Electroweak gauge boson
rapidity distributionsat NNL O

Frank Petriello
C. Anastasiou, K. Melnikov, L. Dixon, F. P.

Physics motivations
Description of the calculation

Results: LHC, Tevatron, fixed target

© o o 0

Conclusions

—



| Physics motivations

o Why Drell-Yan at NNLO?

» Extraction of parton distribution functions

s At fixed target energies, where o, Is large
s At high luminosities (LHC), where Ao, 1S small

o LHC luminosity monitor pittmar et. al

» Measurement of precision EW parameters: My, s3;,
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= These require percent-level precision



| Physics motivations

o Why differential distributions at NNLO?

» For pdf extraction
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» Partonic energy fractions fixed by M2, Y
mi = 11228, Y = In(xy/x3)/2

= Need rapidity to reconstruct pdfs

= Need distributions for most applications
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I Drell-Yan rapidity distribution




| Anatomy of a NNL O calculation

» Virtual-Virtual
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» Real-Virtual

» Real-Real
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| Anatomy of a NNL O calculation

o Real-Virtual

» One-loop x 2-particle PS = simple

» Virtual-Virtual
» Two-loop integrals = not simple, but well studied

» Loop integrals satisfy recurrence relations arising
from Poincare invariance

» Can reduce to a small set of independent master

Integrals

» Can calculate using differential equations



| Anatomy of a NNL O calculation

» Real-Real

Difficult and not well studied
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Can we adapt multi-loop techniques to PS

Integrals?

Yes- use unitarity c. Anastasiou, K. Melnikov
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Cutkosky rules: § (¢ — m?) = pp—s

= Maps phase space integrals =- cut loop integrals
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| Differential distributions

» Can extend to differential quantities
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» Replace the § (¢ — m?) as before; also replace
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» mass-shell condition — rapidity constraint |
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| Extraction of singularities

» Matrix elements contains terms which behave as

1 1
M

uU— z 1 —uz

IM|? (== M?/3)

# Phase space contains the factor [(u — z) (1 — uz)] ™

# Can separate singularities in u, z by setting

u—z
1 —2)(14u)
# Phase space becomes [y(1 — y)(1 — 2)%f(y,2)]”
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= Can extend to more differential quantities



Z production at the LHC

pp~(Z,7")+X
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P Result completely stable against p variation at NNLO
= 25— 30% at LO; 6% at NLO; 0.1 — 1% at NNLO



W production at the LHC
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P Similar scale dependences as Z production

= 25 —30% at LO; 6% at NLO; 0.1 — 1% at NNLO



Scalevarilationsat theLHC

pp - (Z,7)+X at Y=0
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» Varying pr alone: < 0.5%
» Vvarying both ur and pr: < 1%
® Varying pr alone: < 1% for M/2 < up < 2M, < 5% for M/5 < up < 5M



Z production at the Tevatron
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B Scale variations 3 — 6% at NLO, < 1% at NNLO

P NNLO corrections increase cross section by 3 — 5%



PDF.comparisons

d?0/dM/dY [pb/GeV]

P Alekhin parameterization fits only to DIS data; MRST fits to DIS, DY, jets
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P Scale variations render undistinguishable at NLO




PDF.comparisons
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P Alekhin parameterization fits only to DIS data; MRST fits to DIS, DY, jets
P Scale variations render undistinguishable at NLO

® Resolved at NNLO



Fixed target DY (E866)
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& Strong constrainton g and z — 1 q,; distribution functions

» Reduced p dependence at NNLO reveals discrepancy with data

= Tune g pdfs



Soft and collinear approximations
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P Split O(a?) corrections into hard, soft, and collinear pieces
= denotes behavior of additional partons in final state

P No reasonable approximation to the full result; persists until very high energies



| Conclusions

#» Have presented a calculation of the Drell-Yan rapidity
distribution at NNLO

#» Have described a new method for computing real
radiation contributions at higher orders
» Maps real radiation = cut loop integrals

» Can apply machinery developed for reduction,
calculation of virtual corrections

» Useful for "semi-inclusive" quantities

Residual scale variations are less than 1% at the LHC

= Drell-Yan is now a high precision probe of QCD |
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