Experiments on pinning modes in quantum Hall systems

L. W. Engel

National High Magnetic Field Laboratory, Florida State University

Collaborators:

Yong Chen,

R. M. Lewis,

G. Sambandamurthy,

Zhihai Wang

P. D. Ye,

Han Zhu

D. C. Tsui,

L. N. Pfeiffer, K. W. West

M. Shayegan

Phenomenon of 2DES in high B: Insulating phase accompanied by microwave resonance

One example: insulator at termination of FQH series Other examples to be presented...

Broadband microwave spectroscopy works where dc transport is problematic, resonance makes it a powerful tool for study of insulators

High B ground state: Wigner crystal

- Low B : Coulomb energy kinetic energy $E_C E_F$
- High B: Kinetic energy frozen out Landau level filling $\nu < 1/7$ to 1/6(high enough n)

Lam and Girvin; Levesque, Weis, MacDonald `84, Lozovik and Yudson `75; Yang and Rezayi, '02

 l_B : size of electron wavefunction in lowest Landau level

a : crystal lattice constant

$$u = nh/eB = (l_B/a)^2 (4\pi/3^{1/2})$$

$$l_B = (\hbar/eB)^{1/2}$$

Disorder pins Wigner crystal, makes insulator

Equilibrium positions minimizes total energy: (electron-electron, stiffness) + (electron-disorder, pinning) Disorder results in finite correlation length of crystalline order, L Disorder: Impurities, interface roughness, donor potential

Resonance: pinning mode interpretation

Disorder induces "Pinning" Mode: small oscillation about pinned positions

Disorder

$$\Rightarrow L$$

$$\Rightarrow \omega_{pk} \sim \omega(q \sim 2\pi/L)$$

Classical Wigner crystal in high B:

Without disorder: $\omega \sim q^{3/2}$ B

With disorder: saturates at low $q \sim 2\pi/L$

v ranges of electron solids

- Integer Quantum Hall Effect Wigner Crystal
- High B Wigner Crystal

- Bubble phase
- Stripe phase (anisotropic)
- N=1 Landau level bubble phase

Outline

- Microwave measuring technique
- pinning mode "basics"

 Sample (confinement) dependence

 Evidence of collective localization

 Oscillator model and sum rule $f_{\rm pk}$ vs n, BCorrelation lengths of crystalline order

Examples of "applications":

- resonance in IQHE plateau regions:
 Wigner crystallization in IQHE + skyrmion effects
- bilayers: evolution with effective separation d/a
 Evidence for interlayer correlation

Microwave measuring technique

Microwave measurement, Electric fields

- Relevant 2DES is under the slots
- CPW 2DES coupling is capacitive

$Re(\sigma_{xx})$ from transmitted power: Circuit model

Relative transmitted power (in low loss limit, $|\sigma_{xx}| \ll \omega C'W$):

$$P = \exp(-lZ_0 \operatorname{Re} \sigma_{xx}/2W)$$

- •f-independent extinction (l is length along line)
- Corrections are considered for reflections, larger loss, distributed capacitive coupling
- •Assumes no q-dependence of σ_{xx} accessed by transmission line

Quantum Hall effect: finite frequency transport

Data presented as $Re(\sigma_{xx})$

$$\sigma_{xx} = \rho_{yy}/(\rho_{xx} \rho_{yy} + \rho_{xy}^2)$$

low wavevector (q) limit (most of talk)

f_{pk} is larger for larger disorder: Quantum Wells

- Enormous range of f_{pk}
- Interface roughness (Fertig '99) as relevant disorder (vs impurities, remote ionized donor potential):
- Wide QW
 - ⇒ Reduced influence of interfaces on confinement
 - ⇒ reduced disorder

Quantum Well

f_{pk} is larger for larger disorder: heterojunctions

$$n \approx 6.9 \times 10^{10} \text{ cm}^{-2}$$

 $\mu \approx 5.0 \times 10^{5} \text{ cm}^{2}/\text{Vs}$
 $f_{pk} \approx 2 \text{ GHz}$, at 15.5 T

Electron distribution

$$n \approx 6.6 \times 10^{10} \text{ cm}^{-2}$$

 $\mu \approx 5.0 \times 10^6 \text{ cm}^2/\text{Vs}$
 $f_{pk} \approx 0.6 \text{ GHz}$
(sample 1)

Correlated Electron Solid

- Lowest f_{pk} and Δf 95 MHz 10 MHz 4.5 mK 0.5 mK
- $hf_{pk}/k_B \ll T \Rightarrow$ pinning, collective localization, electron solid
- Rules out individual electrons in traps
- General for cleaner samples at higher n, includes other insulators

Decrease density with backgate: f_{pk} increases

Single layer 2DES sample

2DES

Weak pinning: minimize (impurity + deformation) energy $\Rightarrow L$

Reducing $n \implies$ weaker carrier-carrier interaction

- ⇒ Carriers "fall further into impurity potential"
- \Rightarrow Average pinning, so f_{pk} increases

Harmonic oscillator model of pinning mode

Charge in "pinning" potential

$$V(x,y) = \frac{M\omega_0^2(x^2 + y^2)}{2}$$

"pinning" frequency ω_0 , cyclotron frequency $\omega_c = eB/m^*$

Two modes: $\omega_+ \geq \omega_c$

$$\omega_+ \geq \omega_c$$

 $\omega_{-} = \omega_{0}^{2}/\omega_{c} \text{ (for } \omega_{0} \ll \omega_{c})$ Microwave resonance

Observed resonance frequency: $f_{pk} = \omega_0^2 / 2\pi\omega_c$

ω sum rule:
$$S_{-} = \int_{0}^{\infty} \text{Re}[\sigma_{xx}(f)]df = \frac{n_{s}^{*}e\pi f_{pk}}{2B}$$

$$\frac{S_{-}}{f_{pk}} = \frac{n_s^* e \pi}{2B}$$

$$n_s^*$$
: participating carrier density

$$n_s^*$$
: participating carrier density $S_- \propto \frac{\omega_0^2}{\omega_c^2}$ $(S_- \ll S_+)$

Fukuyama and Lee; Millis, Normand, Littlewood

S/f_{pk} vs n: linear, slope close to oscillator model value

Full participation: not isolated traps

f_{pk} , Δf vs ν

- •Maxima in f_{pk} vs v
- •Oscillator model: $f_{pk} \propto v$ (for fixed n)--not achieved
- Existing theories for weak pinning limit, based on interplay of l_B and disorder lengths: $f_{pk} \propto 1/v$ (Fertig '99) or $1/v^2$ (Chitra'98, Fogler & Huse '01)
- Δf : complicated...

B dependence of f_{pk}, discussion

 l_B : size of electron wavefunction in lowest Landau level

a: lattice constant

\(\xi \) disorder correlation length(s)

B dependence of f_{pk} from electron-impurity interaction: interplay between l_B and ξ

How can a pinning mode be so sharp?

domain size (coherence length) L

Possibilities:

- 1. Dilute identical impurities as oscillators: but oscillator strength too large
- 2. Motion coherent over large length scale $L_B L$, averaging disorder Due e-e interaction + high B

Figure 9.4. Frequency dependent conductivity measured in several compounds in their charge density wave state (Grüner, 1988). The arrow indicates the gap measured by tunneling for NbSe₃.

Theories: Fertig, Fogler and Huse, Chitra and Giamarchi

Correlation lengths of Wigner crystalline order (from f_{nk})

L is *Larkin* length over which (deviations from lattice) \sim (disorder correlation length ξ) or (deformation energy) \sim (pinning energy)

(deviations from lattice) \sim (lattice constant α) L_a is length over which

For interface roughness,
$$\xi \ll a$$

$$L_a/L \sim (a/\xi)^\beta, \ \beta{\sim}3 \quad \text{(Fogler and Huse, `00)}$$

Find L from

 f_{pk} and elastic properties of classical WC:

$$\mu_{t,cl} = \frac{0.245e^2n^{3/2}}{4\pi\epsilon_0\epsilon}; \quad \epsilon = 12.8$$

$$\omega_0 = \sqrt{2\pi f_{pk}\omega_c}$$

$$c_t = (\mu_t/nm^*)^{1/2}$$
, where $= \frac{2\pi c_t}{L}$
 c_t is $B = 0$ transverse phonon $\mu_{t,cl}$ is shear modulus (Bonsall and Maradudin '77)

$$L = \left(\frac{2\pi\mu_{t,cl}}{nm^*f_{pk}\omega_c}\right)^{1/2} = \left(\frac{2\pi\mu_{t,cl}}{neBf_{pk}}\right)^{1/2}$$

For
$$n \approx 4.5 \times 10^{10} / \text{cm}^2$$
, $a \approx 0.051 \text{ µm}$:
$$f_{pk} \qquad L/a$$
95 MHz
7 GHz
2.7

Crystal may be quite ordered, $L_a \gg a$, even when $L \sim a$

Higher v: evidence for Wigner crystallization in IQHE

Narrowing of IQHE minimum with f, $Re[\sigma_{xx}(f)]$ not monotonic

Resonances on either side of v=1, vanishing just on v=1

Interpretation: "Integer Quantum Hall Wigner Crystal" (IQHWC)

... made up of top Landau level (LL) electrons or holes IQHE when (top LL contribution to dc σ_{xx}) $\rightarrow 0$

$$\mathbf{v} = K + \mathbf{v}^*$$
, K an

integer

Density of top LL
$$\frac{\text{electrons}}{\text{holes}} = \pm n^* = \nu^* \, n / \nu - \nu^* \, n / K$$

 $n^* \rightarrow 0$ for exact integer ν , T=0

Interpret analogous to high B lowest LL except varying B varies n^*

Resonance around v=1 and v=2

"IQHE-WC" resonance oscillator strengths around v=1 and 2

 S/f_{pk} \propto participating density

Skyrmions: charged excitations near $\nu = 1$

Problem:

resonances around $\nu = 1$ and 2 (and 3 and 4) are similar, but the particles near $\nu = 1$ are expected to be skyrmions.

- Exchange energy gained at expense of Zeeman energy
- $\tilde{g}=E_Z/E_C=g\mu_B B/(e^2/4\pi\varepsilon\varepsilon_0 l_B)\approx .012$ for $n{=}10^{11}$ cm⁻² in perp. B
- Larger \tilde{g} decreases spin, "Size of skyrmion", S
- S decreases to 1 for $\tilde{g} > 0.054$ (Sondhi et al 93)

Experimental evidence:

Barrett et al 95 (Knight shift); Bayot et al. 96, heat capacity Schmeller et al 95 (T dependent transport); Aifer, Goldberg, Broido (optics)

Tilted field

For given ν , l_B (B_{\perp}) Vary Zeeman energy (B_{tot})

$$\tilde{g} = E_Z/E_C = g\mu_B B/(e^2/4\pi\varepsilon\varepsilon_0 l_B)$$

Also affects vertical wavefunction

Schmeller et al 95 (T dependent transport)

Compare near $\nu = 1$ and 2

 $n=1.15 \times 10^{11} \text{ cm}^{-2}, \ \mu \sim 10^7 \text{ cm}^2/\text{Vs} 50 \text{nm QW}$ B=4.6 T for $\nu = 1, \ \theta = 0^\circ$

$$n*=0.46\times10^{10} \text{ cm}^{-2}$$

 $\theta = 0^{\circ}$: $\tilde{g} = 0.013$

 $\theta = 63^{\circ}$: $\tilde{g} = 0.028$

Same n*, same Landau level index, N=0

Absence of any effect at ν =1.92 indicates little effect of confinement due to B_{\parallel}

Curves for $1 \pm \nu^*$ approach those for $2 - \nu^*$ as θ increases, so they lie together at largest n^*

Skyrmion crystals

Côté, MacDonald, Brey, Fertig, Girvin, Stoof, PRL '97

- 1) Larger skyrmions are less favored when crystal is denser
- 2) Square to triangular transition

 f_{pk} difference visible for predicted S>~2

Particle vs hole: different threshold B_{tot}

Different charge distribution in skyrmion vs antiskyrmion?

High n sample

n=2.7 x 10 11 /cm² μ ~25 x 10 6 cm²/Vs 30 nm QW

Smaller range of θ

Larger $\tilde{g}: 0.019$ at 0°

High B Termination of QH series (bilayer)

Insulating phase accompanied by microwave resonance Bilayer p-type, per layer p=3.05×10¹⁰/cm²; well-center separation d=26 nm d/(avg. spacing in a layer)~ $d(\pi p)^{1/2}$ =0.8

(Earliest observation of pinning mode in bilayer: Doveston et al. 2002))

Bilayer Wigner Crystals (BWC) (balanced)

Type of BWC depends on separation/in-plane spacing,

measured by $\tilde{d} = 2d(\pi p)^{1/2}$ p is density/layer (holes), d is well separation

Staggered triangular

Pseudospin

Antiferromagnet AFMBWC

(No interlayer tunneling)

Staggered square

Antiferromagnet AFMBWC

(No interlayer tunneling)

easy plane ferromagnet FMBWC

Theories: Narasimhan and Ho, Zheng and Fertig. PRB '95

Evidence for phases: BWC pinning modes behavior $\Leftarrow \tilde{d}$

Microwave measurement, coupling to bilayer

backgate only (no front gate) one balanced density per cooldown

backgate only (no front gate) one balanced density per cooldown

As cooled, $p_B > p_T$, + backgate bias decreases p_B first, p_T following p_B depletion

• Microwave electric field penetrates both layers with small perturbation Independent layers with σ_1, σ_2 would give $(\sigma_1 + \sigma_2)$

Samples

<311A> grown bilayers of holes Negligible interlayer tunneling

Series of samples, $1.4 < \tilde{d} < 18$

deep in insulating phases, $v \le 1/2$

For small d, total v=1: excitonic Bose-Einstein Condensate, counterflow superfluid

(pseudospin easy plane ferromagnet)

Tutuc, Shayegan, and Huse, PRL'04 n type: Kellogg *et al.*, PRL '04

 $(\tilde{d} = d/l_{BI}, where l_{BI} is magnetic length when total filling v = 1)$

Balanced BWC: Microwave Spectra, evolution with v

M453: Spectra similar to single-layer case.

M465: f_{pk} drop at v=2/3 & 1/2, possibly indicating some FQH correlation in pinned bilayer WC.

Balanced BWC: Resonance f_{pk} and Q vs ν

Dips in f_{pp} , Q at v=1/2, 2/3

Clearly in insulating phase

FQH liquid correlations affect BWC 1/2: interlayer

In weak pinning: not softening of BWC Reduction of pinning?

Imbalanced layer densities: Spectra at many p_{tot}

Series of samples, varying \tilde{d} : Single layer vs. Bi-layer

For independent layers \Rightarrow

$$\sigma_{xx;pp} = 2 \times \sigma_{xx;p0}$$

$$\eta = 1$$

Conductivity of (p,0) state is doubled on graph

Density/ Carrier-carrier interaction

$$f_{pk} \propto (density)^{-\gamma}$$

Weak pinning, classical

State: $(p,0) \rightarrow (p,p)$

 $p_{total}: p \rightarrow 2p$ $f_{p0} > f_{pp}$

Small d limit: like one layer

maximal effect: $f \propto p_{total}^{-\gamma}$

$$\eta = f_{pp}/f_{p0} = \approx 0.71 \text{ for } \gamma = 1/2$$

Larger $\tilde{d} \Rightarrow \text{softer } (p,p) \Rightarrow \text{larger } \eta \text{ (closer to 1)}$

Question: how can η increase as \tilde{d} decreases?

Interpretation: AFM → FM BWC

■ FMBWC: extra f_{pp} from disorder spatially correlated btw. wells (e.g. local tunneling at impurities) Yong P. Chen, PRB **73**, 115314 (2006).

- Estimate transition at $\tilde{d}^* \sim 1.7$
- Exceeds theory predictions of $\tilde{d}^* \sim 0.4$

(Narasimhan and Ho, Zheng and Fertig '95)

• Comparison : v=1 excitonic Bose-Einstein condensate exists for $\tilde{d}^* < 1.8$.

"Applications" Summary

Skyrmions in IQHWC around $\nu = 1$

- Use rotation in field to vary E_Z , \tilde{g}
- n*, \tilde{g} dependence of f_{pk} : consistent with $S \ge 2$ in Côté et al theory, gives reduced f_{pk}
- No sign of square to triangular transition

Bilayers

- Surveyed samples, negligible tunneling, for many \tilde{d}
- Compare (p,p) and (p,0) states to isolate effects of interlayer interaction frequency ratio η shows striking minimum
- Interpretation:

 $\tilde{d} > 1.7$: carrier-carrier interaction effect

 \tilde{d} < 1.7: pinning enhanced in FMBWC