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Low-dimensional systems have been a source 
of new physics for over 60 years, at least since 
Onsager’s solution of the 2D Ising model.

In a way, this physics is still interesting today.

Much of the discussion of the 5/2 state
and the MR and anti-Pfaffian wavefunctions
is couched in the language of the Ising model
(e.g.            ) and the Ising TQFT.1, σ, ψ
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Low-dimensional systems have been a source 
of new physics for over 60 years, at least since 
Onsager’s solution of the 2D Ising model.

In a way, this physics is still interesting today.

Much of the discussion of the 5/2 state
and the MR and anti-Pfaffian wavefunctions
is couched in the language of the Ising model
(e.g.            ) and the Ising TQFT.1, σ, ψ

Why?

Does the Ising model tell us anything about 5/2?
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Effective Theory for the MR Pfaffian Edge

L
edge =

1

4π
∂xφc(∂t + vc∂x)φc +

1

2π
ψ(∂t + vn∂x)ψ

Milovanovic and Read ’95

The neutral sector is a chiral Majorana fermion.
= chiral part of the critical 2D Ising model
and the 1+1-D transverse field Ising chain.

subdivide edge
into halves, call
them right/left
moving

ψR

ψL
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If we represent the edge of an MR droplet by
a non-chiral Majorana fermion on an interval,
then the boundary conditions at the ends of the
interval must be conformally-invariant.
Cardy, late 80’s: boundary CFT.

Conformally-inv. b.c. of Ising model: fixed+, fixed-, free

With no qps. in bulk, the droplet is mapped to a strip 
with fixed b.c. at both ends.
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Different possible
Ising boundary cond. 

Different possible
bulk quasiparticles.
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Different possible
Ising boundary cond. 
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Different possible
bulk quasiparticles.
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Fixed+ Fixed- Fixed+

Free Free

ψψ

ψ ψ

σ
σ

...

...

σ

.

.

.
.
.
.

We can obtain any conf. invar. b.c. at one end of the 
strip by adding the corresponding quasiparticle in the 
bulk.
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Fixed+ Fixed- Fixed+

Free Free

ψψ

ψ ψ

σ
σ

...

...

σ

.

.

.
.
.
.

We can obtain any conf. invar. b.c. at one end of the 
strip by adding the corresponding quasiparticle in the 
bulk.

At which end of the strip should the b.c. be 
changed? Can be switched by a
       gauge choice = Ising K-W dualityZ2
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Coupling a bulk vortex to the edge corresponds to 
applying a boundary magnetic field when the b.c. is ‘free’.

Flow from
free to fixed b.c.

The vortex is
absorbed by the
edge

Entropy loss: ∆S = − ln
√

2

L =

∫
dt (iψR(∂t + vn∂x)ψR + iψL(∂t − vn∂x)ψL)

+ iψ0∂tψ0 + ih ψ0[ψR(0) + ψL(0)]

(similar to 2-channel Kondo
  e.g. Affleck+Ludwig early 90’s)

Friday, March 27, 2009



A similar analysis holds for       parafermions, the 
critical 3-State Potts model, and the k=3 RR state.

Z3

H = −J
∑

〈i,j〉

δsisj

A

B

C1, ψ, ψ†, σ, σ†, εPrimary fields:

A B C

Not A Not B Not C

ψψ

ψ ψ

ε

σ
ε

σ
†

...

...

Read, Rezayi ’99
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Higher entropy by
τ = (1 +

√

5)/2
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Point Contacts

Tunneling through the bulk 
selects quasiparticles.

Therefore, the scaling 
exponents revealed by 
transport through a pt.
can tell us about the qps. 
supported by the state.

Point contacts are a useful probe of the edge 
excitations (and edge-bulk interplay) of a topological 
state.
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Fractional quantum Hall effect in a quantum point contact
at filling fraction 5/2
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(Dated: May 14, 2007)

Recent theories suggest that the excitations of certain quantum Hall states may have exotic
braiding statistics which could be used to build topological quantum gates. This has prompted an
experimental push to study such states using confined geometries where the statistics can be tested.
We study the transport properties of quantum point contacts (qpcs) fabricated on a GaAs/AlGaAs
two dimensional electron gas that exhibits well-developed fractional quantum Hall effect, including
at bulk filling fraction νbulk = 5/2. We find that a plateau at effective filling factor νQPC = 5/2

is identifiable in point contacts with lithographic widths of 1.2 m and 0.8 m, but not 0.5 m.
We study the temperature and dc-current-bias dependence of the νQPC = 5/2 plateau as well as
neighboring fractional and integer plateaus in the qpc while keeping the bulk at νbulk = 3. Transport
near νQPC = 5/2 in the qpcs is consistent with a picture of chiral Luttinger liquid edge-states with
inter-edge tunneling, suggesting that an incompressible state at νQPC = 5/2 forms in this confined
geometry.

The discovery [1] of a fractional quantum Hall effect
(fqhe) at the even-denominator filling fraction ν = 5/2

has sparked a series of experimental [2, 3, 4, 5, 6] and
theoretical [7, 8, 9] studies, leading to a prevailing inter-
pretation of the 5/2 state as comprised of paired fermions
condensed into a BCS-like state [10, 11, 12, 13]. Within
this picture, excitations of the 5/2 ground state possess
nonabelian statistics [14, 15, 16] and associated topolog-
ical properties. The possibility that such a topological
state can be accessed in the laboratory has prompted re-
cent theoretical work aimed at experimentally testing the
nonabelian character of the 5/2 state [17, 18, 19, 20, 21],
and building topologically protected quantum gates con-
trolled by manipulating the excitations of the 5/2 state
[22, 23, 24].

While proposed tests of the statistics of excitations
of the 5/2 state make use of confined (∼ few micron)
geometries, previous studies of the 5/2 state have been
conducted in macroscopic (100 m - 5 mm) samples. Al-
though experiments using mesoscopic samples with a
quantum point contact (qpc) are now routine, the 5/2

state is exceptionally fragile; only the highest quality
GaAs/AlGaAs heterostructures exhibit a 5/2 state even
in bulk samples. Experimental investigation of the statis-
tics of the 5/2 ground state is crucial, especially since al-
ternative models have been proposed to explain the 5/2

state in confined geometries [25] and in the bulk [12, 26].

In this paper we study the 5/2 state in the vicinity of
a quantum point contact. Near a qpc, the electron den-
sity is not uniform, so the notion of a qpc-filling frac-
tion is not well defined. However, based on transport

measurements, it is possible to define an effective filling
fraction in the vicinity of the qpc (νQPC), as discussed
below. Below 30mK, a plateau-like feature with diago-
nal resistance (also defined below) near, but above, the
bulk quantized value of 0.4h/e2 is evident at νQPC = 5/2

in qpcs with 1.2 m and 0.8 m spacings between the
gates. On this plateau, we find a peak in the differential
resistance at dc-current bias Idc = 0 and a dip around
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FIG. 1: Device and measurement setup. (a) sem micrograph
of the 0.5 m qpc. (b) Optical micrograph of the entire device
(the outline of the wet-etched Hall bar has been enhanced for
clarity). The measurement circuit for the red-highlighted qpc

is drawn schematically, with the direction of the edge-current
flow indicated by the yellow arrows.

Radu et al. ‘08:

Point contact
in 5/2 state
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Fig. 5: Map of the fit quality. Normalized fit error is the residual from the least-squares fit,

divided by the number of points and by the noise of the measurement. Also marked on the map

are proposed theoretical pairs (e∗, g).
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Fig. S3: A. Best fit to the data in Fig. 4. The fit returns e∗ = 0.18 and g = 0.35. B. Fit to the
data holding e∗ = 1/4 and g = 1/8 as predicted for the K8 state (3). C. Fit to the data holding
e∗ = 1/4 and g = 1/4 as predicted for the Pfaffian state (4,5).
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Point Contacts and Perturbed Boundary CFT

Quantum Hall Droplet 
with a Point Contact

Non-chiral Majorana 
Fermion with a defect

Two copies of a Majorana 
fermion coupled at boundary
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Ising Defect Conformal B.C.

The Ising model with a defect line has 4 possible 
conformally-invariant b.c.

‘Continuous Dirichlet’

‘Continuous Neumann’ (Free, Fixed)

(Fixed, Fixed)

fixed lines
product boundary
conditions

Oshikawa and Affleck ’97
Friday, March 27, 2009
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Majorana Fermion Backscattering

Continuous Dirichlet Line:

Fermion backscattering only
(no vortex tunneling)

Column of bonds
weakened/strengthened=
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Special Points on C.D. Line

Parametrize by phase shift/boson
value at boundary:

Define a Dirac fermion,
bosonize:

Transmitting:

(Free,Free):

(±,±) :

eiϕR = −ψ1R + iψ2R

eiϕL = ψ1L + iψ2L
{

ϕ(0) =
δ

2
+

π

4

δ = 0

δ = π/2

δ = −π/2

Friday, March 27, 2009



Vortex Tunneling

see also LeClair and Ludwig ’99 

Vortex Tunneling   =  Magnetic Field at Defect Line

Causes flow to (Fixed, Fixed) B.C.

Scaling dim. depends
on pt. on C.D. line:

Implications for transport
through a pt. contact:

Entropy loss: (Free,Free)     (Fixed,Fixed) = ln 2→

∆ =
1

8

(

1 +
2δ

π

)2

+
1

8

Rxx ∼ T
2∆−2

Friday, March 27, 2009



ψa + iψb ∼ eiφ

iψaψb ∼ ∂φ
Standard bosonization:

Non-Perturbative Treatment
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ψa + iψb ∼ eiφ

iψaψb ∼ ∂φ
Standard bosonization:

However, to recover the pert. 
expansion of e/4 tunneling:

Non-Perturbative Treatment
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σaσb ∼ S
+
e
−iφ/2

+ S
−

e
iφ/2

ψa + iψb ∼ eiφ

iψaψb ∼ ∂φ
Standard bosonization:

However, to recover the pert. 
expansion of e/4 tunneling:

Non-Perturbative Treatment
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σaσb ∼ S
+
e
−iφ/2

+ S
−

e
iφ/2

ψa + iψb ∼ eiφ

iψaψb ∼ ∂φ
Standard bosonization:

However, to recover the pert. 
expansion of e/4 tunneling:

bookkeeping

Non-Perturbative Treatment
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σaσb ∼ S
+
e
−iφ/2

+ S
−

e
iφ/2

ψa + iψb ∼ eiφ

iψaψb ∼ ∂φ
Standard bosonization:

However, to recover the pert. 
expansion of e/4 tunneling:

bookkeeping
Fendley, Fisher, Nayak PRL, PRB ’06.

H5/2 =

∫

dx
( vc

2π
(∂xφρ)

2 +
vn

2π
(∂xφσ)2

)

+ λ1/4

(

S+e−iφσ(0)/2 + S−eiφσ(0)/2
)

cos(φρ(0)/2)

+ λ1/2 cos φρ(0) +
λψ,0

2π
∂xφσ(0),

Non-Perturbative Treatment
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σaσb ∼ S
+
e
−iφ/2

+ S
−

e
iφ/2

ψa + iψb ∼ eiφ

iψaψb ∼ ∂φ
Standard bosonization:

However, to recover the pert. 
expansion of e/4 tunneling:

bookkeeping
Fendley, Fisher, Nayak PRL, PRB ’06.

H5/2 =

∫

dx
( vc

2π
(∂xφρ)

2 +
vn

2π
(∂xφσ)2

)

+ λ1/4

(

S+e−iφσ(0)/2 + S−eiφσ(0)/2
)

cos(φρ(0)/2)

+ λ1/2 cos φρ(0) +
λψ,0

2π
∂xφσ(0),

Non-Perturbative Treatment

S
zC. Kane:

Friday, March 27, 2009



Crossover from Trans. to (Fixed, Fixed)

Pf. point contact can be rewritten as resonant 
tunneling between Luttinger liquids

Tunneling current can be computed by time-
dependent DMRG.

Hres =
∫ ∞

0
dx

v

2π

(
(∂xφa)2 + (∂xφb)

2
)

+t d†eiφa(0)/
√

g + t d†eiφb(0)/
√

g + h.c.

Friday, March 27, 2009



Feiguin, Fendley,
Fisher, Nayak ’08

Agrees with perturbative calculations
around the weak- and strong-backscattering
limits.  Only way to compute the current in
the crossover regime.
Agrees with Bethe ansatz for 1/3 point contact.

Future: time-dep. DMRG for anti-Pfaffian, 331.

0.1 1.0

V

0.1

1.0

I B
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Continuous Neumann B.C.

Dirichlet b.c. for the dual boson:

TFIM with a defect: 

Same as C.D. line, but with a vortex pinned at 
the pt. contact

ϕ̃ = ϕR − ϕL

H = −

∑

n !=0

σ
x

n
−

∑

n !=0

σ
z

n−1σ
z

n
− bσ

z

−1σ
x

0

!!

will think about this context soon:
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vortex tunneling

free, fixedCN

resonant Majorana
fermion tunneling

CD
CN

Perturbing Continuous Neumann b.c.

If the bulk vortex is coupled to the edge, the 
system flows to the C.D. line.

Vortex tunneling takes the system to (Free,Fixed) 
because one of the droplets contains a vortex

Friday, March 27, 2009
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Continuous Neumann b.c. 
and Two-Pt. Contact Interferometers

Along the C.N. line, correlation functions
have the following property (Oshikawa+Affleck ’97):

Same as the odd-even effect (Bonderson, Kitaev, Shtengel 
’06; Stern-Halperin ’06) in an interferometer:

〈σ(x < 0) σ(x′
> 0)〉 = 0

S

1 2
tt

!!
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Bulk-Edge Coupling in an MR Interferometer

The corr. fcn. can be computed along the flow 
from C.N. to C.D.

similar to free-to-fixed flow,
see Chatterjee and Zamolodchikov, ’94

Ψ(a, c, x) =
1

Γ(a)

∫
∞

0

ds e−xssc−1(1 + s)a−c−1

〈σ(x, t)σ(0, 0)〉 =
(

2λ2(x − vnt)
)1/4

Ψ(1/2, 1, λ(x − vnt))

S

1 2
tt

Confluent hypergeometric function:

Chamon et al. ’97; Fradkin et al. ’98
Bonderson, Kitaev, Shtengel ’06
Stern, Halperin ’06

λ = 4πh2/vn

2
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This leads to an interference term in the 
backscattered current of the form:

Bishara and Nayak, in prep.

see also: Rosenow et al. ’08
                     Overbosch and Wen ’08

(assuming equal charge/neutral velocities)

more complicated for unequal velocities, but similar 
physics and scaling

I12 =
e

4
|t1t2| 25/4

√
πλ cos(2πΦ/4Φ0)×

cos(xe∗V/v)
1

[e∗V (vλ + e∗V )]1/2

Friday, March 27, 2009



Free b.c. in the 3-State Potts model

Weakening a line of bonds is a relevant 
perturbation, ∆ = 4/5

Flow to (Free, Free) b.c.

bulkJ

J         =  Jdefect         bulk
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Free b.c. in the 3-State Potts model

Weakening a line of bonds is a relevant 
perturbation, ∆ = 4/5

Flow to (Free, Free) b.c.

bulkJ

J         =  Jdefect         bulk

!"#$%#"&&'()*+,-*./
!,!0-(&'1

A

A

A

A

A

A

A

A C
C

B

B C

B

C

A

B

There is an 8th conformally-inv. 
b.c.:

vortex

backscatt.!

’new’ free
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Possible Relevance to Experiment
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Possible Relevance to Experiment

Recently, Willett et al. have measured the current 
through a 2-pt. contact interferometer.

There are regions in which the oscillation period as 
a function of side gate voltage (a proxy for area) 
corresp. to e/4 qps and regions in which they 
corresp. to e/2 qps.

These regions may correspond to even/odd qp. 
numbers in the interference loop.

If so, the tunneling current should have temp., voltage 
dependence det’d by the CFT discussed above.
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shot noise appears to indicate that only charge e/4 quasipar-
ticles tunnel at the point contact (although there is sufficient

scatter in the data that one might argue that there could be a

component due to e/2 quasiparticle, the scatter does not seem
to be asymmetric in the direction of charges larger than e/4 as
one might have expected). In the latter experiment, the best fit

to the data is actually e∗/e = 0.17, so including any e/2 tun-
neling leads to a worse fit to the data17. Thus, the appearance

and strength of e/2 quasiparticle tunneling remains a mystery
in several different experiments.

A conventional Coulomb blockade picture seems inappro-

priate since Ib ∼ .01Itotal indicates that the system is in the

weak back-scattering limit. It is also unlikely that Coulomb

blockade could lead to two distinguishable periods since, for
1
2vn/vc small (as we expect it to be), the bunching will be

difficult to resolve. Numerical calculations of the edge veloc-

ities36 give vn " 0.1vc, confirming this expectation. On the

other hand, we note that Coulomb blockade is capable of pro-

ducing peaks that alternate between the e/4 and e/2 periodic-
ities, with no e/2 background in the e/4 region. Thus, if the
two prior points against it were somehow incorrect, Coulomb

blockade could provide a consistent explanation of the peri-

odicity issue.

Furthermore, Coulomb blockade could be easily ruled out

by measuring its temperature dependence and its dependence

on asymmetry between the tunneling amplitudes at the two

point contacts. In particular, the Coulomb blockade peak

widths are expected to scale linearly with temperature38.

However, a more general view of Coulomb blockade has

emerged39, according to which Coulomb blockade (CB) can

be distinguished from Aharonov-Bohm (AB) interference by

inter alia the dependence of∆Vs on B (it should be inversely

proportional for AB and independent for CB). By this crite-

rion, as well, the data appears to be more consistent with AB

interference. However, it is worth keeping in mind that we do

not know precisely how the area of the droplet changes with

Vs or with B; knowing this would enable us to cement an in-
terpretation of the experiment.

Similarly, the possibility that the existence of two periodic-

ities signals different regions with different electron densities

and, therefore, two different possible relations ∆A = c∆Vs

and ∆A = c′∆Vs could be ruled in or out through a more

detailed knowledge of the electron density in the sample.

V. ADDITIONAL PROPOSALS AND NON-TRIVIAL

CHECKS

As beautiful as the non-Abelian anyon explanation of the

results of Ref. 1,2 may be, it is clear from the preceding analy-

sis that there are some significant gaps which need to be closed

through further measurements.

If it is, indeed, the case thatRL is due to the weak backscat-

tering of e/4 quasiparticles at the constrictions, then both the
non-oscillatory and oscillatory parts of the current should have

non-trivial temperature and voltage dependences. Modeling

the edge in the simplest way (i.e. fully equilibrated neutral

modes and no edge reconstruction) using the “natural” con-

ν = 5

2
e∗ nA? θ gc gn g

MR: e/4 yes eiπ/4 1/8 1/8 1/4

e/2 no eiπ/2 1/2 0 1/2

Pf: e/4 yes e−iπ/4 1/8 3/8 1/2

e/2 no eiπ/2 1/2 0 1/2

SU(2)
2
: e/4 yes eiπ/2 1/8 3/8 1/2

e/2 no eiπ/2 1/2 0 1/2

K=8: e/4 no eiπ/8 1/8 0 1/8

e/2 no eiπ/2 1/2 0 1/2

(3,3,1): e/4 no ei3π/8 1/8 1/4 3/8

e/2 no eiπ/2 1/2 0 1/2

TABLE II: Relevant quasiparticle excitations of model FQH states at

ν = 5/2. Here we list their values of charge e∗; whether they are
non-Abelian; their topological twist factor θ; and their charge and
neutral scaling exponents gc, gn, and g. The MR, Pf, and SU(2)2
NAF states are non-Abelian, while the K=8 (strong pairing) and

(3,3,1) states are Abelian. All of these have Abelian e/2 Laughlin-
type quasiparticles.

formal field theory inherited from the bulk, one can perform a

more detailed analysis of the tunneling edge current18,19,40,41,

along the lines of that carried out in Refs. 23,42 for Abelian

states.

The non-oscillatory part of the backscattered current – the

sum of the contributions from each point contact indepen-

dently – will behave as the power laws:

I(qp)
b ∝

{

T 2g−2 V for small eV $ kBT

V 2g−1 for small eV % kBT
, (8)

where g = gc+gn is the tunneling exponent combining charge

and neutral (Abelian and non-Abelian) sectors of the quasi-

particles’ tunneling operator (see, e.g. Ref. 42 for a definition

of gc and gn in the K-matrix formalism for Abelian states).

The tunneling operator is relevant for g < 1, and quasiparti-
cles with smaller g are more relevant, and are thus expected
to dominate the tunneling current in the weak backscattering

limit.

From Table II, we see that the e/4 backscattering opera-
tor is a relevant perturbation of the edge effective theory for

all of the candidate states. Thus, the effective tunneling am-

plitude(s) will decrease as the temperature is raised, as T−3/2,

T−5/4, or T−1 in theMR, (3, 3, 1), and Pf states, respectively.
Charge-e/2 backscattering is also relevant in all of the candi-
date states. Because e/2 excitations have g = 1/2 and are
entirely in the charge sector, their (lowest order, single point-

contact) tunneling current contribution is the same in all of the

candidate states and can be given explicitly as

I(e/2)
b =

e

2

∣

∣Γe/2

∣

∣

2 2π

vc
tanh

(

eV

4T

)

(9)

Thus, in the linear response regime, the effective tunneling

amplitude for e/2 backscattering decreases as T−1. For the

8

ν = 7

3
e∗ nA? θ gc gn g

L1/3: e/3 no eiπ/3 1/3 0 1/3

BS2/3: e/3 yes e−i7π/24 1/3 5/8 23/24

e/3 no eiπ/3 1/3 0 1/3

BS
ψ
1/3
: e/3 yes ei5π/24 1/3 3/8 17/24

e/3 no eiπ/3 1/3 0 1/3

RRk=4: e/6 yes e−iπ/6 1/12 1/4 1/3

e/3 no eiπ/3 1/3 0 1/3

e/2 yes eiπ/2 3/4 1/4 1

TABLE III: Relevant quasiparticle excitations of model FQH states

at ν = 7/3. Here we list their values of charge e∗; whether they are
non-Abelian; their topological twist factor θ; and their charge and
neutral scaling exponents gc, gn, and g. The BS, BSψ, and RRk=4

states are non-Abelian, while the L1/3 state is Abelian. All of these

have Abelian e/3 Laughlin-type quasiparticles. (Note: The e/2 ex-
citation for RR is marginal, but we include it for the sake of repre-

senting the possibility of e/2 charge.)

The braiding statistics of the MR, Pf, and SU(2)2 NAF
ν = 5/2 states are all derived from SU(2)2. The non-Abelian
quasiparticles in these states carry SU(2)2 charge 1/2. It fol-
lows that an odd number cluster of such quasiparticles will

also carry a collective SU(2)2 charge of 1/2, while an even
number cluster will carry either 0 or 1. Thus, looking at the
(j = 1/2) middle column of Eq. (A4), we see exactly the
source of the behavior described in Eq. (1).

1. ν = 7/3

For the ν = 7/3 FQH plateau, the leading candidates are
the Laughlin (L) state60, two types of Bonderson-Slingerland

(BS) states61, and a 4-clustered Read-Rezayi (RR) state53.
(The bar indicates particle-hole conjugation.) The BS states

considered here are hierarchically constructed over the MR

and Pf states, so have similar non-Abelian statistics derived

from Eq. (A4) using the fact that the non-Abelian quasipar-

ticles carry SU(2)2 charge 1/2. The RRk=4 state is related

to SU(2)4, and so has more complicated non-Abelian statis-
tics, derived from Eq. (A6). Its fundamental e/6 quasiparti-
cles carry SU(2)4 charge 1/2.
We see in Table III that all of these states have an e/3 ex-

citation with smallest scaling exponent g = 1/3, and so one
expects these to dominate the tunneling. The RRk=4 state also

has e/6 excitations with g = 1/3, which should give a compa-
rable contribution to the tunneling current. The experiments

of Ref. 16, which observes only e/3 tunneling, appear to ex-
clude the RRk=4 state, and agree with the L1/3, BS2/3, and

BS
ψ
1/3 states. In fact, since the relevant excitations of these

three states all have e/3, and furthermore, the most relevant
tunnelers are all Abelian, it will likely be difficult to distin-

guish between L1/3, BS2/3, and BS
ψ
1/3 using tunneling and

interferometry experiments. Thermal transport experiments

ν = 12

5
e∗ nA? θ gc gn g

HH2/5: e/5 no ei3π/5 1/5 2/5 3/5

2e/5 no ei2π/5 2/5 0 2/5

BS2/5: e/5 yes ei9π/40 1/10 1/8 9/40

e/5 no e−i2π/5 1/10 1/2 3/5

2e/5 no ei2π/5 2/5 0 2/5

BS
ψ
3/5: e/5 yes e−i11π/40 1/10 3/8 19/40

e/5 no e−i2π/5 1/10 1/2 3/5

2e/5 no ei2π/5 2/5 0 2/5

RRk=3: e/5 yes e−iπ/5 1/10 3/10 2/5

2e/5 no ei2π/5 2/5 0 2/5

TABLE IV: Relevant quasiparticle excitations of model FQH states

at ν = 12/5. Here we list their values of charge e∗; whether they are
non-Abelian; their topological twist factor θ; and their charge and

neutral scaling exponents gc, gn, and g. The BS, BS
ψ
, and RRk=3

states are non-Abelian, while the L state is Abelian. All of these

have Abelian 2e/5 Laughlin-type quasiparticles; all of these except
RR have a relevant Abelian e/5 quasiparticle.

are probably the best hope of distinguishing between these.

2. ν = 12/5

For the ν = 12/5 FQH plateau, the leading candidates

are the Haldane-Halperin (HH) state62,63, two types of BS

states61, and a 3-clustered RR state53. These BS states again
have non-Abelian statistics derived from Eq. (A4) using the

fact that the non-Abelian quasiparticles carry SU(2)2 charge
1/2. The RRk=3 state is related to SU(2)3, and so has non-
Abelian statistics derived from Eq. (A5). Its fundamental e/5
quasiparticles carry SU(2)3 charge 1/2.
We see in Table IV that all of these states have an Abelian

2e/5 excitation with scaling exponent g = 2/5, so there
should always be a background of such excitations in tunnel-

ing. The HH2/5, BS2/5, and BS
ψ
3/5 states all have an Abelian

e/5 excitation with g = 3/5, so there should be a weaker
background of these excitation in the tunneling. The smallest

scaling exponent for the BS2/5 state belongs to non-Abelian

e/5 excitation, which is therefore expected to dominate the

tunneling in this state. The BS
ψ
3/5 state has a non-Abelian e/5

excitation which has slightly less relevant tunneling operator

than the 2e/5 excitation. The RRk=3 state has a non-Abelian

e/5 excitation with the same scaling exponent g = 2/5 as the
2e/5 excitation, so they should have roughly equal contribu-
tion to tunneling.

In interferometry experiments, the BS and RRk=3 states

will both exhibit e/5 oscillations that will sometimes be sup-
pressed. However, there are important distinctions within this

behavior that can distinguish between them. In particular, the

BS state will exhibit an even-odd effect similar to Eq. (1), al-

ways returning to suppression for nq odd. On the other hand,

the RR state can exhibit both suppression and full amplitude

Rxx ∼ T
2g−2

Lφ(T ) =
1

2πT

(

gc

vc
+

gn

vn

)

−1

3

which to lowest order gives the interference current23

I(e/2)
12 ∝ cos

(

2π
Φ

2Φ0
−

nqπ

2

)

. (2)

The second possibility comes from higher-order tunneling

processes where the interference path encircles the interfer-

ometry area twice. The resulting double pass interference

term in the current coming from 2nd order tunneling of e/4
edge quasiparticles is33,34

I(e/4)
1212 ∝







cos
(

2π Φ
2Φ0

− nqπ
2

)

for nq even

cos
(

2π Φ
2Φ0

− nqπ
2 ± π

2

)

for nq odd
, (3)

where the + corresponds to the MR state and the − to the Pf

and SU(2)2 states. Of course, this 2nd order contribution to
the tunneling current will typically have much smaller ampli-

tude, since it both incurs an additional tunneling probability

factor and doubles the distance over which coherence must

be maintained. For the interferometer of Refs. 1,2, the am-

plitude of this term will be less than 1% of the amplitude of

the lowest order oscillations, based on the estimated fraction

of current that is backscattered Ib/Itotal ∼ Rxx/Rxy ∼ .01.
Hence, the ∆A = 2Φ0/B oscillations should be attributed

almost entirely to the tunneling of e/2 edge quasiparticles.
We emphasize that the ∆A = 2Φ0/B oscillations (from both

sources) have an amplitude that is independent of nq (unlike

the∆A = 4Φ0/B oscillations), but pick up phase shifts when

nq changes.

Combining these, we see that tunneling of both non-

Abelian e/4 quasiparticles and Abelian e/2 quasiparticles at
the point contacts of the interferometer would produce a com-

bined transmission current with regions of type I, exhibiting

a sum of both ∆A = 4Φ0/B and ∆A = 2Φ0/B oscilla-

tions, when nq is even, and regions of type II, exhibiting only

∆A = 2Φ0/B oscillations, when nq is odd. We also note

that the bulk-edge coupling that occurs as a bulk e/4 quasi-
particle approaches the edge gives the regions near transitions

between type I and II oscillations the most potential for ex-

hibiting non-linear and/or noisy behavior.

In order for interference to be observed, it is necessary that

the current-carrying excitations remain phase coherent. Even

if we neglect (irrelevant) interactions between the edgemodes,

coupling to localized excitations in the bulk, and phonons,

there will still be thermal smearing of the interference pat-

tern. Consequently, as shown in Ref. 35, the amplitude of

interference oscillation for double point-contact interferome-

ters will be exponentially suppressed in temperature and in

the average length L between point contacts along each edge,
Iqp
12 ∝ e−T/T∗(L) = e−L/Lφ(T )), where the coherence length

Lφ(T ) and temperature T ∗(L) of edge excitations are given
by

Lφ(T ) =
1

2πT

(

gc

vc
+

gn

vn

)−1

(4)

T ∗(L) =
1

2πL

(

gc

vc
+

gn

vn

)−1

. (5)

e/4 MR Pf/SU(2)
2
K=8 (3,3,1) e/2

L∗ in µm 1.4 0.5 19 0.7 4.8

T ∗ in mK 36 13 484 19 121

TABLE I: Estimated coherence lengths Lφ at T = 25 mK and co-
herence temperatures T ∗ for L = 1 µm for the (relevant) e/4 quasi-
particles of the candidate ν = 5/2 states, and the e/2 Laughlin-
type quasiparticle for all these states. We use the velocity estimates

vc ≈ 5 × 104 m/s and vn ≈ 4 × 103 m/s from numerical studies36.

We can use these expressions, together with estimates of the

charge and neutral edge mode velocities from numerical stud-

ies of ν = 5/2 on a disk36 (the charged and neutral scaling
exponents gc and gn are given in Table II), to estimate co-

herence lengths and temperatures for the charge e/4 and e/2
excitations in the various candidate states (the states are all the

same, as far as the charge e/2 quasiparticle is concerned). In
Table I, we give estimates of coherence lengths at T = 25mK
and coherence temperatures for L = 1 µm, the approximate
interference path length in the experiments of Refs. 1,2.

B. Coulomb blockade

In the limit that the region between the two point contacts is

a nearly isolated puddle, the Coulomb charging energy of the

puddle dominates the behavior of the device. Due to its isola-

tion, the puddle must contain an integer number of electrons.

The electron number can change when the gate voltage is in-

creased by enough to allow one additional electron into the

puddle. At this point, there is a peak in the longitudinal con-

ductance (which are also peaks in the longitudinal resistance,

since RL $ RH ) since it is only at this point (or within kBT
of it) that the charge on the puddle can fluctuate. If the den-

sity in the puddle is fixed, then the spacing between peaks as

a function of area is naively just the additional area required

to allow one more electron into the puddle:

∆A =
e

ρ0
(6)

where ρ0 is the charge density inside the dot. However, in

the case of a paired state, one would expect that it is easier to

add an electron when the electron number is odd than when

it is even since, in the latter case, it an unpaired fermionic

excitation is necessarily created. So one would expect that,

instead of evenly-spaced peaks, the interval between an odd

peak and the next even peak would be smaller than the interval

between an even peak and the next odd peak because Vs must

also supply the energy needed to create an unpaired fermionic

excitation. Consequently, the peak spacing would alternate

between37

∆A± =
e

ρ0

(

1 ±
1

2

vn

vc

)

, (7)

As a result of this ‘bunching’ effect, the periodicity would be

the interval between two successive even peaks, i.e. twice

The long. resistance should
scale with temp. differently
in different possible states.

Different states, qps. -
different coherence lengths

see also, X. Wan et al. ’07
             K. LeHur, ’02
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Summary

Partition functions of quantum Hall droplets 
are given by critical 2D stat. mech. models with 
boundary conditions det’d by quasiparticles
in the bulk.

Inter-edge quasiparticle tunneling causes flows 
from one conformally-invariant b.c. to another.

Even/odd effect = CD vs. CN b.c. for Ising defect

Simple interp. for 8 conf. inv. b.c. of 3-State Potts,
esp. free and ‘new’.
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