Quasiparticle Tunneling and Interferometry in Possible Non-Abelian FQH States

Chetan Nayak Microsoft Station Q, UCSB

W. Bishara, A. Feiguin, P. Fendley, M.P.A. Fisher, K. Shtengel, P. Bonderson, J. Slingerland Low-dimensional systems have been a source of new physics for over 60 years, at least since Onsager's solution of the 2D Ising model.

• In a way, this physics is still interesting today.

Much of the discussion of the 5/2 state and the MR and anti-Pfaffian wavefunctions is couched in the language of the Ising model (e.g. $1, \sigma, \psi$) and the Ising TQFT. Low-dimensional systems have been a source of new physics for over 60 years, at least since Onsager's solution of the 2D Ising model.

• In a way, this physics is still interesting today.

Much of the discussion of the 5/2 state and the MR and anti-Pfaffian wavefunctions is couched in the language of the Ising model (e.g. $1, \sigma, \psi$) and the *Ising TQFT*.

Why?

 Low-dimensional systems have been a source of new physics for over 60 years, at least since Onsager's solution of the 2D Ising model.

• In a way, this physics is still interesting today.

Much of the discussion of the 5/2 state and the MR and anti-Pfaffian wavefunctions is couched in the language of the Ising model (e.g. $1, \sigma, \psi$) and the Ising TQFT.

Why?

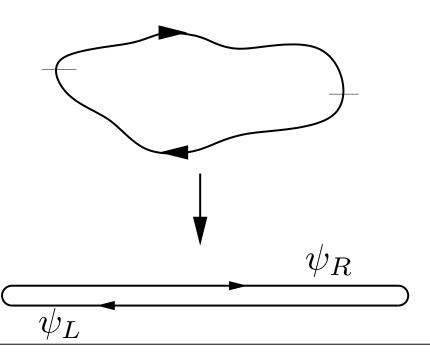
Does the Ising model tell us anything about 5/2?

Effective Theory for the MR Pfaffian Edge

$$\mathcal{L}^{\text{edge}} = \frac{1}{4\pi} \partial_x \phi_c (\partial_t + v_c \partial_x) \phi_c + \frac{1}{2\pi} \psi (\partial_t + v_n \partial_x) \psi$$
Milovanovic and Read '9'

The neutral sector is a chiral Majorana fermion. = chiral part of the critical 2D Ising model and the I+I-D transverse field Ising chain.

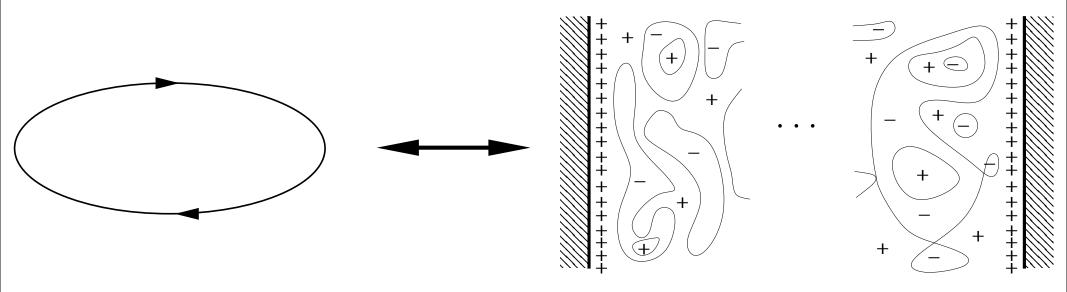
subdivide edge into halves, call them right/left moving



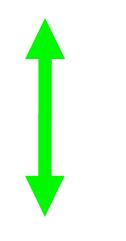
If we represent the edge of an MR droplet by a non-chiral Majorana fermion on an interval, then the boundary conditions at the ends of the interval must be *conformally-invariant*. Cardy, late 80's: boundary CFT.

Conformally-inv. b.c. of Ising model: fixed+, fixed-, free

With no qps. in bulk, the droplet is mapped to a strip with fixed b.c. at both ends.



Different possible Ising boundary cond.

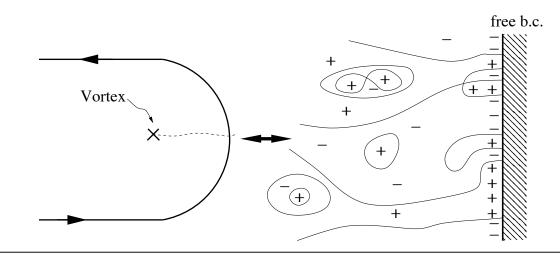


Different possible bulk quasiparticles.

Friday, March 27, 2009

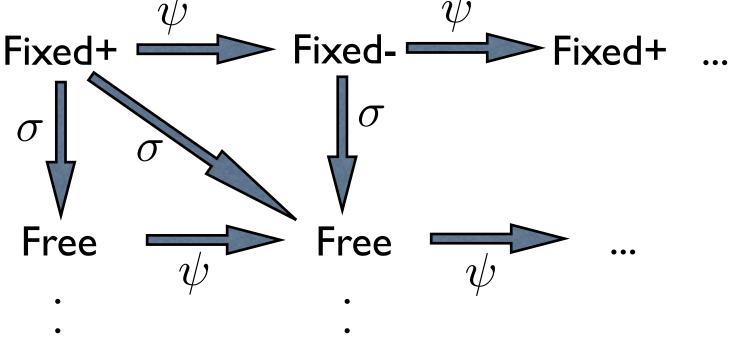


Different possible bulk quasiparticles.

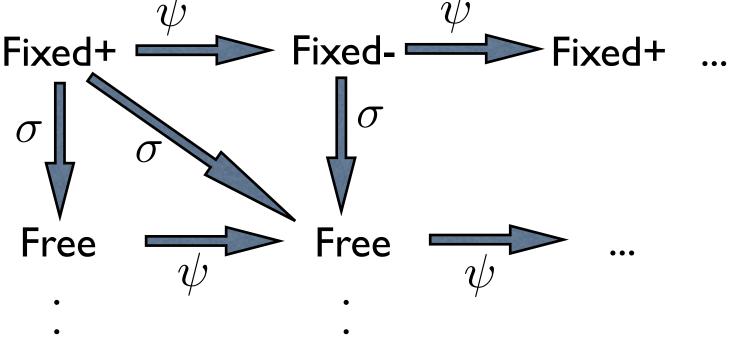


Friday, March 27, 2009

• We can obtain any conf. invar. b.c. at one end of the strip by adding the corresponding quasiparticle in the bulk. $\frac{2}{2}$



• We can obtain any conf. invar. b.c. at one end of the strip by adding the corresponding quasiparticle in the bulk. $\frac{q}{2}$



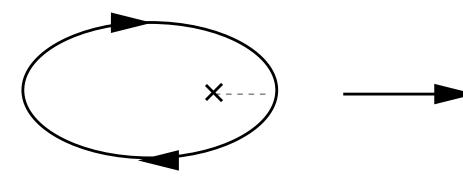
 At which end of the strip should the b.c. be changed? Can be switched by a Z₂ gauge choice = Ising K-W duality
 Coupling a bulk vortex to the edge corresponds to applying a boundary magnetic field when the b.c. is 'free'. $L = \int dt (i\psi_R(\partial_t + v_n \partial_x)\psi_R + i\psi_L(\partial_t - v_n \partial_x)\psi_L) + i\psi_0 \partial_t \psi_0 + ih \psi_0 [\psi_R(0) + \psi_L(0)]$

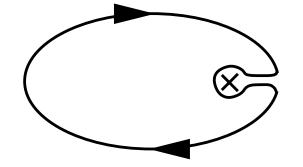
Flow from free to fixed b.c.

The vortex is absorbed by the edge

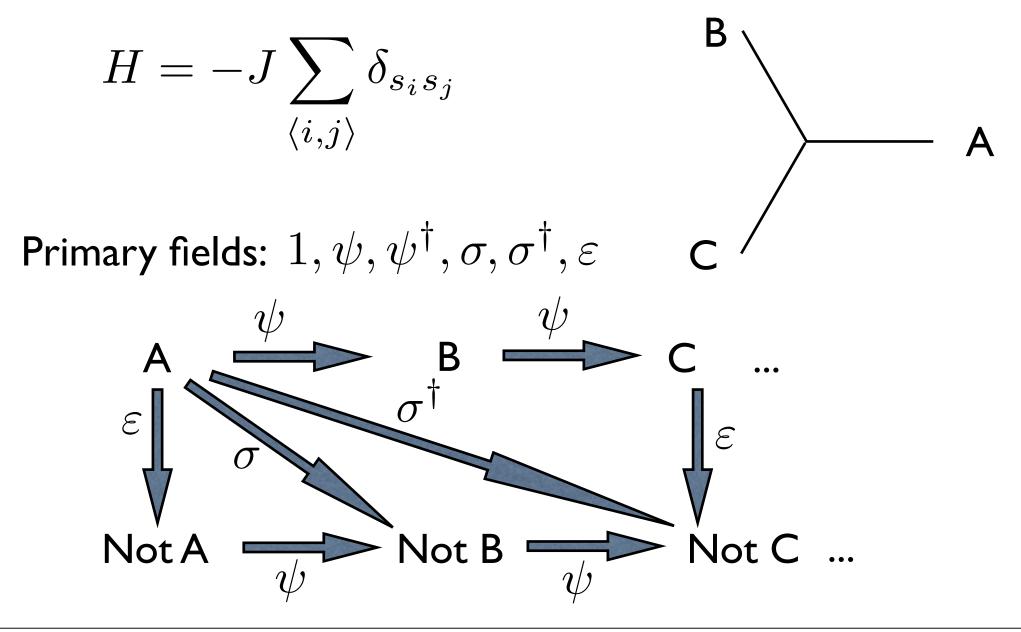
Entropy loss: $\Delta S = -\ln\sqrt{2}$

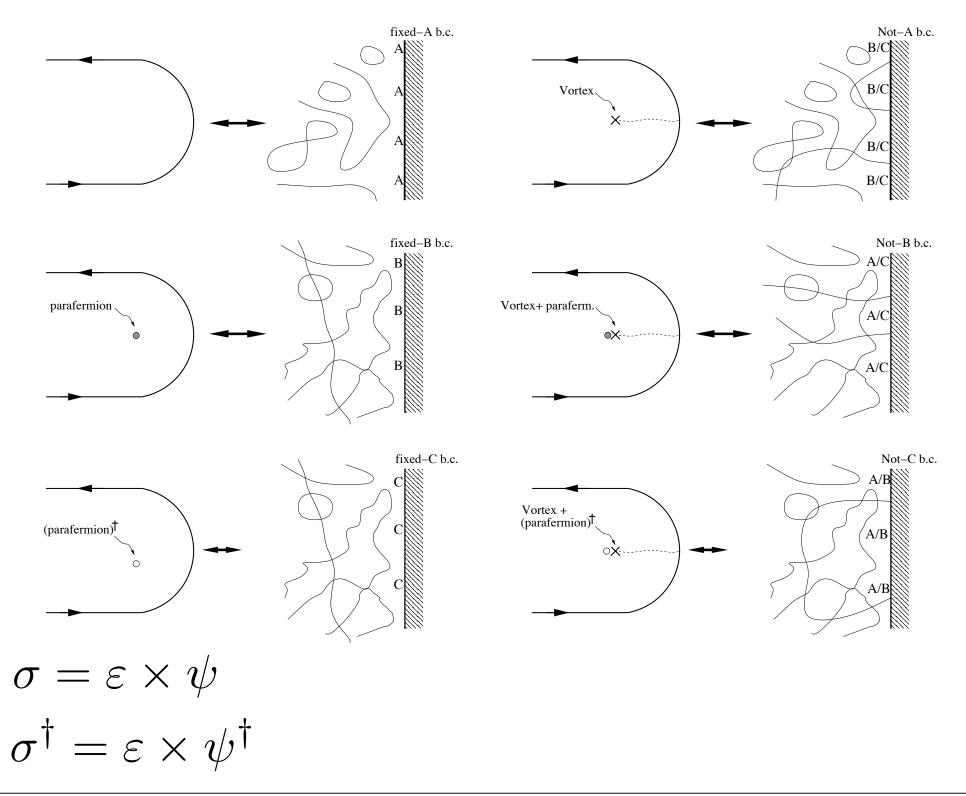
(similar to 2-channel Kondo e.g.Affleck+Ludwig early 90's)

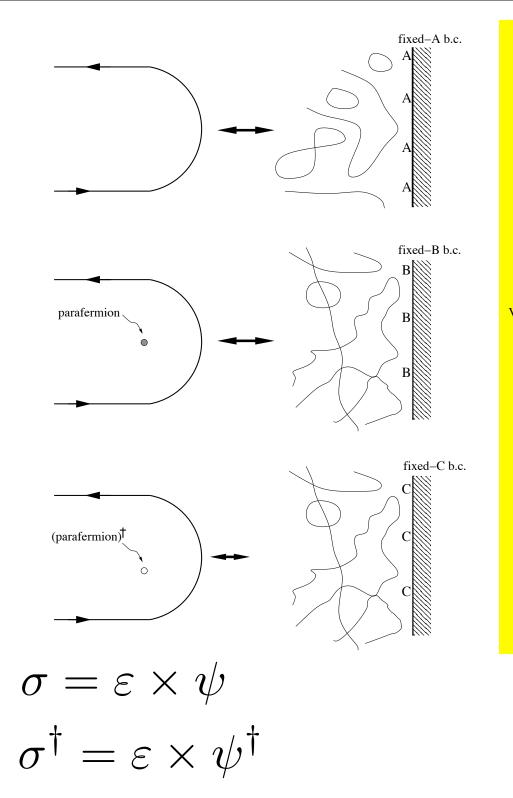




A similar analysis holds for \mathbb{Z}_3 parafermions, the critical 3-State Potts model, and the k=3 RR state. Read, Rezayi '99







Not–A b.c. **B/** Vortex Not-B b.c. Vortex+ paraferm. OX-A/(Not-C b.c. Vortex + (parafermion) A/

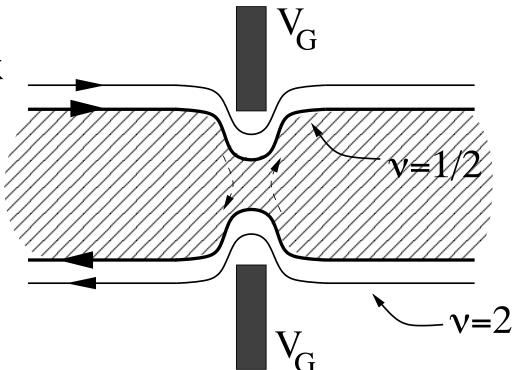
Higher entropy by $\tau = (1+\sqrt{5})/2$

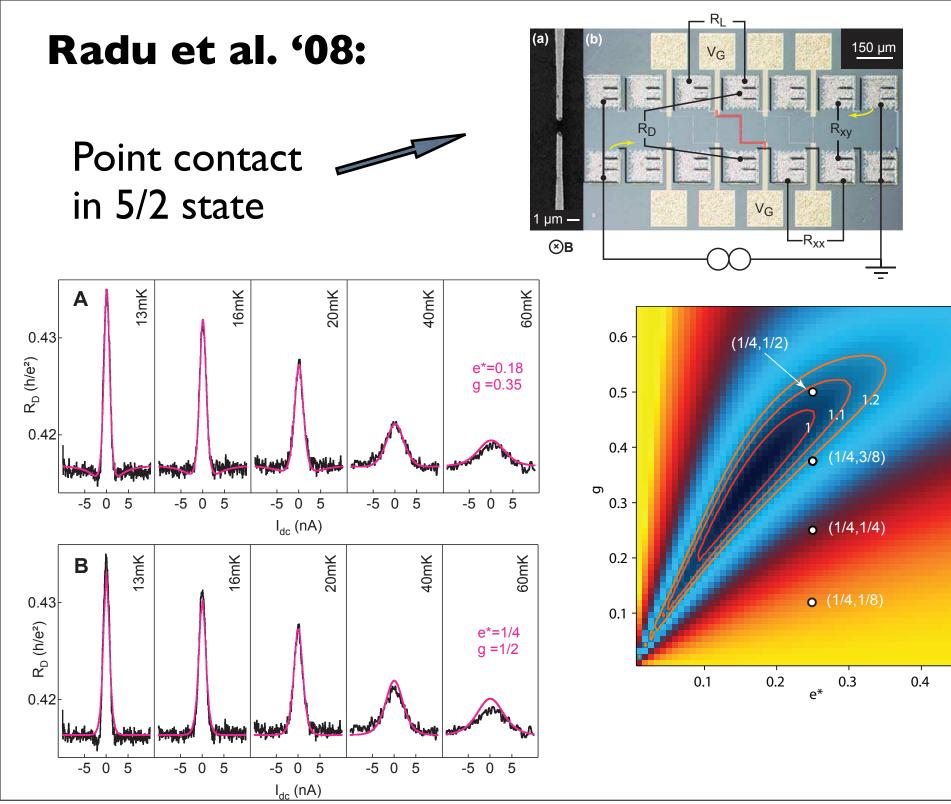
Point Contacts

Point contacts are a useful probe of the edge excitations (and edge-bulk interplay) of a topological state.

Tunneling through the bulk selects quasiparticles.

Therefore, the scaling exponents revealed by transport through a pt. can tell us about the qps. supported by the state.





3.5

.3.0 Normalized fit error .2.5 .2.0

1.5

1.0

0.5

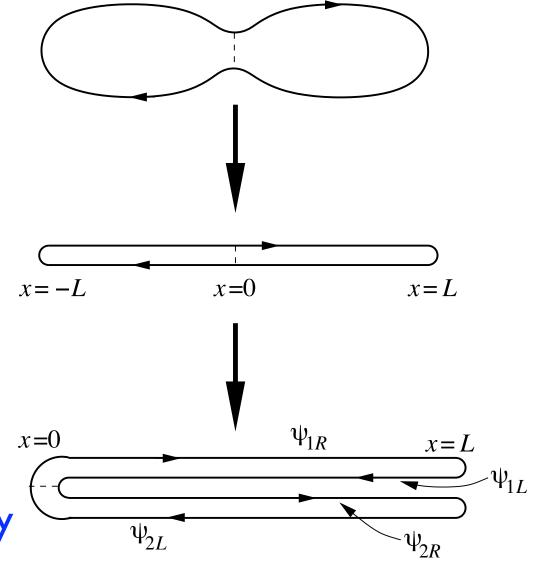
Friday, March 27, 2009

Point Contacts and Perturbed Boundary CFT

Quantum Hall Droplet with a Point Contact

Non-chiral Majorana Fermion with a defect

Two copies of a Majorana fermion coupled at boundary



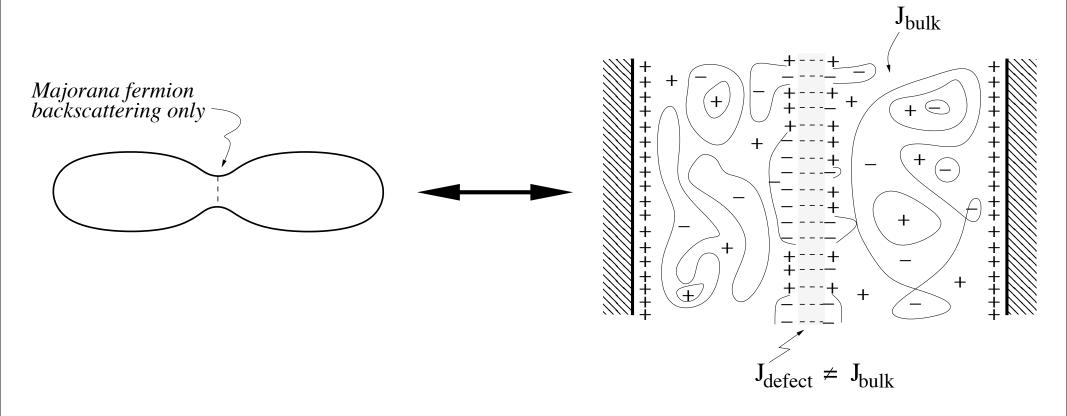
Ising Defect Conformal B.C.

The Ising model with a defect line has 4 possible conformally-invariant b.c.

'Continuous Neumann' (Free, Fixed) (Fixed, Fixed) 'Continuous Dirichlet' product boundary fixed lines conditions

Oshikawa and Affleck '97

Majorana Fermion Backscattering



Continuous Dirichlet Line:

Fermion backscattering only (no vortex tunneling) Column of bonds weakened/strengthened

Special Points on C.D. Line

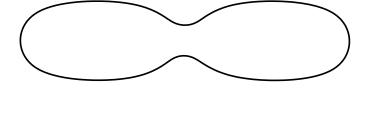
- Define a Dirac fermion, $\begin{cases} e^{i\varphi_R} = -\psi_{1R} + i\psi_{2R} \\ e^{i\varphi_L} = \psi_{1L} + i\psi_{2L} \end{cases}$
- Parametrize by phase shift/boson value at boundary:

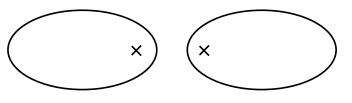
$$\varphi(0) = \frac{\delta}{2} + \frac{\pi}{4}$$

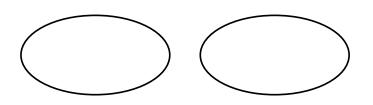
Transmitting:
$$\delta = 0$$

(Free,Free):
$$\delta=\pi/2$$

$$(\pm,\pm): \delta = -\pi/2$$







Vortex Tunneling

- Vortex Tunneling = Magnetic Field at Defect Line
- Causes flow to (Fixed, Fixed) B.C. Entropy loss: (Free,Free) \rightarrow (Fixed,Fixed) = In 2
- Scaling dim. depends on pt. on C.D. line:

$$\Delta = \frac{1}{8} \left(1 + \frac{2\delta}{\pi} \right)^2 + \frac{1}{8}$$

Implications for transport through a pt. contact:

$$R_{xx} \sim T^{2\Delta - 2}$$

see also LeClair and Ludwig '99

Friday, March 27, 2009

Standard bosonization:

 $\psi_a + i\psi_b \sim e^{i\phi}$ $i\psi_a\psi_b \sim \partial\phi$

Standard bosonization:

However, to recover the pert. expansion of e/4 tunneling:

 $\psi_a + i\psi_b \sim e^{i\phi}$ $i\psi_a\psi_b \sim \partial\phi$

Standard bosonization:

$$\sigma_a \sigma_b \sim S^+ e^{-i\phi/2} + S^- e^{i\phi/2}$$

 $\psi_a + i\psi_b \sim e^{i\phi}$ $i\psi_a\psi_b \sim \partial\phi$

Standard bosonization:

$$\psi_a + i\psi_b \sim e^{i\phi}$$
$$i\psi_a\psi_b \sim \partial\phi$$

 $\sigma_a \sigma_b \sim S^+ e^{-i\phi/2} + S^- e^{i\phi/2}$

However, to recover the pert. expansion of e/4 tunneling:

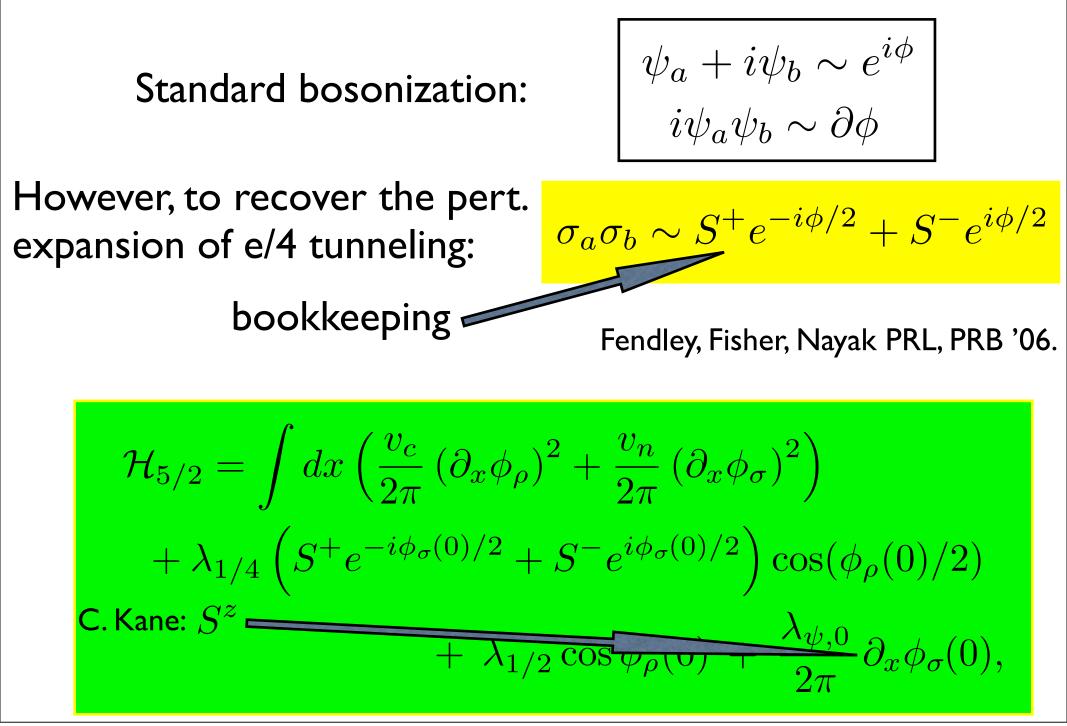
bookkeeping 🛩

Standard bosonization:

$$\begin{aligned}
\psi_a + i\psi_b \sim e^{i\phi} \\
i\psi_a\psi_b \sim \partial\phi
\end{aligned}$$
However, to recover the pert.
expansion of e/4 tunneling:
bookkeeping

$$\begin{aligned}
\sigma_a \sigma_b \sim S^+ e^{-i\phi/2} + S^- e^{i\phi/2} \\
Fendley, Fisher, Nayak PRL, PRB '06.
\end{aligned}$$

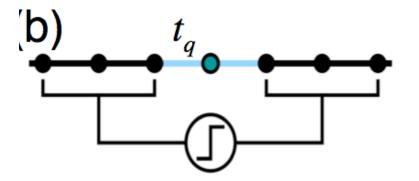
$$\begin{aligned}
\mathcal{H}_{5/2} &= \int dx \left(\frac{v_c}{2\pi} (\partial_x \phi_\rho)^2 + \frac{v_n}{2\pi} (\partial_x \phi_\sigma)^2 \right) \\
&+ \lambda_{1/4} \left(S^+ e^{-i\phi_\sigma(0)/2} + S^- e^{i\phi_\sigma(0)/2} \right) \cos(\phi_\rho(0)/2) \\
&+ \lambda_{1/2} \cos \phi_\rho(0) + \frac{\lambda_{\psi,0}}{2\pi} \partial_x \phi_\sigma(0),
\end{aligned}$$



Crossover from Trans. to (Fixed, Fixed)

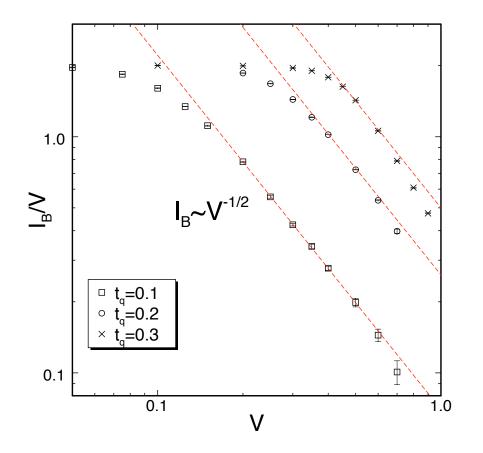
 Pf. point contact can be rewritten as resonant tunneling between Luttinger liquids

$$\mathcal{H}_{\rm res} = \int_0^\infty dx \, \frac{v}{2\pi} \left(\left(\partial_x \phi_a \right)^2 + \left(\partial_x \phi_b \right)^2 \right) \\ + t \, d^{\dagger} e^{i\phi_a(0)/\sqrt{g}} + t \, d^{\dagger} e^{i\phi_b(0)/\sqrt{g}} + \text{h.c.}$$



 Tunneling current can be computed by timedependent DMRG. Agrees with perturbative calculations around the weak- and strong-backscattering limits. Only way to compute the current in the crossover regime.

Agrees with Bethe ansatz for 1/3 point contact.



Feiguin, Fendley, Fisher, Nayak '08

• Future: time-dep. DMRG for anti-Pfaffian, 331.

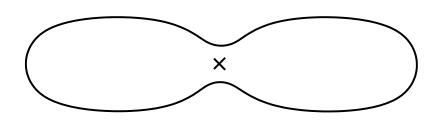
Friday, March 27, 2009

Continuous Neumann B.C.

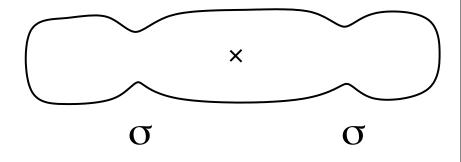
• Dirichlet b.c. for the dual boson: $\widetilde{arphi}=arphi_R-arphi_L$

• TFIM with a defect: $H = -\sum_{n \neq 0} \sigma_n^x - \sum_{n \neq 0} \sigma_{n-1}^z \sigma_n^z - b\sigma_{-1}^z \sigma_0^x$

 Same as C.D. line, but with a vortex pinned at the pt. contact

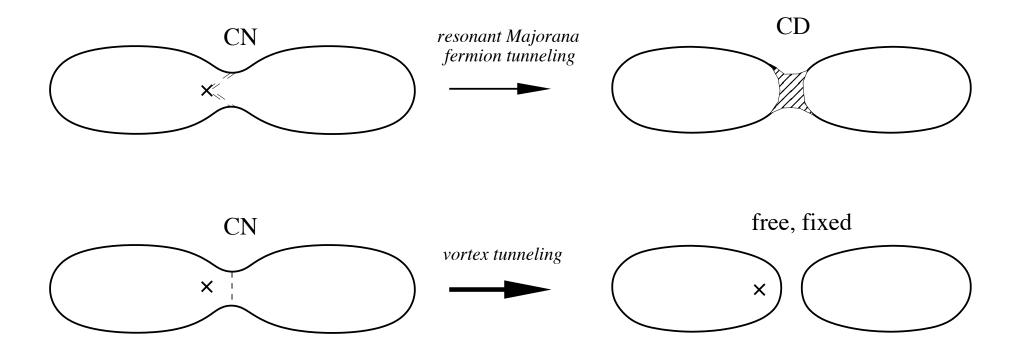


will think about this context soon:

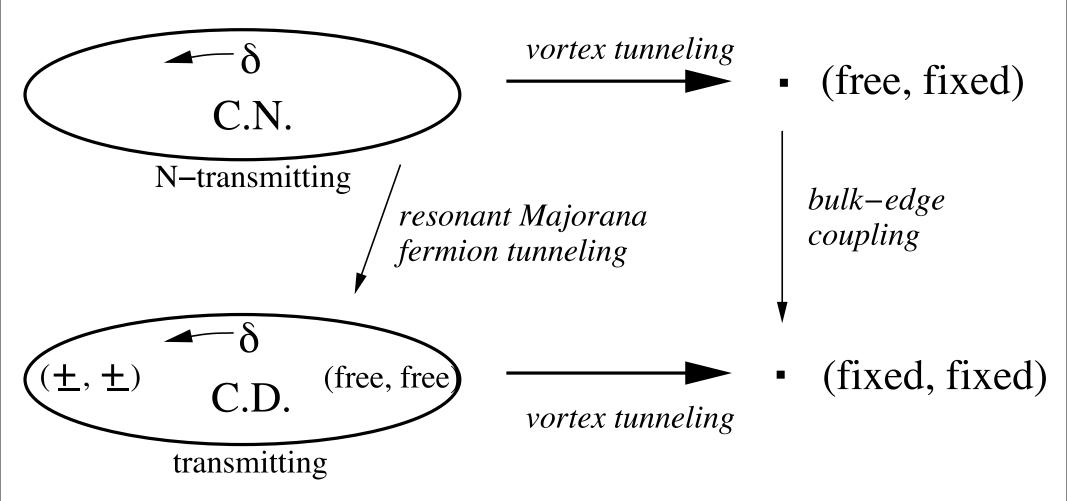


Perturbing Continuous Neumann b.c.

- If the bulk vortex is coupled to the edge, the system flows to the C.D. line.
- Vortex tunneling takes the system to (Free,Fixed) because one of the droplets contains a vortex



Summary: Fixed Pts. and Flows

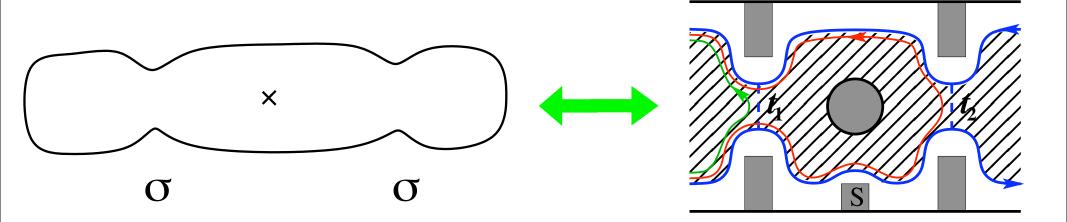


Continuous Neumann b.c. and Two-Pt. Contact Interferometers

Along the C.N. line, correlation functions have the following property (Oshikawa+Affleck '97):

$$\langle \sigma(x < 0) \ \sigma(x' > 0) \rangle = 0$$

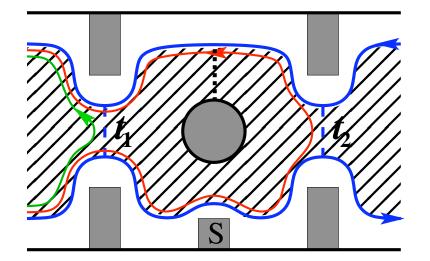
Same as the odd-even effect (Bonderson, Kitaev, Shtengel '06; Stern-Halperin '06) in an interferometer:



Bulk-Edge Coupling in an MR Interferometer

The corr. fcn. can be computed along the flow from C.N. to C.D.

$$\langle \sigma(x,t)\sigma(0,0)\rangle = \left(2\lambda^2(x-v_n t)\right)^{1/4}\Psi(1/2,1,\lambda(x-v_n t))$$



Confluent hypergeometric function:

$$\Psi(a,c,x) = \frac{1}{\Gamma(a)} \int_0^\infty ds \, e^{-xs} s^{c-1} (1+s)^{a-c-1}$$
$$\lambda = 4\pi h^2 / v_n^2$$

Chamon et al. '97; Fradkin et al. '98 Bonderson, Kitaev, Shtengel '06 Stern, Halperin '06 similar to free-to-fixed flow, see Chatterjee and Zamolodchikov, '94

Friday, March 27, 2009

This leads to an interference term in the backscattered current of the form:

(assuming equal charge/neutral velocities)

$$I_{12} = \frac{e}{4} |t_1 t_2| \, 2^{5/4} \sqrt{\pi \lambda} \, \cos(2\pi \Phi/4\Phi_0) \times \\ \cos(x e^* V/v) \, \frac{1}{\left[e^* V(v\lambda + e^* V)\right]^{1/2}}$$

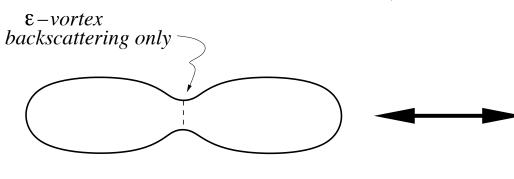
more complicated for unequal velocities, but similar physics and scaling

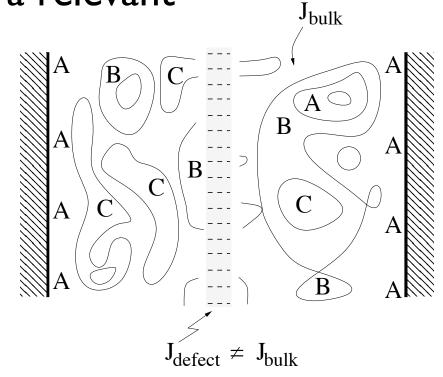
Bishara and Nayak, in prep.

see also: Rosenow et al. '08 Overbosch and Wen '08

Free b.c. in the 3-State Potts model

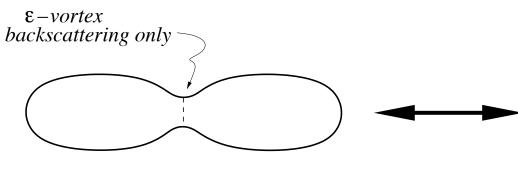
• Weakening a line of bonds is a relevant perturbation, $\Delta=4/5$

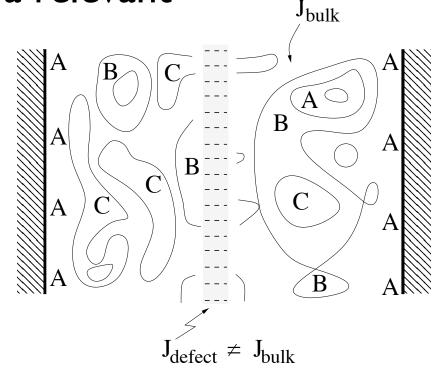




Free b.c. in the 3-State Potts model

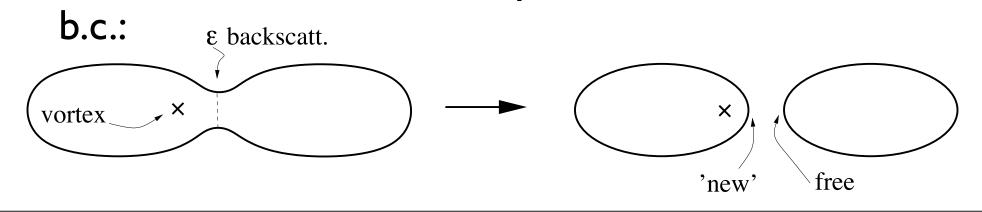
• Weakening a line of bonds is a relevant perturbation, $\Delta=4/5$





• Flow to (Free, Free) b.c.

There is an 8th conformally-inv.



0

Possible Relevance to Experiment

Possible Relevance to Experiment

- Recently, Willett et al. have measured the current through a 2-pt. contact interferometer.
- There are regions in which the oscillation period as a function of side gate voltage (a proxy for area) corresp. to e/4 qps and regions in which they corresp. to e/2 qps.
- These regions may correspond to even/odd qp. numbers in the interference loop.
- If so, the tunneling current should have temp., voltage dependence det'd by the CFT discussed above.

The long. resistance should scale with temp. differently in different possible states.

 $R_{xx} \sim T^{2g-2}$

Different states, qps. different coherence lengths

$$L_{\phi}(T) = \frac{1}{2\pi T} \left(\frac{g_c}{v_c} + \frac{g_n}{v_n}\right)^{-1}$$

e/4	MR	$\overline{\mathrm{Pf}}/\mathrm{SU(2)}_2$	K=8	(3,3,1)	e/2
L^* in μ m	1.4	0.5	19	0.7	4.8
T^* in mK	36	13	484	19	121

see also, X.Wan et al. '07 K. LeHur, '02

$\nu = \frac{5}{2}$	e^*	nA?	θ	g_c	g_n	g
MR:	e/4	yes	$e^{i\pi/4}$	1/8	1/8	1/4
	e/2	no	$e^{i\pi/2}$	1/2	0	1/2
Pf:	e/4	yes	$e^{-i\pi/4}$	1/8	3/8	1/2
	e/2	no	$e^{i\pi/2}$	1/2	0	1/2
${\rm SU}(2)_2$:	e/4	yes	$e^{i\pi/2}$	1/8	3/8	1/2
	e/2	no	$e^{i\pi/2}$	1/2	0	1/2
K=8:	e/4	no	$e^{i\pi/8}$	1/8	0	1/8
	e/2	no	$e^{i\pi/2}$	1/2	0	1/2
(3,3,1):	e/4	no	$e^{i3\pi/8}$	1/8	1/4	3/8
	e/2	no	$e^{i\pi/2}$	1/2	0	1/2

$\nu = \frac{12}{5}$	e^*	nA?	heta	g_c	g_n	g
$HH_{2/5}$:	e/5	no	$e^{i3\pi/5}$	1/5	2/5	3/5
	2e/5	no	$e^{i2\pi/5}$	2/5	0	2/5
$BS_{2/5}$:	e/5	yes	$e^{i9\pi/40}$	1/10	1/8	9/40
	e/5	no	$e^{-i2\pi/5}$	1/10	1/2	3/5
	2e/5	no	$e^{i2\pi/5}$	2/5	0	2/5
$\overline{\mathrm{BS}}_{3/5}^{\psi}$:	e/5	yes	$e^{-i11\pi/40}$	1/10	3/8	19/40
	e/5	no	$e^{-i2\pi/5}$	1/10	1/2	3/5
	2e/5	no	$e^{i2\pi/5}$	2/5	0	2/5
$\overline{\mathrm{RR}}_{k=3}$:	e/5	yes	$e^{-i\pi/5}$	1/10	3/10	2/5
	2e/5	no	$e^{i2\pi/5}$	2/5	0	2/5

Summary

- Partition functions of quantum Hall droplets are given by critical 2D stat. mech. models with boundary conditions det'd by quasiparticles in the bulk.
- Inter-edge quasiparticle tunneling causes flows from one conformally-invariant b.c. to another.
- Even/odd effect = CD vs. CN b.c. for Ising defect
- Simple interp. for 8 conf. inv. b.c. of 3-State Potts, esp. free and 'new'.