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Does a bad metal become

“superinsulator”?
Giant jumps in I-V characteristics in 2D films
(near a superconductor-insulator transition)
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Superconductor-Insulator Transition
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Physics behind

JAt T=0, QPT from
superconductor to insulator: |D|
survives but phase correlations

are destroyed: a clear cut for ':' /i T-T<<T
granular systems. o
ONear T.'0, suppression of & Ho He H 7
fluctuations in |D| are probably
| | Skrynski, Beloborodov, Efetov, 2001;
also relevant... Varlamov, I.L., Vinokur, 2007

but today’s story is not about this.
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Subject of the talk:

Highly unusual
nonlinear electronic transport
on the insulating side of SIT In
disordered thin films of
InO and TIN,
and also in other materials
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Linear regime: Arrhenius law at low T
| | L|],|.|T|E|I | . | 0 | -IE_._E“IF.- |
Is also rather unusual, but observed  1of |—-&- .45 ar .
in numerous experiments, e.g. in InO F 1.0 = L
amorphous films and elsewhere K R 1 r._..f BLEH, i
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instead of Mott’s VRH, g=1/d+1, "
or Efros-Shklovskii g=%2 T T T
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This was always considered T &)
as a puzzle and doesn't _ _ :
have a satisfactory Fig 4. (a2} Remstance vs temperature for @ smgle baich of Ing film wuth
theoretical explanation 2 common width of 300 pm and kength as shown Each sub-sample =

Shahar, Ovadyahu, '92

Kowal, Ovadyahu, '94

Gantmakher, Golubkov, Lok, Geim, ‘96
Sambandamurthy, Engel, Johansson, Shahar, '04
Lin, Goldman ‘09
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Glant jJumps In |-V characteristics

TIN films InO films
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Baturina, Mironov, Sambandamurthy, Engel,
Vinokur, Baklanov, Johansson, Peled, Shahar, '05
Strunk,’07 o _ \
Giant jumps in resistance In systems tantalizingly
from kQ to GQ regime close to superconductors
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From a superconductor to a super-insulator?

- r - eek endi
PRL 94, 017003 (2005) PHYSICAL REVIEW LETTERS 14 JANUARY 2005

Experimental Evidence for a Collective Insulating State in Two-Dimensional Superconductors
G. Sambandamurthy,' L. W. Engel,” A. Johansson,' E. Peled.' and D. Shahar'

. . . wesk endin
PRL 99, 257003 (2007) PHYSICAL REVIEW LETTERS 21 DECEMBER 2007

Localized Superconductivity in the Quantum-Critical Region of the Disorder-Driven
Superconductor-Insulator Transition in TiN Thin Films

T L. Baturina.'~ A. Yu. Mironov,'” V. M. Vinokur.” M.R. Baklanov.* and C. Strunk”

Vol 452|2 April 2008 | deoi: 10,1038/ nature0 6837 nature

LETTERS

Superinsulator and quantum synchronization

Valerii M. Vinokur!, Tatyana I. Baturina®”, Mikhail V. Fistul®, Aleksey Yu. Mironowv’”, Mikhail R. Baklanow®
& Christoph Strunk”
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Collective Cooper-Pair Transport in the Insulating State of Josephson-Junction Arrays

M. V. Fistul.! V. M. Vinokur,” and T. 1. Baturina™
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Jumps in |-V characteristics: old data

PHYSICAL EEVIEW B VOLUME 53, NUMBEE. 3 15 JANUAEY 1996-1

Depinning transition in Mott-Anderson insulators

F. Ladien. M. Sanquer, and J. P. Bouchaud
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Something else?
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Electrically driven phase transition in
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Common features

h
Q Strong disorder: Ry = 2—21, g ~ 1 in low-R state
et g
Q Arrhenius law for linear (V—0) R(T) = RoeA/T

resistance at low T - pseudo-gap

Q VRH (y<%2) is not observed at low T — R( o
no electron-phonon thermalization?

Q Voltage threshold eV (at which jumps
occurs) increases with increasing A
much faster than A itself
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Phenomenological explanation?

No single microscopic approach can possibly explain so
similar behaviour in so different systemes...

Our main idea: bi-stability due to
(over)heating is the main cause of
giant resistance jumps

Not normally expected for hopping conductivity in the
insulating regime — in contrast to the metallic one...
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Assumptions

< Electron-electron interaction is strong enough:
electrons are mutually thermalized with Te

< Cooling is mainly due to electron-phonon interaction
which is, however, inefficient: electrons can be joule
—heated to temperature Ty >Tp., °Tp,

< Linear (Ohmic) R(T) has steep (Arrhenius-like) T -
dependence which remains valid at a finite voltage

with T —
< T, should

el

ne found from the balance of Joule

heating (by electric field) and phonon cooling
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Bi-stability in a nutshell

2
ve o E(Ty) E(Tm) ocTB—Tpﬁh

Heat balance: _
R(Ta)  Tepn(Te)  Tepn(Tpn) °

R(Tel)[Te? _T;h]:\/z

Two stable
electron
- temperatures
Tph o Te'. at the same
0.10 0.15 0.20 0.25 voltage
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Electron-phonon relaxation

Electron-phonon scattering rate in the clean metal:

i _ T_3 T, — Debye temperature;

Te-ph - TL% assumed that p-~N/a (dense metal)
i _ (]C a)gT_S in a semiconductor with p: "N/a
Te-ph a TIQD

Energy relaxation (cooling) from the kinetic equation:

(C: / . T21 T2h =4 =
— =1 [ ef(e, Ty)de ~ o — > x T9—T%
V ’ A ) Te—ph(Tel) Te—ph(Tph> 1 2

for a clean metal or semiconductor
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Suppression of cooling by disorder
Dirty-metal (or low T) limit: ng/h L1 & TVl hv

{ — electron mean free path
u, — transverse sound velocity
0; — thermal phonon momentum

(fulfilled with vengeance in
all materials discussed )

The kinetic equation - within the Debye model, jelly approximation and taking
into account phonon-induced impurity displacements,

A 1
mp . T .
H, = Y E U(k)erypiaCp (K- ug)
p.k,q
is solved exactly in the lowest order in disorder and results in

h o ng T3

— ~n X
2

T4 n" —# of electrons per unit cell

Y
~10%in InO and TiN
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Disorder-independent heat balance

Substituting the exact solution of the kinetic equation in the
model results in the disorder-independent equation for heat
balance in proper dimensionless variables:

V2 oodE 1
- —1/tq _ t t
R dt -~ v'e ph
, T V
= — V= —
A Y] % 7
6% O{kFAS 2o @ 27(-2
= . A v h /4 a= ~ 1.1
L — A? 0 = (puT) V315

Heat balance depends ONLY on electron density (k), the
Arrhenius pseudo-gap D and the ‘'material’ energy D,
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Critical temperature and voltage

Minimal temperature of the Threshold voltage of the cold (HR)
hot (LR) state is 0.14 D state is strongly T-dependent

Electroh temperature \ LR 03 [ Threshgld voltage
0.16F .
) 0.25}
121 unstable |
U1z iR 0.2}
/P
,/
0.08} ol 015!
//
0.04/ - 0.1t AN
tenlzgg:r];trsjre 005 f . Phonon temperature
0.02 0.04 (yos 0.08 0. 0.06 008 0.1

Maximal temperature of the cold

(HR) state is close to the bath Threshold voltage for the hot (LR)
state is almost independent of T, _,,
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Compare to the newest data
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of T 107 '
bath 3 2 3
M.Ovadia, B.Sacepe,
D.Shahar, Non-zero log-linear conductance: the
InO film (PRL,'09) Insulator is not ideal
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Nonlinear |I-V characteristics
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¢ Current jumps of several
orders of magnitude

** Wide range of log-linear
behavior in the HR state
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T-dependence of jump voltage

Limit of stability of the cold (HR)

107§ m—TT state is strongly T-dependent
—20mK
P —30mK
107 = ——40mK
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The direction of voltage change ' 006 008 01

2 HR->LR voltage threshold strongl
et R | imit of stability for the hot (LR) state

is almost independent of T,

depends on T; LR->HR threshold
has a weak T-dependence
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Bistability temperature

Minimal temperature of the Experimental bistability diagram

hot (LR) state is 0.14 D

(Ovadia, Sasepe, Shahar, 2009)

Electroh temperature \ 0.25
0.167 ! LR
| l 0.20F -
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AR — |
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f/ T | \\\ o
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temperature cr B 0.00 v (v) 0.25
. , - h 0 ] 1 ] 1
0.02 0.04 (yos 0.08 0.,- 000 005 010 015 020 025

T,, (K)

FIG. 3 (color online). T versus Tp,, showing the excluded
region of temperatures which appears below T,, = 0.1 K, and

Maximal temperature of the cold

' the accompanying hysteresis. Blue (dark gray) circles corre-
(HR) state is close to the bath spond to data measured while increasing |V| and red (gray)

crosses represent data taken while decreasing |V|]. Inset:
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Quantitative comparison
& hcgt L OlkFAS

h=01A, Ay = (pv3h3)1/4

= 5
L A2
Theoretical estimates: Experimental data:
V=0.8 mV & T, °=190mK V=1.0 mV & T, &=120mK
for D=1.9K o for D=1.9K
D-B' r*{rr gl rrre A"

0s]" 7 = o

Reasonable agreement in 0.4 ¢ [
a wider range of D for 0_3_}’ . '-.:'5 Baturina et al, 2007

TN O.Zi{...........:f}
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Beyond Arrhenius and t

) e-ph
.

_ \ P
R(T) = Ryexp [(A/T)'], R(To) x Ty —T
Critical phonon temperature tgrh — T&E/A

(
B+ 0.1 V= ? B =06
on =1 +8/y) 7T =c0004 y=148=6
\1510_6’)/:%,/8:6

Scaling of the VLH/Aﬁ — f(Tph/A) :

threshold voltage:
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Scaling

6
T |FFI:E!}|-|: CTDh T T T LI B | Tnh [“]
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c=6.e-005 @ :::: R 0.3
Vo u.z
0.15
0.13
0.11
0.1
0.09
0.08
0.07
0.06
- 0.05
- 0.04
- 0.03
EE . 0.02
. =1 * 0.01
10 T K10 10

B=6 seems to be by far the best fit for the data
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Not all experimental features captured

/l . <ein the HR state;
Experimentally this ratio is 10 ,20; cannot be cured by any y or 3

What is not quantitatively good: | /I .
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IS overheating too mundane?

0 Not known to happen on the
insulating side, i.e. at R h/e?

0 Never was looked after as it is
in contradiction to the picture
of phonon-assisted hopping

0 “Checked for” and vigorously
denied in YSi and magnetite

0 Requires a new approach to
electron hopping at low T
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Summary

(O Electrons overheating due to inefficient cooling
and the resulting current bistability leads to giant
current jumps

O Good qualitative agreement with experiment
without fitting parameters

O A microscopic description of hopping electron
transport in the absence of thermalization with
phonons is wanted

O Direct measurement of the electron temperature
In the hopping regime is a challenge
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