterization fits only to DIS data; MRST fits to DIS, DY, jets

Scale variations render undistinguishable at NLO
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PDF comparisons

Alekhin parameterization fits only to DIS data; MRST fits to DIS, DY, jets

Scale variations render undistinguishable at NLO

Resolved at NNLO

Electroweak gauge boson rapidity distributions at NNLO – p. 15/18



Fixed target DY (E866)

Strong constraint on q̄ and x → 1 qval distribution functions

Reduced µ dependence at NNLO reveals discrepancy with data

⇒ Tune q̄ pdfs
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Soft and collinear approximations

Split O(α2
s) corrections into hard, soft, and collinear pieces

⇒ denotes behavior of additional partons in final state

No reasonable approximation to the full result; persists until very high energies
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Conclusions

Have presented a calculation of the Drell-Yan rapidity
distribution at NNLO

Have described a new method for computing real
radiation contributions at higher orders

Maps real radiation ⇒ cut loop integrals

Can apply machinery developed for reduction,
calculation of virtual corrections

Useful for "semi-inclusive" quantities

Residual scale variations are less than 1% at the LHC

⇒ Drell-Yan is now a high precision probe of QCD
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