Classification of gapless Z₂ spin liquids in three-dimensional Kitaev models

Maria Hermanns University of Cologne

M.H., S. Trebst, PRB 89, 235102 (2014) M.H., K. O'Brien, S. Trebst, PRL 114, 157202 (2015) M.H., S. Trebst, A. Rosch, arXiv:1506.01379 (2015)

Classification of gapless Z₂ spin liquids in three-dimensional Kitaev models

Kevin O'Brien

Maria Hermanns University of Cologne

M.H., S. Trebst, PRB 89, 235102 (2014) M.H., K. O'Brien, S. Trebst, PRL 114, 157202 (2015) M.H., S. Trebst, A. Rosch, arXiv:1506.01379 (2015)

A family of Li₂IrO₃ compounds

A family of Li₂IrO₃ compounds

 α -Li₂IrO₃

$$\beta$$
-Li₂IrO₃

 $\gamma - \mathrm{Li}_2\mathrm{IrO}_3$

Singh et al., PRL 108, 127203 (2008) Takayama et al., PRL 114, 077202 (2015)

Modic et al., Nat. Comm. 5, 4203 (2014)

Na₂IrO₃: Singh, Gegenwart, PRB 82, 064412 (2010) RuCl₃: Majumder et al. PRB 91, 180401(R) (2015)

(9,3)

(8,3)

(10,3)

A.F.Wells, 1977

(8,3)

(10,3)

- equal bond length
- 120° bond angles

(9,3)

(8,3)

Schäfli symbol	alternative names	atoms per unit cell	Inversion	Lieb theorem	space group
(10,3)a	hyperoctagon K4 lattice	4	×	×	I ₄ 32 (214)
(10,3)b	hyperhoneycomb	4	√	×	Fddd (70)
(10,3)c	-	6	×	×	P3₁2 (151)
(9,3)a	-	12	√	×	R-3m (166)
(9,3)b	-	24	√	×	P42 / nmc (137)
(8,3)a	-	6	×	×	P6 ₂ 22 (180)
(8,3)b	-	6	\checkmark	\checkmark	R-3m (166)
(8,3)c	-	8	\checkmark	×	P63 / mmc (194)
(8,3)n	-	16	√	×	l4 / mmm (139)
(6.3)	honeycomb	2	√	\checkmark	

3D Kitaev models

A. Kitaev, Annals of Physics 321, 2 (2006)

 $\gamma-\mathrm{bond}$

A. Kitaev, Annals of Physics 321, 2 (2006)

• represent spins by four Majorana fermions

Kitaev spin liquids in 2D

Kitaev, Annals of Physics '06

Kitaev spin liquids in 2D

Kitaev, Annals of Physics '06

Schäfli symbol	Majorana metal	TR breaking	Peierls instability	
(10,3)a	(topological)	(topological)	1	
(hyperoctagon)	Fermi surface	Fermi surface	V	
(10,3)b (hyperhoneycomb)	Fermi line	Weyl nodes	×	
	E a mai lina a	topological	v	
(10,3)C	Fermi line	Fermi surface		
(9,3)a	Weyl nodes	Weyl nodes	×	
(9,3)b	-	-	×	
	(topological)	(topological)		
(8,3)a	Fermi surface	Fermi surface	√	
(8,3)b	Weyl nodes	Weyl nodes	\checkmark	
(8,3)c	Fermi line	Weyl nodes	×	
(8,3)n	gapped	gapped	×	
(6,3)a (honeycomb)	Dirac points	gapped NA	×	

Schäfli symbol	Majorana metal	TR breaking	Peierls instability	
(10,3)a	(topological)	(topological)		
(hyperoctagon)	Fermi surface	Fermi surface		
(10,3)b (hyperhoneycomb)	Fermi line	Weyl nodes	×	
(10.2) a	E a mai lina	topological	× ×	
(10,3)C	Fermi line	Fermi surface		
(9,3)a	Weyl nodes	Weyl nodes	×	
(9,3)b	-	-	×	
	(topological)	(topological)		
(8,3)a	Fermi surface	Fermi surface	√	
(8,3)b	Weyl nodes	Weyl nodes	√	
(8,3)c	Fermi line	Weyl nodes	×	
(8,3)n	gapped	gapped	×	
(6,3)a (honeycomb)	Dirac points	gapped NA	×	

11

stable Majorana Fermi surface throughout the gapless region Z_2 spin liquid with spinon Fermi surface

Spin-Peierls BCS instability

M.H., S. Trebst, A. Rosch, arXiv:1506.01379 (2015)

natural BCS-type instability for time-reversal invariant systems

Spin-Peierls BCS instability

M.H., S. Trebst, A. Rosch, arXiv:1506.01379 (2015)

natural BCS-type instability for time-reversal invariant systems

Fermi surface centered around $k_0/2$

order parameter has finite momentum **k**₀: $\Delta \sim \langle f^{\dagger}_{\mathbf{k}_{0}+\mathbf{q}} f^{\dagger}_{\mathbf{k}_{0}-\mathbf{q}} \rangle$

spontanous breaking of translational symmetry → spin-Peierls transition additional breaking of rotation symmetry possible

order parameter distribution

Spin-Peierls BCS instability

M.H., S. Trebst, A. Rosch, arXiv:1506.01379 (2015)

Perfect nesting condition is destroyed by TR breaking

BCS instability cut-off at low temperatures Time-reversal breaking stabilizes Majorana Fermi surface

(10,3)b – Fermi line

(10,3)b – Fermi line

M.H., S. Trebst, PRB 89, 235102 (2014)

Particle-hole symmetry	$\epsilon(\mathbf{k}) = -\epsilon(-\mathbf{k})$

 \mathbf{k}_0 is the reciprocal lattice vector of the sublattice

M.H., S. Trebst, PRB 89, 235102 (2014)

 \mathbf{k}_0 is the reciprocal lattice vector of the sublattice

M.H., S. Trebst, PRB 89, 235102 (2014)

 \mathbf{k}_0 is the reciprocal lattice vector of the sublattice

M.H., S. Trebst, PRB 89, 235102 (2014)

 \mathbf{k}_0 is the reciprocal lattice vector of the sublattice

 $\mathbf{k}_0 = 0$: particle-hole symmetry at each \mathbf{k}

- separated points (2D)
- lines (3D)

 $\mathbf{k}_0 \neq 0$: generic band Hamiltonian

- lines (2D)
- surfaces (3D)

Schäfli symbol	Majorana metal	TR breaking	Peierls instability	
(10,3)a	(topological)	(topological)		
(hyperoctagon)	Fermi surface	Fermi surface		
(10,3)b (hyperhoneycomb)	Fermi line	Weyl nodes	×	
(10.2) a	E a remi lina	topological	× ×	
(10,3)C	Fermi line	Fermi surface		
(9,3)a	Weyl nodes	Weyl nodes	×	
(9,3)b	-	-	×	
	(topological)	(topological)		
(8,3)a	Fermi surface	Fermi surface	√	
(8,3)b	Weyl nodes	Weyl nodes	√	
(8,3)c	Fermi line	Weyl nodes	×	
(8,3)n	gapped	gapped	×	
(6,3)a (honeycomb)	Dirac points	gapped NA	×	

Weyl physics

Touching of two bands in 3D is generically linear

$$\hat{H} = \vec{v}_0 \cdot \vec{q} \, \mathbb{1} + \sum_{j=1}^3 \vec{v}_j \cdot \vec{q} \, \sigma_j$$
 Weyl nodes

Weyl nodes are sources/sinks of Berry flux with charge/chirality $\operatorname{sign}[\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3)]$

Weyl physics

Touching of two bands in 3D is generically linear

$$\hat{H} = \vec{v}_0 \cdot \vec{q} \, \mathbb{1} + \sum_{j=1}^3 \vec{v}_j \cdot \vec{q} \, \sigma_j$$
 Weyl nodes

Weyl nodes are sources/sinks of Berry flux with charge/chirality $\operatorname{sign}[\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3)]$

Wan et al., PRB 83, 205101 (2011)

Weyl physics

Touching of two bands in 3D is generically linear $\hat{H} = \vec{v}_0 \cdot \vec{q} \, \mathbb{1} + \sum_{j=1}^3 \vec{v}_j \cdot \vec{q} \, \sigma_j$ Weyl nodes

Weyl nodes are sources/sinks of Berry flux with charge/chirality $\operatorname{sign}[\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3)]$

protected surface states: Fermi arcs

topological semi-metal with protected surface states (metallic cousin of the topological insulator)

Wan et al., PRB 83, 205101 (2011)

Weyl spin liquids

external magnetic field in (1,1,1)-direction

$$H_{eff} = -J \sum_{\langle j,k \rangle} \sigma_j^{\gamma} \sigma_k^{\gamma} - \kappa \sum_{\langle j,k,l \rangle} \sigma_j^{\alpha} \sigma_k^{\beta} \sigma_l^{\gamma}$$

Weyl spin liquids

Weyl spin liquids

external magnetic field in (1,1,1)-direction

$$H_{eff} = -J \sum_{\langle j,k \rangle} \sigma_j^{\gamma} \sigma_k^{\gamma} - \kappa \sum_{\langle j,k,l \rangle} \sigma_j^{\alpha} \sigma_k^{\beta} \sigma_l^{\gamma}$$

Breaking time-reversal reduces line to a pair of gapless Weyl nodes

Weyl nodes are pinned to zero energy due to inversion symmetry

Topology of Weyl spin liquids

Sources/sinks of Berry flux with chirality $\operatorname{sign}[\vec{v}_1 \cdot (\vec{v}_2 \times \vec{v}_3)]$

non-zero Chern number for surface surrounding a Weyl node

Topological surface states – Fermi arcs

slab geometry

surface Brillouin zone

Topological surface states – Fermi arcs

surface Brillouin zone

topologically protected gapless surface states

Schäfli symbol	Majorana metal	TR breaking	Peierls instability	
(10,3)a (hyperoctagon)	(topological) Fermi surface	(topological) Fermi surface	✓	
(10,3)b (hyperhoneycomb)	Fermi line	Weyl nodes	×	
(10,3)c	Fermi line	topological Fermi surface	×	
(9,3)a	Weyl nodes	Weyl nodes	×	
(9,3)b	-	-	explicit breaking	q o
(0,0) -	(topological)	(topological) ti	me-reversal sym	ime
(8,3 <i>)</i> a	Fermi surface	Fermi surface		
(8,3)b	Weyl nodes	Weyl nodes	\checkmark	
(8,3)c	Fermi line	Weyl nodes	×	
(8,3)n	gapped	gapped	×	
(6,3)a (honeycomb)	Dirac points	gapped NA	×	

	Schäfli symbol	Majorana metal	TR breaking	Peierls instability
	(10,3)a	(topological)	(topological)	
	(hyperoctagon)	Fermi surface	Fermi surface	√
(10.3)b spontaneous breaking of time-reversal symmetry		Fermi line	Weyl nodes	×
		Fermi line	topological Fermi surface	×
	(9,3)a	Weyl nodes	Weyl nodes	×
(9,3)	(9,3)b	-	-	explicit breakin
	(8,3)a	(topological)	(topological) t	ime-reversal sym
	(8,3)b	Weyl nodes	Weyl nodes	✓
	(8,3)c	Fermi line	Weyl nodes	×
	(8,3)n	gapped	gapped	×
	(6,3)a (honeycomb)	Dirac points	gapped NA	×

	Schäfli symbol	Majorana metal	TR breaking	Peierls instability
	(10,3)a	(topological)	(topological)	
	(hyperoctagon)	Fermi surface	Fermi surface	√
spontaneous breaking of		Fermi line	Weyl nodes	×
time	e-reversal symmetry	Fermi line	topological Fermi surface	×
	(9,3)a	Weyl nodes	Weyl nodes	×
(9,3)b	(9,3)b	-	-	explicit breaking of
	(8,3)a	(topological)	(topological) t	ime-reversal symme
	(0, 0)h	Fermi surface	Fermi surface	
	(8,3)D	vveyi nodes	Weyl nodes	V
	(8,3)C (8,3)n	apped	gapped	×
We	eyl spin liquid with inve nd time-reversal symm	ersion netry points	gapped NA	×

Conclusion

- 3D Kitaev models show rich behavior depending on the underlying lattice structure
- Z₂ spin liquid with Majorana Fermi surface
 - Fermi line
 - Weyl nodes (Weyl spin liquid)

Conclusion

- 3D Kitaev models show rich behavior depending on the underlying lattice structure
- Z₂ spin liquid with Majorana Fermi surface
 - Fermi line
 - Weyl nodes (Weyl spin liquid)
- Can be distinguished experimentally by e.g. specific heat measurements
 Fermi surface: C(T) ∝ T
 Fermi line: C(T) ∝ T²
 Weyl nodes: C(T) ~ a_{bulk} · L³ · T³ + a_{surf} · L² · T

M.H., S. Trebst, PRB 89, 235102 (2014) M.H., K. O'Brien, S. Trebst, PRL 114, 157202 (2015) M.H., S. Trebst, A. Rosch, arXiv:1506.01379 (2015) K. O'Brien, M.H, S. Trebst (in preparation)