

Does a bad metal become "superinsulator"?

Giant jumps in *I-V* characteristics in 2D films (near a superconductor-insulator transition)

Boris Altshuler, Vladimir Kravtsov, I.L., Igor Aleiner

PRL, 102, 176803 (2009)

(also Ovadia, Sacepe, Shahar, *ibid*, 176802)

Superconductor-Insulator Transition

Goldman et al; Kapitulnik et al; Paalanen et al., Hsu et al, Ovidiyahu et al, ..., 1989-till now

Physics behind

- □At T=0, QPT from superconductor to insulator: |D| survives but phase correlations are destroyed: a clear cut for granular systems.
- □ Near $T_c^{-1}0$, suppression of & fluctuations in |D| are probably also relevant...

Skrynski, Beloborodov, Efetov, 2001; Varlamov, I.L., Vinokur, 2007

but today's story is not about this.

Subject of the talk:

Highly unusual nonlinear electronic transport on the insulating side of SIT in disordered thin films of InO and TiN, and also in other materials

Linear regime: Arrhenius law at low T

is also rather unusual, but observed in numerous experiments, e.g. in InO amorphous films and elsewhere

$$R(T) = R_0 e^{(\Delta/T)^{\gamma}}$$
$$\gamma \approx 1, \Delta \sim 1 K$$

instead of Mott's VRH, g=1/d+1, or Efros-Shklovskii $g=\frac{1}{2}$

This was always considered as a puzzle and doesn't have a satisfactory theoretical explanation

Fig. 4. (a) Resistance vs. temperature for a single batch of In_xO film with a common width of 500 μm and length as shown. Each sub-sample is

Shahar, Ovadyahu, '92 Kowal, Ovadyahu, '94 Gantmakher, Golubkov, Lok, Geim, '96 Sambandamurthy, Engel, Johansson, Shahar, '04 Lin, Goldman '09

UNIVERSITY BIRMINGHAM

Giant jumps in I-V characteristics

Baturina, Mironov, Vinokur, Baklanov, Strunk,'07

Giant jumps in resistance from $k\Omega$ to $G\Omega$ regime

Sambandamurthy, Engel, Johansson, Peled, Shahar, '05

in systems tantalizingly close to superconductors

From a superconductor to a super-insulator?

PRL 94, 017003 (2005)

PHYSICAL REVIEW LETTERS

week ending 14 JANUARY 2005

Experimental Evidence for a Collective Insulating State in Two-Dimensional Superconductors

G. Sambandamurthy, L. W. Engel, A. Johansson, E. Peled, and D. Shahar

PRL 99, 257003 (2007)

PHYSICAL REVIEW LETTERS

week ending 21 DECEMBER 2007

Localized Superconductivity in the Quantum-Critical Region of the Disorder-Driven Superconductor-Insulator Transition in TiN Thin Films

T. I. Baturina, 1,2 A. Yu. Mironov, 1,2 V. M. Vinokur, M. R. Baklanov, and C. Strunk²

Vol 452 3 April 2008 doi:10.1038/nature06837

nature

LETTERS

Superinsulator and quantum synchronization

 $\mbox{Valerii M. Vinokur}^1, \mbox{Tatyana I. Baturina}^{1,2,3}, \mbox{Mikhail V. Fistul}^4, \mbox{Aleksey Yu. Mironov}^{2,3}, \mbox{Mikhail R. Baklanov}^5 \mbox{\& Christoph Strunk}^3$

PRL 100, 086805 (2008)

PHYSICAL REVIEW LETTERS

week ending 29 FEBRUARY 2008

Collective Cooper-Pair Transport in the Insulating State of Josephson-Junction Arrays

M. V. Fistul, 1 V. M. Vinokur, 2 and T. I. Baturina 3,2

Jumps in *I-V* characteristics: old data

PHYSICAL REVIEW B

VOLUME 53, NUMBER 3

15 JANUARY 1996-I

Depinning transition in Mott-Anderson insulators

F. Ladieu, M. Sanquer, and J. P. Bouchaud

YSi films

A few orders in magnitude current jumps increasing with lowering temperature not in the vicinity of the SIT transition

Something else?

LETTERS

Electrically driven phase transition in magnetite nanostructures

SUNGBAE LEE¹, ALEXANDRA FURSINA², JOHN T. MAYO², CAFER T. YAVUZ², VICKI L. COLVIN², R. G. SUMESH SOFIN³, IGOR V. SHVETS³ AND DOUGLAS NATELSON^{1,4*}

nature materials | VOL 7 | FEBRUARY 2008 |-

Magnetite (Fe₃O₄) nanostructures

Common features

- □ Strong disorder: $R_0 = \frac{2h}{e^2} \frac{1}{g}$, $g \sim 1$ in low-R state
- □ Arrhenius law for linear $(V \rightarrow 0)$ resistance at low T pseudo-gap

$$R(T) = R_0 e^{\Delta/T}$$

□ VRH ($\gamma \le \frac{1}{2}$) is not observed at low T – no electron-phonon thermalization?

 $lue{}$ Voltage threshold eV (at which jumps occurs) increases with increasing Δ much faster than Δ itself

Phenomenological explanation?

No single microscopic approach can possibly explain so similar behaviour in so different systems...

Our main idea: bi-stability due to (over)heating is the main cause of giant resistance jumps

Not normally expected for hopping conductivity in the insulating regime – in contrast to the metallic one...

Assumptions

- ❖ Electron-electron interaction is strong enough: electrons are mutually thermalized with T_{el}
- * Cooling is mainly due to electron-phonon interaction which is, however, inefficient: electrons can be joule –heated to temperature $T_{\rm el} > T_{\rm bath}$ $^{\rm o}T_{\rm ph}$
- * Linear (Ohmic) R(T) has steep (Arrhenius-like) T dependence which remains valid at a finite voltage with $T \to T_{\rm el}$
- \star $T_{\rm el}$ should be found from the balance of Joule heating (by electric field) and phonon cooling

Bi-stability in a nutshell

Heat balance: $rac{V^2}{R(T_{
m el})} = rac{\mathcal{E}(T_{
m el})}{ au_{
m e-ph}(T_{
m el})} - rac{\mathcal{E}(T_{
m ph})}{ au_{
m e-ph}(T_{
m ph})} \propto T_{
m el}^{eta} - T_{
m ph}^{eta}$

Low-Dimensional Electronic Systems, KITP, UCSB, May 2009

Electron-phonon relaxation

Electron-phonon scattering rate in the clean metal:

$$\frac{\hbar}{\tau_{\text{e-ph}}} = \frac{T^3}{T_D^2}$$

$$\frac{\hbar}{\tau_{\text{e-ph}}} = (k_F a)^3 \frac{T^3}{T_D^2} \quad \text{in a semiconductor with } p_F ` \tilde{N}/a$$

 $\frac{\hbar}{ au_{ ext{e-ph}}} = \frac{T^3}{T_D^2}$ $T_{ ext{D}}$ — Debye temperature; assumed that $p_F \sim ilde{ ext{N}}/a$ (dense metal)

Energy relaxation (cooling) from the kinetic equation:

$$\frac{\dot{\mathcal{E}}}{\mathcal{V}} = \nu_0 \int \varepsilon \dot{f}(\varepsilon, T_{\rm el}) d\varepsilon \sim \frac{T_{\rm el}^2}{\tau_{\rm e-ph}(T_{\rm el})} - \frac{T_{\rm ph}^2}{\tau_{\rm e-ph}(T_{\rm ph})} \propto T_{\rm el}^5 - T_{\rm ph}^5$$

for a clean metal or semiconductor

Suppression of cooling by disorder

Dirty-metal (or low T) limit: $q_T\ell/\hbar\ll 1 \quad \Leftrightarrow \quad T\,\ell\ll\hbar v_{\rm s}$

{ – electron mean free path

u_s – transverse sound velocity

 $q_{\rm T}$ – thermal phonon momentum

(fulfilled with vengeance in all materials discussed)

The kinetic equation - within the Debye model, jelly approximation and taking into account phonon-induced impurity displacements,

$$\hat{H}_{\text{e-ph}}^{\text{imp}} = -\frac{1}{\mathcal{V}} \sum_{p,k,q} U(k) c_{k+p+q}^{\dagger} c_p \ (k \cdot u_q)$$

is solved exactly in the lowest order in disorder and results in

$$rac{\hbar}{ au_{ ext{e-ph}}} \sim n^* rac{q_T \ell}{\hbar} rac{T^3}{T_D^2} \propto T^4$$
 ~10-4 in InO and TiN

 n^* – # of electrons per unit cell

Disorder-independent heat balance

Substituting the exact solution of the kinetic equation in the model results in the disorder-independent equation for heat balance in proper dimensionless variables:

$$\frac{V^2}{R} = \frac{\mathrm{d}\mathcal{E}}{\mathrm{d}t} \qquad \mapsto \qquad v^2 \mathrm{e}^{-1/t_{\mathrm{el}}} = t_{\mathrm{el}}^6 - t_{\mathrm{ph}}^6,
t \equiv \frac{T}{\Delta}, \quad v \equiv \frac{V}{V_0},
\frac{eV_0}{L} \equiv \frac{\alpha k_{\mathrm{F}} \Delta^3}{\Delta_0^2}, \quad \Delta_0 \equiv (\rho v_{\mathrm{s}}^5 \hbar^3)^{1/4}, \quad \alpha \equiv \frac{2\pi^2}{\sqrt{315}} \approx 1.1$$

Heat balance depends ONLY on electron density ($k_{\rm F}$), the Arrhenius pseudo-gap D and the 'material' energy D_0

Critical temperature and voltage

Minimal temperature of the hot (LR) state is 0.14 D

Maximal temperature of the cold (HR) state is close to the bath

temperature

Critical bath temperature T_{ph} depends only on D

Low-Dimensional Electronic Systems, KITP, UCSB, May 2009

Threshold voltage of the cold (HR) state is strongly *T*-dependent

Threshold voltage for the hot (LR) state is almost independent of T_{bath}

Compare to the newest data

Threshold voltage for the hot (LR) state is almost independent of T_{bath}

Threshold voltage of the cold (HR) state is strongly *T*-dependent

M.Ovadia, B.Sacepe, D.Shahar, InO film (PRL,'09)

Non-zero log-linear conductance: the insulator is not ideal

Low-Dimensional Electronic Systems, KITP, UCSB, May 2009

Nonlinear I-V characteristics

- Current jumps of several orders of magnitude
- Wide range of log-linear behavior in the HR state

T-dependence of jump voltage

The direction of voltage change

❖ HR->LR voltage threshold strongly depends on *T*; LR->HR threshold has a weak *T*-dependence

Limit of stability of the cold (HR) state is strongly *T*-dependent

Limit of stability for the hot (LR) state is almost independent of T_{bath}

Bistability temperature

Minimal temperature of the hot (LR) state is 0.14 D

Maximal temperature of the cold (HR) state is close to the bath

temperature

Experimental bistability diagram (Ovadia, Sasepe, Shahar, 2009)

FIG. 3 (color online). $T_{\rm el}$ versus $T_{\rm ph}$, showing the excluded region of temperatures which appears below $T_{\rm ph}=0.1$ K, and the accompanying hysteresis. Blue (dark gray) circles correspond to data measured while increasing |V| and red (gray) crosses represent data taken while decreasing |V|. Inset:

Low-Dimensional Electronic Systems, KITP, UCSB, May 2009

Quantitative comparison

$$\frac{eV_{\rm hot}^{\rm cr}}{L} \equiv \frac{0.1k_{\rm F}\Delta^3}{\Delta_0^2}, \quad T_{\rm ph}^{\rm cr} = 0.1\Delta, \quad \Delta_0 \equiv (\rho v_{\rm s}^5 \hbar^3)^{1/4}$$

Theoretical estimates:

V=0.8 mV & T_{ph}^{cr}=190mK

for **D**=1.9K

Reasonable agreement in a wider range of D for TiN

Experimental data: $V=1.0 \text{ mV & T}_{ph}^{cr}=120\text{mK}$ for D=1.9K

Baturina et al, 2007

Beyond Arrhenius and t_{e-ph}

$$R(T) = R_0 \exp\left[(\Delta/T)^{\gamma}\right], \quad rac{V^2}{R(T_{
m el})} \propto T_{
m el}^{\beta} - T_{
m ph}^{\beta}$$

Critical phonon temperature $t_{\rm ph}^{\rm cr}=T_{\rm ph}^{\rm cr}/\Delta$

$$t_{\rm ph}^{\rm cr} = (1 + \beta/\gamma)^{-\frac{\beta+\gamma}{\gamma\beta}} = \begin{cases} 0.1 & \gamma = 1, \beta = 6\\ 0.004 & \gamma = \frac{1}{2}, \beta = 6\\ 1.5 \cdot 10^{-6} & \gamma = \frac{1}{4}, \beta = 6 \end{cases}$$

Scaling of the threshold voltage:

$$V_{\rm LH}/\Delta^{\beta} = f(T_{\rm ph}/\Delta)$$
.

Scaling

 β =6 seems to be by far the best fit for the data

Not all experimental features captured

What is not quantitatively good: I_{max}/I_{min} <e in the HR state;

Experimentally this ratio is $10\ 20$; cannot be cured by any γ or β

$$\ln \frac{I}{I_0} = \frac{V}{V_0}, \quad \frac{V_0}{I_0} \approx 2R_0$$

Is overheating too mundane?

- □ Not known to happen on the insulating side, i.e. at R`h/e²
- Never was looked after as it is in contradiction to the picture of phonon-assisted hopping
- "Checked for" and vigorously denied in YSi and magnetite
- □ Requires a new approach to electron hopping at low *T*

Summary

- ©Electrons overheating due to inefficient cooling and the resulting current bistability leads to giant current jumps
- ©Good qualitative agreement with experiment without fitting parameters
- M Microscopic description of hopping electron transport in the absence of thermalization with phonons is wanted
- ©Direct measurement of the electron temperature in the hopping regime is a challenge

