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The idea of showers

From of diagrams.
Each parton splits.
Partons — showers.

In a shower the parton splits.
Daughters make showers.

e After showers, there is a model for partons — hadrons.



e Parton shower Monte Carlo programs produce a list of events.

e Each event is a list of the final state particles and their mo-
menta, together, possibly, with a weight for the event.

e [ he user analyses the simulated events to get a prediction.

e [ hese programs originated in the mid 1980s. Among the in-
ventors are Thomas Gottschalk, Bryan Webber, and Torbjorn
Sjostrand.

e Without them, our ability to learn about nature from experi-
ments would be substantially degraded.



What is good about NLO calculations?

Precision (estimated) is better than with LO calculations; new
effects can appear at NLO.
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e Nb. Need an infrared safe observable.



What is the problem with NLO calculations?

NLO: Few parton states Pythia (LO) : Many hadron states



Examine dfs/dM where f3 is the fraction of events that have
three jets (Durham algorithm, yc,t = 0.05) and M is the mass
of a jet (so each event contributes three jets).
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Adding showers

e Produce realistic final states f. (Hadrons, or just a parton
shower down to some minimum virtuality.)

1
7= Ilim Nnglwngg(fn)

N —00

e For an infrared safe observable, the result 7 should have a
perturbative expansion,

I=Cool +CralTt+Coal™+. .

e Keep (5 and (1 exactly the same.

e Cf. Frixione, Nason, & Webber.



Structure of the calculation

From of diagrams.
Each parton splits.
A soft gluon is radiated.
Partons — showers.

From aSB+1 diagrams with
subtractions.




Shower splitting.
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e T his is similar to what shower MC programs use.
e T he Sudakov exponential suppresses splitting with small ¢72.

e It represents the probability that the parton did not split with
virtuality % above 2.



Soft radiation

Three jets make an antenna.
Radiate one gluon.
Use eikonal approximation,
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A test

Calculate do/dt at thrust t = 0.86 (/s = Mz, u=+/s/6).

R— (NLO-shower) — NLO

NLO ’
where “NLO-shower” includes a parton shower but not hadroniza-

tion. If calculation is correct,

_ (Coal 4 Crad T + Coad T2 4. ) — (Cpal + Crad ™)

R
CoaB 4+ C1abT?!

SO

So plot R versus as(My)?2.



The result for thrust = 0.86
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e R o is the same without the order aSB+1 corrections.



Jet mass distribution
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Comparison with same normalization
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Large mass tail

Showering and hadronization have little effect on at high M.
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Effect of showers and hadronization on f3
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The effect of going from a pure NLO calculation to NLO +
parton showers to NLO +4 parton showers + hadronization is
not large.



We can examine effect of jet algorithm
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Problems arise for the Jade algorithm when y-,t < 0.03 and f3
becomes non-perturbative.



My guess about the future

e NLO calculations will include
showers.

e NLO authors will be responsi-
ble for primary splittings (includ-
ing soft gluon effects).

e [ he rest will come from Pythia,
Herwig,. ..

e S. Mrenna is helping with this.

e Z. Nagy and I are working on
generalizing this within Catani-
Seymour dipole scheme.




Extra slides



Collinear singularities in perturbation theory

Perturbative o ( o
calculation in the &% -+
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Z[Born] + Z[real] 4+ Z[virtual] =
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e R(G%,x,¢) and Rp represent the rest of the graph, including
the measurement function. R(G?,z,d) — Rq for 32 — 0.

e 3° — 0 singularities cancel.



Shower splitting.

)
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e Splitting with the exact Coulomb gauge M.

e Sudakov suppression with the exact Coulomb gauge P.



Subtraction to multiplication theorem

Z[Born] + Z[real] + Z[virtual] = Z[shower] x (1 + 0(a§)) .
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Proof step 0. Add and subtract:
Z[shower] = Z7[shower]| + Z>[shower]
with
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Proof step 1. Expand Zj[shower]:
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= I[real] + Z[virtual] 4+ O(as X R)



Proof step 2. Calculate Zs[shower]:
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= Z[Born].
That is

Z[Born] + Z[real] + Z[virtual] = Z[shower] x (1 + O(af)) .



You could use your favorite M’ & P’
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What you get then

T'[shower] = Z[Born] + Z'[real] + Z'[virtual].
gives

Z[Born] 4+ Z[real] 4+ Z[virtual]
= T'[shower] + (Z[real] — Z'[real]) + (Z[virtual] — Z'[virtual]).

The M’ and P’ functions act as subtractions for M and P.

As long as they have the right (32 — 0O singularities, they cancel
the singularities of M and P.



Effect of hadronization
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The result for thrust = 0.71
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The result for thrust = 0.95
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e Note: thrust = 0.95 is out of the three jet region so this result
should not be compared to experiment.



